1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66"]
open! Int_replace_polymorphic_compare
(* CR-someday mshinwell: move to Flambda_utils *)
let rec tail_variable : Flambda.t -> Variable.t option = function
| Var v -> Some v
| Let_mutable { body = e }
| Let { body = e; _ } -> tail_variable e
| _ -> None
let closure_symbol ~(backend : (module Backend_intf.S)) closure_id =
let module Backend = (val backend) in
Backend.closure_symbol closure_id
(** Traverse the given expression assigning symbols to [let]- and [let rec]-
bound constant variables. At the same time collect the definitions of
such variables. *)
let assign_symbols_and_collect_constant_definitions
~(backend : (module Backend_intf.S))
~(program : Flambda.program)
~(inconstants : Inconstant_idents.result) =
let var_to_symbol_tbl = Variable.Tbl.create 42 in
let var_to_definition_tbl = Variable.Tbl.create 42 in
let module AA = Alias_analysis in
let assign_symbol var (named : Flambda.named) =
if not (Inconstant_idents.variable var inconstants) then begin
let assign_symbol () =
let symbol = Symbol.of_variable (Variable.rename var) in
Variable.Tbl.add var_to_symbol_tbl var symbol
in
let assign_existing_symbol = Variable.Tbl.add var_to_symbol_tbl var in
let record_definition = Variable.Tbl.add var_to_definition_tbl var in
match named with
| Symbol symbol ->
assign_existing_symbol symbol;
record_definition (AA.Symbol symbol)
| Const const -> record_definition (AA.Const const)
| Allocated_const const ->
assign_symbol ();
record_definition (AA.Allocated_const (Normal const))
| Read_mutable _ ->
(* [Inconstant_idents] always marks these expressions as
inconstant, so we should never get here. *)
assert false
| Prim (Pmakeblock (tag, _, _value_kind), fields, _) ->
assign_symbol ();
record_definition (AA.Block (Tag.create_exn tag, fields))
| Read_symbol_field (symbol, field) ->
record_definition (AA.Symbol_field (symbol, field))
| Set_of_closures (
{ function_decls = { funs; set_of_closures_id; _ };
_ } as set) ->
assert (not (Inconstant_idents.closure set_of_closures_id
inconstants));
assign_symbol ();
record_definition (AA.Set_of_closures set);
Variable.Map.iter (fun fun_var _ ->
let closure_id = Closure_id.wrap fun_var in
let closure_symbol = closure_symbol ~backend closure_id in
Variable.Tbl.add var_to_symbol_tbl fun_var closure_symbol;
let project_closure =
Alias_analysis.Project_closure
{ set_of_closures = var; closure_id }
in
Variable.Tbl.add var_to_definition_tbl fun_var
project_closure)
funs
| Move_within_set_of_closures ({ closure = _; start_from = _; move_to; }
as move) ->
assign_existing_symbol (closure_symbol ~backend move_to);
record_definition (AA.Move_within_set_of_closures move)
| Project_closure ({ closure_id } as project_closure) ->
assign_existing_symbol (closure_symbol ~backend closure_id);
record_definition (AA.Project_closure project_closure)
| Prim (Pfield (index, _, _), [block], _) ->
record_definition (AA.Field (block, index))
| Prim (Pfield _, _, _) ->
Misc.fatal_errorf "[Pfield] with the wrong number of arguments"
Flambda.print_named named
| Prim (Pmakearray (Pfloatarray as kind, mutability), args, _) ->
assign_symbol ();
record_definition (AA.Allocated_const (Array (kind, mutability, args)))
| Prim (Pduparray (kind, mutability), [arg], _) ->
assign_symbol ();
record_definition (AA.Allocated_const (
Duplicate_array (kind, mutability, arg)))
| Prim _ ->
Misc.fatal_errorf "Primitive not expected to be constant: @.%a@."
Flambda.print_named named
| Project_var project_var ->
record_definition (AA.Project_var project_var)
| Expr e ->
match tail_variable e with
| None -> assert false (* See [Inconstant_idents]. *)
| Some v -> record_definition (AA.Variable v)
end
in
let assign_symbol_program expr =
Flambda_iterators.iter_all_immutable_let_bindings expr
~f:assign_symbol
in
Flambda_iterators.iter_exprs_at_toplevel_of_program program
~f:assign_symbol_program;
let let_symbol_to_definition_tbl = Symbol.Tbl.create 42 in
let initialize_symbol_to_definition_tbl = Symbol.Tbl.create 42 in
let rec collect_let_and_initialize_symbols (program : Flambda.program_body) =
match program with
| Let_symbol (symbol, decl, program) ->
Symbol.Tbl.add let_symbol_to_definition_tbl symbol decl;
collect_let_and_initialize_symbols program
| Let_rec_symbol (decls, program) ->
List.iter (fun (symbol, decl) ->
Symbol.Tbl.add let_symbol_to_definition_tbl symbol decl)
decls;
collect_let_and_initialize_symbols program
| Effect (_, program) -> collect_let_and_initialize_symbols program
| Initialize_symbol (symbol,_tag,fields,program) ->
collect_let_and_initialize_symbols program;
let fields = List.map tail_variable fields in
Symbol.Tbl.add initialize_symbol_to_definition_tbl symbol fields
| End _ -> ()
in
collect_let_and_initialize_symbols program.program_body;
let record_set_of_closure_equalities
(set_of_closures : Flambda.set_of_closures) =
Variable.Map.iter (fun arg (var : Flambda.specialised_to) ->
if not (Inconstant_idents.variable arg inconstants) then
Variable.Tbl.add var_to_definition_tbl arg (AA.Variable var.var))
set_of_closures.free_vars;
Variable.Map.iter (fun arg (spec_to : Flambda.specialised_to) ->
if not (Inconstant_idents.variable arg inconstants) then
Variable.Tbl.add var_to_definition_tbl arg
(AA.Variable spec_to.var))
set_of_closures.specialised_args
in
Flambda_iterators.iter_on_set_of_closures_of_program program
~f:(fun ~constant set_of_closures ->
record_set_of_closure_equalities set_of_closures;
if constant then begin
Variable.Map.iter (fun fun_var _ ->
let closure_id = Closure_id.wrap fun_var in
let closure_symbol = closure_symbol ~backend closure_id in
Variable.Tbl.add var_to_definition_tbl fun_var
(AA.Symbol closure_symbol);
Variable.Tbl.add var_to_symbol_tbl fun_var closure_symbol)
set_of_closures.Flambda.function_decls.funs
end);
var_to_symbol_tbl, var_to_definition_tbl,
let_symbol_to_definition_tbl, initialize_symbol_to_definition_tbl
let variable_field_definition
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl :
Alias_analysis.constant_defining_value Variable.Tbl.t)
(var : Variable.t) : Flambda.constant_defining_value_block_field =
try
Symbol (Variable.Tbl.find var_to_symbol_tbl var)
with Not_found ->
match Variable.Tbl.find var_to_definition_tbl var with
| Const c -> Const c
| const_defining_value ->
Misc.fatal_errorf "Unexpected pattern for a constant: %a: %a"
Variable.print var
Alias_analysis.print_constant_defining_value const_defining_value
| exception Not_found ->
Misc.fatal_errorf "No associated symbol for the constant %a"
Variable.print var
let resolve_variable
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl :
Alias_analysis.constant_defining_value Variable.Tbl.t)
(var : Variable.t) : Flambda.constant_defining_value_block_field =
match Variable.Map.find var aliases with
| exception Not_found ->
variable_field_definition var_to_symbol_tbl var_to_definition_tbl var
| Symbol s -> Symbol s
| Variable aliased_variable ->
variable_field_definition var_to_symbol_tbl var_to_definition_tbl
aliased_variable
let translate_set_of_closures
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl:
Alias_analysis.constant_defining_value Variable.Tbl.t)
(set_of_closures : Flambda.set_of_closures) =
let f var (named : Flambda.named) : Flambda.named =
if Inconstant_idents.variable var inconstants then
named
else
let resolved =
resolve_variable
aliases
var_to_symbol_tbl
var_to_definition_tbl
var
in
match resolved with
| Symbol s -> Symbol s
| Const c -> Const c
in
Flambda_iterators.map_function_bodies set_of_closures
~f:(Flambda_iterators.map_all_immutable_let_and_let_rec_bindings ~f)
let translate_constant_set_of_closures
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl:
Alias_analysis.constant_defining_value Variable.Tbl.t)
(constant_defining_values : Flambda.constant_defining_value Symbol.Map.t) =
Symbol.Map.map (fun (const : Flambda.constant_defining_value) ->
match const with
| Flambda.Allocated_const _
| Flambda.Block _
| Flambda.Project_closure _ ->
const
| Flambda.Set_of_closures set_of_closures ->
let set_of_closures =
translate_set_of_closures
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl:
Alias_analysis.constant_defining_value Variable.Tbl.t)
(set_of_closures : Flambda.set_of_closures)
in
Flambda.Set_of_closures set_of_closures)
constant_defining_values
let find_original_set_of_closure
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl:
Alias_analysis.constant_defining_value Variable.Tbl.t)
project_closure_map
var =
let rec loop var =
match Variable.Map.find var aliases with
| Variable var ->
begin match Variable.Tbl.find var_to_definition_tbl var with
| Project_closure { set_of_closures = var }
| Move_within_set_of_closures { closure = var } ->
loop var
| Set_of_closures _ -> begin
match Variable.Tbl.find var_to_symbol_tbl var with
| s ->
s
| exception Not_found ->
Format.eprintf "var: %a@." Variable.print var;
assert false
end
| _ -> assert false
end
| Symbol s ->
match Symbol.Map.find s project_closure_map with
| exception Not_found ->
Misc.fatal_errorf "find_original_set_of_closure: cannot find \
symbol %a in the project-closure map"
Symbol.print s
| s -> s
in
loop var
let translate_definition_and_resolve_alias inconstants
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl :
Alias_analysis.constant_defining_value Variable.Tbl.t)
(symbol_definition_map : Flambda.constant_defining_value Symbol.Map.t)
(project_closure_map : Symbol.t Symbol.Map.t)
(definition : Alias_analysis.constant_defining_value)
~(backend : (module Backend_intf.S))
: Flambda.constant_defining_value option =
let resolve_float_array_involving_variables
~(mutability : Asttypes.mutable_flag) ~vars =
(* Resolve an [Allocated_const] of the form:
[Array (Pfloatarray, _, _)]
(which references its contents via variables; it does not contain
manifest floats). *)
let find_float_var_definition var =
match Variable.Tbl.find var_to_definition_tbl var with
| Allocated_const (Normal (Float f)) -> f
| const_defining_value ->
Misc.fatal_errorf "Bad definition for float array member %a: %a"
Variable.print var
Alias_analysis.print_constant_defining_value
const_defining_value
in
let find_float_symbol_definition sym =
match Symbol.Map.find sym symbol_definition_map with
| Allocated_const (Float f) -> f
| const_defining_value ->
Misc.fatal_errorf "Bad definition for float array member %a: %a"
Symbol.print sym
Flambda.print_constant_defining_value
const_defining_value
in
let floats =
List.map (fun var ->
match Variable.Map.find var aliases with
| exception Not_found -> find_float_var_definition var
| Variable var -> find_float_var_definition var
| Symbol sym -> find_float_symbol_definition sym)
vars
in
let const : Allocated_const.t =
match mutability with
| Immutable -> Immutable_float_array floats
| Mutable -> Float_array floats
in
Some (Flambda.Allocated_const const)
in
match definition with
| Block (tag, fields) ->
Some (Flambda.Block (tag,
List.map (resolve_variable aliases var_to_symbol_tbl
var_to_definition_tbl)
fields))
| Allocated_const (Normal const) -> Some (Flambda.Allocated_const const)
| Allocated_const (Duplicate_array (Pfloatarray, mutability, var)) ->
(* CR-someday mshinwell: This next section could do with cleanup.
What happens is:
- Duplicate contains a variable, which is resolved to
a float array thing full of variables;
- We send that value back through this function again so the
individual members of that array are resolved from variables to
floats.
- Then we can build the Flambda.name term containing the
Allocated_const (full of floats).
We should maybe factor out the code from the
Allocated_const (Array (...)) case below so this function doesn't have
to be recursive. *)
let (constant_defining_value : Alias_analysis.constant_defining_value) =
match Variable.Map.find var aliases with
| exception Not_found ->
Variable.Tbl.find var_to_definition_tbl var
| Variable var ->
Variable.Tbl.find var_to_definition_tbl var
| Symbol sym ->
match Symbol.Map.find sym symbol_definition_map with
| Allocated_const ((Immutable_float_array _) as const) ->
Alias_analysis.Allocated_const (Normal const)
| (Allocated_const _ | Block _ | Set_of_closures _
| Project_closure _) as wrong ->
Misc.fatal_errorf
"Lift_constants.translate_definition_and_resolve_alias: \
Duplicate Pfloatarray %a with symbol %a mapping to \
wrong constant defining value %a"
Variable.print var
Alias_analysis.print_constant_defining_value definition
Flambda.print_constant_defining_value wrong
| exception Not_found ->
let module Backend = (val backend) in
match (Backend.import_symbol sym).descr with
| Value_unresolved _ ->
Misc.fatal_errorf
"Lift_constants.translate_definition_and_resolve_alias: \
Duplicate Pfloatarray %a with unknown symbol: %a"
Variable.print var
Alias_analysis.print_constant_defining_value definition
| Value_float_array value_float_array ->
let contents =
Simple_value_approx.float_array_as_constant value_float_array
in
begin match contents with
| None ->
Misc.fatal_errorf
"Lift_constants.translate_definition_and_resolve_alias: \
Duplicate Pfloatarray %a with not completely known float \
array from symbol: %a"
Variable.print var
Alias_analysis.print_constant_defining_value definition
| Some l ->
Alias_analysis.Allocated_const (Normal (Immutable_float_array l))
end
| wrong ->
(* CR-someday mshinwell: we might hit this if we ever duplicate
a mutable array across compilation units (e.g. "snapshotting"
an array). We do not currently generate such code. *)
Misc.fatal_errorf
"Lift_constants.translate_definition_and_resolve_alias: \
Duplicate Pfloatarray %a with symbol %a that does not \
have an export description of an immutable array"
Variable.print var
Alias_analysis.print_constant_defining_value definition
Simple_value_approx.print_descr wrong
in
begin match constant_defining_value with
| Allocated_const (Normal (Float_array _)) ->
(* This example from pchambart illustrates why we do not allow
the duplication of mutable arrays:
{|
let_symbol a = Allocated_const (Immutable_float_array [|0.|])
initialize_symbol b = Duparray(Mutable, a)
effect b.(0) <- 1.
initialize_symbol c = Duparray(Mutable, b)
|}
This will be converted to:
{|
let_symbol a = Allocated_const (Immutable_float_array [|0.|])
let_symbol b = Allocated_const (Float_array [|0.|])
effect b.(0) <- 1.
let_symbol c = Allocated_const (Float_array [|0.|])
|}
We can't encounter that currently, but it's scary.
*)
Misc.fatal_error "Pduparray is not allowed on mutable arrays"
| Allocated_const (Normal (Immutable_float_array floats)) ->
let const : Allocated_const.t =
match mutability with
| Immutable -> Immutable_float_array floats
| Mutable -> Float_array floats
in
Some (Flambda.Allocated_const const)
| Allocated_const (Array (Pfloatarray, _, vars)) ->
(* Important: [mutability] is from the [Duplicate_array]
construction above. *)
resolve_float_array_involving_variables ~mutability ~vars
| const ->
Misc.fatal_errorf
"Lift_constants.translate_definition_and_resolve_alias: \
Duplicate Pfloatarray %a with wrong argument: %a"
Variable.print var
Alias_analysis.print_constant_defining_value const
end
| Allocated_const (Duplicate_array (_, _, _)) ->
Misc.fatal_errorf "Lift_constants.translate_definition_and_resolve_alias: \
Duplicate_array with non-Pfloatarray kind: %a"
Alias_analysis.print_constant_defining_value definition
| Allocated_const (Array (Pfloatarray, mutability, vars)) ->
resolve_float_array_involving_variables ~mutability ~vars
| Allocated_const (Array (_, _, _)) ->
Misc.fatal_errorf "Lift_constants.translate_definition_and_resolve_alias: \
Array with non-Pfloatarray kind: %a"
Alias_analysis.print_constant_defining_value definition
| Project_closure { set_of_closures; closure_id } ->
begin match Variable.Map.find set_of_closures aliases with
| Symbol s ->
Some (Flambda.Project_closure (s, closure_id))
(* If a closure projection is a constant, the set of closures must
be assigned to a symbol. *)
| exception Not_found ->
assert false
| Variable v ->
match Variable.Tbl.find var_to_symbol_tbl v with
| s ->
Some (Flambda.Project_closure (s, closure_id))
| exception Not_found ->
Format.eprintf "var: %a@." Variable.print v;
assert false
end
| Move_within_set_of_closures { closure; move_to } ->
let set_of_closure_symbol =
find_original_set_of_closure
aliases
var_to_symbol_tbl
var_to_definition_tbl
project_closure_map
closure
in
Some (Flambda.Project_closure (set_of_closure_symbol, move_to))
| Set_of_closures set_of_closures ->
let set_of_closures =
translate_set_of_closures
inconstants
aliases
var_to_symbol_tbl
var_to_definition_tbl
set_of_closures
in
Some (Flambda.Set_of_closures set_of_closures)
| Project_var _ -> None
| Field (_,_) | Symbol_field _ -> None
| Const _ -> None
| Symbol _ -> None
| Variable _ -> None
let translate_definitions_and_resolve_alias
inconstants
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl:
Alias_analysis.constant_defining_value Variable.Tbl.t)
symbol_definition_map
project_closure_map
~backend =
Variable.Tbl.fold (fun var def map ->
match
translate_definition_and_resolve_alias inconstants aliases ~backend
var_to_symbol_tbl var_to_definition_tbl symbol_definition_map
project_closure_map def
with
| None -> map
| Some def ->
let symbol = Variable.Tbl.find var_to_symbol_tbl var in
Symbol.Map.add symbol def map)
var_to_definition_tbl Symbol.Map.empty
(* Resorting of graph including Initialize_symbol *)
let constant_dependencies ~backend:_
(const : Flambda.constant_defining_value) =
match const with
| Allocated_const _ -> Symbol.Set.empty
| Block (_, fields) ->
let symbol_fields =
List.filter_map
(function
| (Symbol s : Flambda.constant_defining_value_block_field) -> Some s
| Flambda.Const _ -> None)
fields
in
Symbol.Set.of_list symbol_fields
| Set_of_closures set_of_closures ->
Flambda.free_symbols_named (Set_of_closures set_of_closures)
| Project_closure (s, _) ->
Symbol.Set.singleton s
module Symbol_SCC = Strongly_connected_components.Make (Symbol)
let program_graph ~backend imported_symbols symbol_to_constant
(initialize_symbol_tbl :
(Tag.t * Flambda.t list * Symbol.t option) Symbol.Tbl.t)
(effect_tbl : (Flambda.t * Symbol.t option) Symbol.Tbl.t) =
let expression_symbol_dependencies expr = Flambda.free_symbols expr in
let graph_with_only_constant_parts =
Symbol.Map.map (fun const ->
Symbol.Set.diff (constant_dependencies ~backend const)
imported_symbols)
symbol_to_constant
in
let graph_with_initialisation =
Symbol.Tbl.fold (fun sym (_tag, fields, previous) ->
let order_dep =
match previous with
| None -> Symbol.Set.empty
| Some previous -> Symbol.Set.singleton previous
in
let deps = List.fold_left (fun set field ->
Symbol.Set.union (expression_symbol_dependencies field) set)
order_dep fields
in
let deps = Symbol.Set.diff deps imported_symbols in
Symbol.Map.add sym deps)
initialize_symbol_tbl graph_with_only_constant_parts
in
let graph =
Symbol.Tbl.fold (fun sym (expr, previous) ->
let order_dep =
match previous with
| None -> Symbol.Set.empty
| Some previous -> Symbol.Set.singleton previous
in
let deps =
Symbol.Set.union (expression_symbol_dependencies expr) order_dep
in
let deps = Symbol.Set.diff deps imported_symbols in
Symbol.Map.add sym deps
)
effect_tbl graph_with_initialisation
in
let components =
Symbol_SCC.connected_components_sorted_from_roots_to_leaf
graph
in
components
(* rebuilding the program *)
let add_definition_of_symbol constant_definitions
(initialize_symbol_tbl :
(Tag.t * Flambda.t list * Symbol.t option) Symbol.Tbl.t)
(effect_tbl : (Flambda.t * Symbol.t option) Symbol.Tbl.t)
(program : Flambda.program_body) component : Flambda.program_body =
let symbol_declaration sym =
(* A symbol declared through an Initialize_symbol construct
cannot be recursive, this is not allowed in the construction.
This also couldn't have been introduced by this pass, so we can
safely assert that this is not possible here *)
assert(not (Symbol.Tbl.mem initialize_symbol_tbl sym));
(sym, Symbol.Map.find sym constant_definitions)
in
match component with
| Symbol_SCC.Has_loop l ->
let l = List.map symbol_declaration l in
Let_rec_symbol (l, program)
| Symbol_SCC.No_loop sym ->
match Symbol.Tbl.find initialize_symbol_tbl sym with
| (tag, fields, _previous) ->
Initialize_symbol (sym, tag, fields, program)
| exception Not_found ->
match Symbol.Tbl.find effect_tbl sym with
| (expr, _previous) ->
Effect (expr, program)
| exception Not_found ->
let decl = Symbol.Map.find sym constant_definitions in
Let_symbol (sym, decl, program)
let add_definitions_of_symbols constant_definitions initialize_symbol_tbl
effect_tbl program components =
Array.fold_left
(add_definition_of_symbol constant_definitions initialize_symbol_tbl
effect_tbl)
program components
let introduce_free_variables_in_set_of_closures
(var_to_block_field_tbl :
Flambda.constant_defining_value_block_field Variable.Tbl.t)
({ Flambda.function_decls; free_vars; specialised_args;
direct_call_surrogates; }
as set_of_closures) =
let add_definition_and_make_substitution var (expr, subst) =
let searched_var =
match Variable.Map.find var specialised_args with
| exception Not_found -> var
| external_var ->
(* specialised arguments bound to constant can be rewritten *)
external_var.var
in
match Variable.Tbl.find var_to_block_field_tbl searched_var with
| def ->
let fresh = Variable.rename var in
let named : Flambda.named = match def with
| Symbol sym -> Symbol sym
| Const c -> Const c
in
(Flambda.create_let fresh named expr), Variable.Map.add var fresh subst
| exception Not_found ->
(* The variable is bound by the closure or the arguments or not
constant. In either case it does not need to be bound *)
expr, subst
in
let done_something = ref false in
let function_decls : Flambda.function_declarations =
Flambda.update_function_declarations function_decls
~funs:(Variable.Map.map
(fun (func_decl : Flambda.function_declaration) ->
let variables_to_bind =
(* Closures from the same set must not be bound. *)
Variable.Set.diff func_decl.free_variables
(Variable.Map.keys function_decls.funs)
in
let body, subst =
Variable.Set.fold add_definition_and_make_substitution
variables_to_bind
(func_decl.body, Variable.Map.empty)
in
if Variable.Map.is_empty subst then begin
func_decl
end else begin
done_something := true;
let body = Flambda_utils.toplevel_substitution subst body in
Flambda.update_body_of_function_declaration func_decl ~body
end)
function_decls.funs)
in
let free_vars =
(* Keep only those that are not rewritten to constants. *)
Variable.Map.filter (fun v _ ->
let keep = not (Variable.Tbl.mem var_to_block_field_tbl v) in
if not keep then done_something := true;
keep)
free_vars
in
let free_vars =
Flambda_utils.clean_projections ~which_variables:free_vars
in
let specialised_args =
(* Keep only those that are not rewritten to constants. *)
Variable.Map.filter (fun _ (spec_to : Flambda.specialised_to) ->
let keep =
not (Variable.Tbl.mem var_to_block_field_tbl spec_to.var)
in
if not keep then begin
done_something := true
end;
keep)
specialised_args
in
let specialised_args =
Flambda_utils.clean_projections ~which_variables:specialised_args
in
if not !done_something then
set_of_closures
else
Flambda.create_set_of_closures ~function_decls ~free_vars
~specialised_args ~direct_call_surrogates
let rewrite_project_var
(var_to_block_field_tbl
: Flambda.constant_defining_value_block_field Variable.Tbl.t)
(project_var : Flambda.project_var) ~original : Flambda.named =
let var = Var_within_closure.unwrap project_var.var in
match Variable.Tbl.find var_to_block_field_tbl var with
| exception Not_found -> original
| Symbol sym -> Symbol sym
| Const const -> Const const
let introduce_free_variables_in_sets_of_closures
(var_to_block_field_tbl:
Flambda.constant_defining_value_block_field Variable.Tbl.t)
(translate_definition : Flambda.constant_defining_value Symbol.Map.t) =
Symbol.Map.map (fun (def : Flambda.constant_defining_value) ->
match def with
| Allocated_const _
| Block _
| Project_closure _ -> def
| Set_of_closures set_of_closures ->
Flambda.Set_of_closures
(introduce_free_variables_in_set_of_closures
var_to_block_field_tbl
set_of_closures))
translate_definition
let var_to_block_field
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl :
Alias_analysis.constant_defining_value Variable.Tbl.t) =
let var_to_block_field_tbl = Variable.Tbl.create 42 in
Variable.Tbl.iter (fun var _ ->
let def =
resolve_variable aliases var_to_symbol_tbl var_to_definition_tbl var
in
Variable.Tbl.add var_to_block_field_tbl var def)
var_to_definition_tbl;
var_to_block_field_tbl
let program_symbols ~backend (program : Flambda.program) =
let new_fake_symbol () =
let var = Variable.create Internal_variable_names.fake_effect_symbol in
Symbol.of_variable var
in
let initialize_symbol_tbl = Symbol.Tbl.create 42 in
let effect_tbl = Symbol.Tbl.create 42 in
let symbol_definition_tbl = Symbol.Tbl.create 42 in
let add_project_closure_definitions def_symbol
(const : Flambda.constant_defining_value) =
match const with
| Set_of_closures { function_decls = { funs } } ->
Variable.Map.iter (fun fun_var _ ->
let closure_id = Closure_id.wrap fun_var in
let closure_symbol = closure_symbol ~backend closure_id in
let project_closure =
Flambda.Project_closure (def_symbol, closure_id)
in
Symbol.Tbl.add symbol_definition_tbl closure_symbol
project_closure)
funs
| Project_closure _
| Allocated_const _
| Block _ -> ()
in
let rec loop (program : Flambda.program_body) previous_effect =
match program with
| Flambda.Let_symbol (symbol, def, program) ->
add_project_closure_definitions symbol def;
Symbol.Tbl.add symbol_definition_tbl symbol def;
loop program previous_effect
| Flambda.Let_rec_symbol (defs, program) ->
List.iter (fun (symbol, def) ->
add_project_closure_definitions symbol def;
Symbol.Tbl.add symbol_definition_tbl symbol def)
defs;
loop program previous_effect
| Flambda.Initialize_symbol (symbol, tag, fields, program) ->
(* previous_effect is used to keep the order of initialize and effect
values. Their effects order must be kept ordered.
it is used as an extra dependency when sorting the symbols. *)
(* CR-someday pchambart: if the fields expressions are pure, we could
drop this dependency
mshinwell: deferred CR *)
Symbol.Tbl.add initialize_symbol_tbl symbol
(tag, fields, previous_effect);
loop program (Some symbol)
| Flambda.Effect (expr, program) ->
(* Used to ensure that effects are correctly ordered *)
let fake_effect_symbol = new_fake_symbol () in
Symbol.Tbl.add effect_tbl fake_effect_symbol (expr, previous_effect);
loop program (Some fake_effect_symbol)
| Flambda.End _ -> ()
in
loop program.program_body None;
initialize_symbol_tbl, symbol_definition_tbl, effect_tbl
let replace_definitions_in_initialize_symbol_and_effects
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl :
Alias_analysis.constant_defining_value Variable.Tbl.t)
(initialize_symbol_tbl :
(Tag.t * Flambda.t list * Symbol.t option) Symbol.Tbl.t)
(effect_tbl : (Flambda.t * Symbol.t option) Symbol.Tbl.t) =
let rewrite_expr expr =
Flambda_iterators.map_all_immutable_let_and_let_rec_bindings expr
~f:(fun var (named : Flambda.named) : Flambda.named ->
if Inconstant_idents.variable var inconstants then
named
else
let resolved =
resolve_variable
aliases
var_to_symbol_tbl
var_to_definition_tbl
var
in
match named, resolved with
| Symbol s1, Symbol s2 ->
assert (s1 == s2); (* physical equality for speed *)
named;
| Const c1, Const c2 ->
assert (c1 == c2);
named
| _, Symbol s -> Symbol s
| _, Const c -> Const c)
in
(* This is safe because we only [replace] the current key during
iteration (cf. https://github.com/ocaml/ocaml/pull/337) *)
Symbol.Tbl.iter
(fun symbol (tag, fields, previous) ->
let fields = List.map rewrite_expr fields in
Symbol.Tbl.replace initialize_symbol_tbl symbol (tag, fields, previous))
initialize_symbol_tbl;
Symbol.Tbl.iter
(fun symbol (expr, previous) ->
Symbol.Tbl.replace effect_tbl symbol (rewrite_expr expr, previous))
effect_tbl
(* CR-soon mshinwell: Update the name of [project_closure_map]. *)
let project_closure_map symbol_definition_map =
Symbol.Map.fold (fun sym (const : Flambda.constant_defining_value) acc ->
match const with
| Project_closure (set_of_closures, _) ->
Symbol.Map.add sym set_of_closures acc
| Set_of_closures _ ->
Symbol.Map.add sym sym acc
| Allocated_const _
| Block _ -> acc)
symbol_definition_map
Symbol.Map.empty
let lift_constants (program : Flambda.program) ~backend =
let the_dead_constant =
let var = Variable.create Internal_variable_names.the_dead_constant in
Symbol.of_variable var
in
let program_body : Flambda.program_body =
Let_symbol (the_dead_constant, Allocated_const (Nativeint 0n),
program.program_body)
in
let program : Flambda.program =
{ program with program_body; }
in
let inconstants =
Inconstant_idents.inconstants_on_program program ~backend
~compilation_unit:(Compilation_unit.get_current_exn ())
in
let initialize_symbol_tbl, symbol_definition_tbl, effect_tbl =
program_symbols ~backend program
in
let var_to_symbol_tbl, var_to_definition_tbl, let_symbol_to_definition_tbl,
initialize_symbol_to_definition_tbl =
assign_symbols_and_collect_constant_definitions ~backend ~program
~inconstants
in
let aliases =
Alias_analysis.run var_to_definition_tbl
initialize_symbol_to_definition_tbl
let_symbol_to_definition_tbl
~the_dead_constant
in
replace_definitions_in_initialize_symbol_and_effects
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl
: Alias_analysis.constant_defining_value Variable.Tbl.t)
initialize_symbol_tbl
effect_tbl;
let symbol_definition_map =
translate_constant_set_of_closures
(inconstants : Inconstant_idents.result)
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl
: Alias_analysis.constant_defining_value Variable.Tbl.t)
(Symbol.Tbl.to_map symbol_definition_tbl)
in
let project_closure_map = project_closure_map symbol_definition_map in
let translated_definitions =
translate_definitions_and_resolve_alias
inconstants
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl
: Alias_analysis.constant_defining_value Variable.Tbl.t)
symbol_definition_map
project_closure_map
~backend
in
let var_to_block_field_tbl =
var_to_block_field
(aliases : Alias_analysis.allocation_point Variable.Map.t)
(var_to_symbol_tbl : Symbol.t Variable.Tbl.t)
(var_to_definition_tbl
: Alias_analysis.constant_defining_value Variable.Tbl.t)
in
let translated_definitions =
introduce_free_variables_in_sets_of_closures var_to_block_field_tbl
translated_definitions
in
let constant_definitions =
(* Add previous Let_symbol to the newly discovered ones *)
Symbol.Map.union
(fun _sym
(c1:Flambda.constant_defining_value)
(c2:Flambda.constant_defining_value) ->
match c1, c2 with
| Project_closure (s1, closure_id1),
Project_closure (s2, closure_id2) when
Symbol.equal s1 s2 &&
Closure_id.equal closure_id1 closure_id2 ->
Some c1
| Project_closure (s1, closure_id1),
Project_closure (s2, closure_id2) ->
Format.eprintf "not equal project closure@. s %a %a@. cid %a %a@."
Symbol.print s1 Symbol.print s2
Closure_id.print closure_id1 Closure_id.print closure_id2;
assert false
| _ ->
assert false
)
symbol_definition_map
translated_definitions
in
(* Upon the [Initialize_symbol]s, the [Effect]s and the constant definitions,
do the following:
1. Introduce [Let]s to bind variables that are going to be replaced
by constants.
2. If a variable bound by a closure gets replaced by a symbol and
thus eliminated from the [free_vars] set of the closure, we need to
rewrite any subsequent [Project_var] expressions that project that
variable. *)
let rewrite_expr expr =
Flambda_iterators.map_named (function
| (Set_of_closures set_of_closures) as named ->
let new_set_of_closures =
introduce_free_variables_in_set_of_closures
var_to_block_field_tbl set_of_closures
in
if new_set_of_closures == set_of_closures then
named
else
Set_of_closures new_set_of_closures
| (Project_var project_var) as original ->
rewrite_project_var var_to_block_field_tbl project_var ~original
| (Symbol _ | Const _ | Allocated_const _ | Project_closure _
| Move_within_set_of_closures _ | Prim _ | Expr _
| Read_mutable _ | Read_symbol_field _) as named -> named)
expr
in
let constant_definitions =
Symbol.Map.map (fun (const : Flambda.constant_defining_value) ->
match const with
| Allocated_const _ | Block _ | Project_closure _ -> const
| Set_of_closures set_of_closures ->
let set_of_closures =
Flambda_iterators.map_function_bodies set_of_closures
~f:rewrite_expr
in
Flambda.Set_of_closures
(introduce_free_variables_in_set_of_closures
var_to_block_field_tbl set_of_closures))
constant_definitions
in
let effect_tbl =
Symbol.Tbl.map effect_tbl (fun (eff, dep) -> rewrite_expr eff, dep)
in
let initialize_symbol_tbl =
Symbol.Tbl.map initialize_symbol_tbl (fun (tag, fields, dep) ->
let fields = List.map rewrite_expr fields in
tag, fields, dep)
in
let imported_symbols = Flambda_utils.imported_symbols program in
let components =
program_graph ~backend imported_symbols constant_definitions
initialize_symbol_tbl effect_tbl
in
let program_body =
add_definitions_of_symbols constant_definitions
initialize_symbol_tbl
effect_tbl
(End (Flambda_utils.root_symbol program))
components
in
Flambda_utils.introduce_needed_import_symbols { program with program_body; }
|