1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42-66"]
open! Int_replace_polymorphic_compare
module U = Flambda_utils
type 'a boxed_int =
| Int32 : int32 boxed_int
| Int64 : int64 boxed_int
| Nativeint : nativeint boxed_int
type value_string = {
(* CR-soon mshinwell: use variant *)
contents : string option; (* None if unknown or mutable *)
size : int;
}
type unresolved_value =
| Set_of_closures_id of Set_of_closures_id.t
| Symbol of Symbol.t
type unknown_because_of =
| Unresolved_value of unresolved_value
| Other
type t = {
descr : descr;
var : Variable.t option;
symbol : (Symbol.t * int option) option;
}
and descr =
| Value_block of Tag.t * t array
| Value_int of int
| Value_char of char
| Value_float of float option
| Value_boxed_int : 'a boxed_int * 'a -> descr
| Value_set_of_closures of value_set_of_closures
| Value_closure of value_closure
| Value_string of value_string
| Value_float_array of value_float_array
| Value_unknown of unknown_because_of
| Value_bottom
| Value_extern of Export_id.t
| Value_symbol of Symbol.t
| Value_unresolved of unresolved_value
(* No description was found for this value *)
and value_closure = {
set_of_closures : t;
closure_id : Closure_id.t;
}
and function_declarations = {
is_classic_mode : bool;
set_of_closures_id : Set_of_closures_id.t;
set_of_closures_origin : Set_of_closures_origin.t;
funs : function_declaration Variable.Map.t;
}
and function_body = {
free_variables : Variable.Set.t;
free_symbols : Symbol.Set.t;
stub : bool;
dbg : Debuginfo.t;
inline : Lambda.inline_attribute;
specialise : Lambda.specialise_attribute;
is_a_functor : bool;
body : Flambda.t;
poll: Lambda.poll_attribute;
}
and function_declaration = {
closure_origin : Closure_origin.t;
params : Parameter.t list;
function_body : function_body option;
}
and value_set_of_closures = {
function_decls : function_declarations;
bound_vars : t Var_within_closure.Map.t;
free_vars : Flambda.specialised_to Variable.Map.t;
invariant_params : Variable.Set.t Variable.Map.t Lazy.t;
recursive : Variable.Set.t Lazy.t;
size : int option Variable.Map.t Lazy.t;
specialised_args : Flambda.specialised_to Variable.Map.t;
freshening : Freshening.Project_var.t;
direct_call_surrogates : Closure_id.t Closure_id.Map.t;
}
and value_float_array_contents =
| Contents of t array
| Unknown_or_mutable
and value_float_array = {
contents : value_float_array_contents;
size : int;
}
let descr t = t.descr
let print_value_set_of_closures ppf
{ function_decls = { funs }; invariant_params; freshening; size; _ } =
Format.fprintf ppf
"(set_of_closures:@ %a invariant_params=%a freshening=%a size=%a)"
(fun ppf -> Variable.Map.iter (fun id _ -> Variable.print ppf id)) funs
(Variable.Map.print Variable.Set.print) (Lazy.force invariant_params)
Freshening.Project_var.print freshening
(Variable.Map.print (fun ppf some_size ->
match some_size with
| None -> Format.fprintf ppf "None"
| Some size -> Format.fprintf ppf "Some %d" size))
(Lazy.force size)
let print_unresolved_value ppf = function
| Set_of_closures_id set ->
Format.fprintf ppf "Set_of_closures_id %a" Set_of_closures_id.print set
| Symbol symbol ->
Format.fprintf ppf "Symbol %a" Symbol.print symbol
let print_function_declaration ppf var (f : function_declaration) =
let param ppf p = Variable.print ppf (Parameter.var p) in
let params ppf = List.iter (Format.fprintf ppf "@ %a" param) in
match f.function_body with
| None ->
Format.fprintf ppf "@[<2>(%a@ =@ fun@[<2>%a@])@]@ "
Variable.print var params f.params
| Some (b : function_body) ->
let stub = if b.stub then " *stub*" else "" in
let is_a_functor = if b.is_a_functor then " *functor*" else "" in
let inline =
match b.inline with
| Always_inline | Hint_inline -> " *inline*"
| Never_inline -> " *never_inline*"
| Unroll _ -> " *unroll*"
| Default_inline -> ""
in
let specialise =
match b.specialise with
| Always_specialise -> " *specialise*"
| Never_specialise -> " *never_specialise*"
| Default_specialise -> ""
in
let print_body ppf _ =
Format.fprintf ppf "<Function Body>"
in
Format.fprintf ppf "@[<2>(%a%s%s%s%s@ =@ fun@[<2>%a@] ->@ @[<2><%a>@])@]@ "
Variable.print var stub is_a_functor inline specialise
params f.params
print_body b
let print_function_declarations ppf (fd : function_declarations) =
let funs ppf = Variable.Map.iter (print_function_declaration ppf) in
Format.fprintf ppf "@[<2>(%a)@]" funs fd.funs
let rec print_descr ppf = function
| Value_int i -> Format.pp_print_int ppf i
| Value_char c -> Format.fprintf ppf "%c" c
| Value_block (tag,fields) ->
let p ppf fields =
Array.iter (fun v -> Format.fprintf ppf "%a@ " print v) fields in
Format.fprintf ppf "[%i:@ @[<1>%a@]]" (Tag.to_int tag) p fields
| Value_unknown reason ->
begin match reason with
| Unresolved_value value ->
Format.fprintf ppf "?(due to unresolved %a)" print_unresolved_value value
| Other -> Format.fprintf ppf "?"
end;
| Value_bottom -> Format.fprintf ppf "bottom"
| Value_extern id -> Format.fprintf ppf "_%a_" Export_id.print id
| Value_symbol sym -> Format.fprintf ppf "%a" Symbol.print sym
| Value_closure { set_of_closures; closure_id; } ->
Format.fprintf ppf "(closure:@ %a from@ %a)" Closure_id.print closure_id
print set_of_closures
| Value_set_of_closures set_of_closures ->
print_value_set_of_closures ppf set_of_closures
| Value_unresolved value ->
Format.fprintf ppf "(unresolved %a)" print_unresolved_value value
| Value_float (Some f) -> Format.pp_print_float ppf f
| Value_float None -> Format.pp_print_string ppf "float"
| Value_string { contents; size } -> begin
match contents with
| None ->
Format.fprintf ppf "string %i" size
| Some s ->
let s =
if size > 10
then String.sub s 0 8 ^ "..."
else s
in
Format.fprintf ppf "string %i %S" size s
end
| Value_float_array float_array ->
begin match float_array.contents with
| Unknown_or_mutable ->
Format.fprintf ppf "float_array %i" float_array.size
| Contents _ ->
Format.fprintf ppf "float_array_imm %i" float_array.size
end
| Value_boxed_int (t, i) ->
match t with
| Int32 -> Format.fprintf ppf "%li" i
| Int64 -> Format.fprintf ppf "%Li" i
| Nativeint -> Format.fprintf ppf "%ni" i
and print ppf { descr; var; symbol; } =
let print ppf = function
| None -> Symbol.print_opt ppf None
| Some (sym, None) -> Symbol.print ppf sym
| Some (sym, Some field) ->
Format.fprintf ppf "%a.(%i)" Symbol.print sym field
in
Format.fprintf ppf "{ descr=%a var=%a symbol=%a }"
print_descr descr
Variable.print_opt var
print symbol
let approx descr = { descr; var = None; symbol = None }
let augment_with_variable t var = { t with var = Some var }
let augment_with_symbol t symbol = { t with symbol = Some (symbol, None) }
let augment_with_symbol_field t symbol field =
match t.symbol with
| None -> { t with symbol = Some (symbol, Some field) }
| Some _ -> t
let replace_description t descr = { t with descr }
let augment_with_kind t (kind:Lambda.value_kind) =
match kind with
| Pgenval -> t
| Pfloatval ->
begin match t.descr with
| Value_float _ ->
t
| Value_unknown _ | Value_unresolved _ ->
{ t with descr = Value_float None }
| Value_block _
| Value_int _
| Value_char _
| Value_boxed_int _
| Value_set_of_closures _
| Value_closure _
| Value_string _
| Value_float_array _
| Value_bottom ->
(* Unreachable *)
{ t with descr = Value_bottom }
| Value_extern _ | Value_symbol _ ->
(* We don't know yet *)
t
end
| _ -> t
let augment_kind_with_approx t (kind:Lambda.value_kind) : Lambda.value_kind =
match t.descr with
| Value_float _ -> Pfloatval
| Value_int _ -> Pintval
| Value_boxed_int (Int32, _) -> Pboxedintval Pint32
| Value_boxed_int (Int64, _) -> Pboxedintval Pint64
| Value_boxed_int (Nativeint, _) -> Pboxedintval Pnativeint
| _ -> kind
let value_unknown reason = approx (Value_unknown reason)
let value_int i = approx (Value_int i)
let value_char i = approx (Value_char i)
let value_float f = approx (Value_float (Some f))
let value_any_float = approx (Value_float None)
let value_boxed_int bi i = approx (Value_boxed_int (bi,i))
let value_closure ?closure_var ?set_of_closures_var ?set_of_closures_symbol
value_set_of_closures closure_id =
let approx_set_of_closures =
{ descr = Value_set_of_closures value_set_of_closures;
var = set_of_closures_var;
symbol = Option.map (fun s -> s, None) set_of_closures_symbol;
}
in
let value_closure =
{ set_of_closures = approx_set_of_closures;
closure_id;
}
in
{ descr = Value_closure value_closure;
var = closure_var;
symbol = None;
}
let create_value_set_of_closures
~(function_decls : function_declarations) ~bound_vars ~free_vars
~invariant_params ~recursive ~specialised_args ~freshening
~direct_call_surrogates =
let size =
lazy (
let functions = Variable.Map.keys function_decls.funs in
Variable.Map.fold
(fun fun_var function_decl sizes ->
match function_decl.function_body with
| None -> sizes
| Some function_body ->
let params = Parameter.Set.vars function_decl.params in
let free_vars =
Variable.Set.diff
(Variable.Set.diff function_body.free_variables params)
functions
in
let num_free_vars = Variable.Set.cardinal free_vars in
let max_size =
Inlining_cost.maximum_interesting_size_of_function_body
num_free_vars
in
let size =
Inlining_cost.lambda_smaller' function_body.body ~than:max_size
in
Variable.Map.add fun_var size sizes)
function_decls.funs Variable.Map.empty)
in
{ function_decls;
bound_vars;
free_vars;
invariant_params;
recursive;
size;
specialised_args;
freshening;
direct_call_surrogates;
}
let update_freshening_of_value_set_of_closures value_set_of_closures
~freshening =
(* CR-someday mshinwell: We could maybe check that [freshening] is
reasonable. *)
{ value_set_of_closures with freshening; }
let value_set_of_closures ?set_of_closures_var value_set_of_closures =
{ descr = Value_set_of_closures value_set_of_closures;
var = set_of_closures_var;
symbol = None;
}
let value_block t b = approx (Value_block (t, b))
let value_extern ex = approx (Value_extern ex)
let value_symbol sym =
{ (approx (Value_symbol sym)) with symbol = Some (sym, None) }
let value_bottom = approx Value_bottom
let value_unresolved value = approx (Value_unresolved value)
let value_string size contents = approx (Value_string {size; contents })
let value_mutable_float_array ~size =
approx (Value_float_array { contents = Unknown_or_mutable; size; } )
let value_immutable_float_array (contents:t array) =
let size = Array.length contents in
let contents =
Array.map (fun t -> augment_with_kind t Pfloatval) contents
in
approx (Value_float_array { contents = Contents contents; size; } )
let name_expr_fst (named, thing) ~name =
(Flambda_utils.name_expr named ~name), thing
let make_const_int_named n : Flambda.named * t =
Const (Int n), value_int n
let make_const_int (n : int) =
let name =
match n with
| 0 -> Internal_variable_names.const_zero
| 1 -> Internal_variable_names.const_one
| _ -> Internal_variable_names.const_int
in
name_expr_fst (make_const_int_named n) ~name
let make_const_char_named n : Flambda.named * t =
Const (Char n), value_char n
let make_const_char n =
let name = Internal_variable_names.const_char in
name_expr_fst (make_const_char_named n) ~name
let make_const_bool_named b : Flambda.named * t =
make_const_int_named (if b then 1 else 0)
let make_const_bool b =
name_expr_fst (make_const_bool_named b)
~name:Internal_variable_names.const_bool
let make_const_float_named f : Flambda.named * t =
Allocated_const (Float f), value_float f
let make_const_float f =
name_expr_fst (make_const_float_named f)
~name:Internal_variable_names.const_float
let make_const_boxed_int_named (type bi) (t:bi boxed_int) (i:bi)
: Flambda.named * t =
let c : Allocated_const.t =
match t with
| Int32 -> Int32 i
| Int64 -> Int64 i
| Nativeint -> Nativeint i
in
Allocated_const c, value_boxed_int t i
let make_const_boxed_int t i =
name_expr_fst (make_const_boxed_int_named t i)
~name:Internal_variable_names.const_boxed_int
type simplification_summary =
| Nothing_done
| Replaced_term
type simplification_result = Flambda.t * simplification_summary * t
type simplification_result_named = Flambda.named * simplification_summary * t
let simplify t (lam : Flambda.t) : simplification_result =
if Effect_analysis.no_effects lam then
match t.descr with
| Value_int n ->
let const, approx = make_const_int n in
const, Replaced_term, approx
| Value_char n ->
let const, approx = make_const_char n in
const, Replaced_term, approx
| Value_float (Some f) ->
let const, approx = make_const_float f in
const, Replaced_term, approx
| Value_boxed_int (t, i) ->
let const, approx = make_const_boxed_int t i in
const, Replaced_term, approx
| Value_symbol sym ->
let name = Internal_variable_names.symbol in
U.name_expr (Symbol sym) ~name, Replaced_term, t
| Value_string _ | Value_float_array _ | Value_float None
| Value_block _ | Value_set_of_closures _ | Value_closure _
| Value_unknown _ | Value_bottom | Value_extern _ | Value_unresolved _ ->
lam, Nothing_done, t
else
lam, Nothing_done, t
let simplify_named t (named : Flambda.named) : simplification_result_named =
if Effect_analysis.no_effects_named named then
match t.descr with
| Value_int n ->
let const, approx = make_const_int_named n in
const, Replaced_term, approx
| Value_char n ->
let const, approx = make_const_char_named n in
const, Replaced_term, approx
| Value_float (Some f) ->
let const, approx = make_const_float_named f in
const, Replaced_term, approx
| Value_boxed_int (t, i) ->
let const, approx = make_const_boxed_int_named t i in
const, Replaced_term, approx
| Value_symbol sym ->
Symbol sym, Replaced_term, t
| Value_string _ | Value_float_array _ | Value_float None
| Value_block _ | Value_set_of_closures _ | Value_closure _
| Value_unknown _ | Value_bottom | Value_extern _ | Value_unresolved _ ->
named, Nothing_done, t
else
named, Nothing_done, t
(* CR-soon mshinwell: bad name. This function and its call site in
[Inline_and_simplify] is also messy. *)
let simplify_var t : (Flambda.named * t) option =
match t.descr with
| Value_int n -> Some (make_const_int_named n)
| Value_char n -> Some (make_const_char_named n)
| Value_float (Some f) -> Some (make_const_float_named f)
| Value_boxed_int (t, i) -> Some (make_const_boxed_int_named t i)
| Value_symbol sym -> Some (Symbol sym, t)
| Value_string _ | Value_float_array _ | Value_float None
| Value_block _ | Value_set_of_closures _ | Value_closure _
| Value_unknown _ | Value_bottom | Value_extern _
| Value_unresolved _ ->
match t.symbol with
| Some (sym, None) -> Some (Symbol sym, t)
| Some (sym, Some field) -> Some (Read_symbol_field (sym, field), t)
| None -> None
let join_summaries summary ~replaced_by_var_or_symbol =
match replaced_by_var_or_symbol, summary with
| true, Nothing_done
| true, Replaced_term
| false, Replaced_term -> Replaced_term
| false, Nothing_done -> Nothing_done
let simplify_using_env t ~is_present_in_env flam =
let replaced_by_var_or_symbol, flam =
match t.var with
| Some var when is_present_in_env var -> true, Flambda.Var var
| _ ->
match t.symbol with
| Some (sym, None) ->
let name = Internal_variable_names.symbol in
(true, U.name_expr (Symbol sym) ~name)
| Some (sym, Some field) ->
let name = Internal_variable_names.symbol_field in
(true, U.name_expr (Read_symbol_field (sym, field)) ~name)
| None -> false, flam
in
let const, summary, approx = simplify t flam in
const, join_summaries summary ~replaced_by_var_or_symbol, approx
let simplify_named_using_env t ~is_present_in_env named =
let replaced_by_var_or_symbol, named =
match t.var with
| Some var when is_present_in_env var ->
true, Flambda.Expr (Var var)
| _ ->
match t.symbol with
| Some (sym, None) -> true, (Flambda.Symbol sym:Flambda.named)
| Some (sym, Some field) ->
true, Flambda.Read_symbol_field (sym, field)
| None -> false, named
in
let const, summary, approx = simplify_named t named in
const, join_summaries summary ~replaced_by_var_or_symbol, approx
let simplify_var_to_var_using_env t ~is_present_in_env =
match t.var with
| Some var when is_present_in_env var -> Some var
| _ -> None
let known t =
match t.descr with
| Value_unresolved _
| Value_unknown _ -> false
| Value_string _ | Value_float_array _
| Value_bottom | Value_block _ | Value_int _ | Value_char _
| Value_set_of_closures _ | Value_closure _
| Value_extern _ | Value_float _ | Value_boxed_int _ | Value_symbol _ -> true
let useful t =
match t.descr with
| Value_unresolved _ | Value_unknown _ | Value_bottom -> false
| Value_string _ | Value_float_array _ | Value_block _ | Value_int _
| Value_char _ | Value_set_of_closures _
| Value_float _ | Value_boxed_int _ | Value_closure _ | Value_extern _
| Value_symbol _ -> true
let all_not_useful ts = List.for_all (fun t -> not (useful t)) ts
let warn_on_mutation t =
if not !Clflags.flambda_invariant_checks then false
else
match t.descr with
| Value_block(_, fields) -> Array.length fields > 0
| Value_string { contents = Some _ }
| Value_int _ | Value_char _
| Value_set_of_closures _ | Value_float _ | Value_boxed_int _
| Value_closure _ -> true
| Value_string { contents = None } | Value_float_array _
| Value_unresolved _ | Value_unknown _ | Value_bottom -> false
| Value_extern _ | Value_symbol _ -> assert false
type get_field_result =
| Ok of t
| Unreachable
let get_field t ~field_index:i : get_field_result =
match t.descr with
| Value_block (_tag, fields) ->
if i >= 0 && i < Array.length fields then begin
Ok fields.(i)
end else begin
(* This (unfortunately) cannot be a fatal error; it can happen if a
.cmx file is missing. However for debugging the compiler this can
be a useful point to put a [Misc.fatal_errorf]. *)
Unreachable
end
(* CR-someday mshinwell: This should probably return Unreachable in more
cases. I added a couple more. *)
| Value_bottom
| Value_int _ | Value_char _ ->
(* Something seriously wrong is happening: either the user is doing
something exceptionally unsafe, or it is an unreachable branch.
We consider this as unreachable and mark the result accordingly. *)
Ok value_bottom
| Value_float_array _ ->
(* For the moment we return "unknown" even for immutable arrays, since
it isn't possible for user code to project from an immutable array. *)
(* CR-someday mshinwell: If Leo's array's patch lands, then we can
change this, although it's probably not Pfield that is used to
do the projection. *)
Ok (value_unknown Other)
| Value_string _ | Value_float _ | Value_boxed_int _ ->
(* The user is doing something unsafe. *)
Unreachable
| Value_set_of_closures _ | Value_closure _
(* This is used by [CamlinternalMod]. *)
| Value_symbol _ | Value_extern _ ->
(* These should have been resolved. *)
Ok (value_unknown Other)
| Value_unknown reason ->
Ok (value_unknown reason)
| Value_unresolved value ->
(* We don't know anything, but we must remember that it comes
from another compilation unit in case it contains a closure. *)
Ok (value_unknown (Unresolved_value value))
type checked_approx_for_block =
| Wrong
| Ok of Tag.t * t array
let check_approx_for_block t =
match t.descr with
| Value_block (tag, fields) ->
Ok (tag, fields)
| Value_bottom
| Value_int _ | Value_char _
| Value_float_array _
| Value_string _ | Value_float _ | Value_boxed_int _
| Value_set_of_closures _ | Value_closure _
| Value_symbol _ | Value_extern _
| Value_unknown _
| Value_unresolved _ ->
Wrong
let descrs approxs = List.map (fun v -> v.descr) approxs
let equal_boxed_int (type t1) (type t2)
(bi1:t1 boxed_int) (i1:t1)
(bi2:t2 boxed_int) (i2:t2) =
match bi1, bi2 with
| Int32, Int32 -> Int32.equal i1 i2
| Int64, Int64 -> Int64.equal i1 i2
| Nativeint, Nativeint -> Nativeint.equal i1 i2
| _ -> false
let equal_floats f1 f2 =
match f1, f2 with
| None, None -> true
| None, Some _ | Some _, None -> false
| Some f1, Some f2 -> Allocated_const.compare_floats f1 f2 = 0
(* Closures and set of closures descriptions cannot be merged.
let f x =
let g y -> x + y in
g
in
let v =
if ...
then f 1
else f 2
in
v 3
The approximation for [f 1] and [f 2] could both contain the
description of [g]. But if [f] where inlined, a new [g] would
be created in each branch, leading to incompatible description.
And we must never make the description for a function less
precise that it used to be: its information are needed for
rewriting [Project_var] and [Project_closure] constructions
in [Flambdainline.loop]
*)
let rec meet_descr ~really_import_approx d1 d2 = match d1, d2 with
| Value_int i, Value_int j when i = j ->
d1
| Value_symbol s1, Value_symbol s2 when Symbol.equal s1 s2 ->
d1
| Value_extern e1, Value_extern e2 when Export_id.equal e1 e2 ->
d1
| Value_float i, Value_float j when equal_floats i j ->
d1
| Value_boxed_int (bi1, i1), Value_boxed_int (bi2, i2) when
equal_boxed_int bi1 i1 bi2 i2 ->
d1
| Value_block (tag1, a1), Value_block (tag2, a2)
when Tag.compare tag1 tag2 = 0 && Array.length a1 = Array.length a2 ->
let fields =
Array.mapi (fun i v -> meet ~really_import_approx v a2.(i)) a1
in
Value_block (tag1, fields)
| _ -> Value_unknown Other
and meet ~really_import_approx a1 a2 =
match a1, a2 with
| { descr = Value_bottom }, a
| a, { descr = Value_bottom } -> a
| { descr = (Value_symbol _ | Value_extern _) }, _
| _, { descr = (Value_symbol _ | Value_extern _) } ->
meet ~really_import_approx
(really_import_approx a1) (really_import_approx a2)
| _ ->
let var =
match a1.var, a2.var with
| None, _ | _, None -> None
| Some v1, Some v2 ->
if Variable.equal v1 v2
then Some v1
else None
in
let symbol =
match a1.symbol, a2.symbol with
| None, _ | _, None -> None
| Some (v1, field1), Some (v2, field2) ->
if Symbol.equal v1 v2
then match field1, field2 with
| None, None -> a1.symbol
| Some f1, Some f2 when f1 = f2 ->
a1.symbol
| _ -> None
else None
in
{ descr = meet_descr ~really_import_approx a1.descr a2.descr;
var;
symbol }
(* Given a set-of-closures approximation and a closure ID, apply any
freshening specified in the approximation to the closure ID, and return
that new closure ID. A fatal error is produced if the new closure ID
does not correspond to a function declaration in the given approximation. *)
let freshen_and_check_closure_id
(value_set_of_closures : value_set_of_closures) closure_id =
let closure_id =
Freshening.Project_var.apply_closure_id
value_set_of_closures.freshening closure_id
in
try
ignore (
Variable.Map.find (Closure_id.unwrap closure_id)
value_set_of_closures.function_decls.funs
);
closure_id
with Not_found ->
Misc.fatal_error (Format.asprintf
"Function %a not found in the set of closures@ %a@.%a@."
Closure_id.print closure_id
print_value_set_of_closures value_set_of_closures
print_function_declarations value_set_of_closures.function_decls)
type checked_approx_for_set_of_closures =
| Wrong
| Unresolved of unresolved_value
| Unknown
| Unknown_because_of_unresolved_value of unresolved_value
| Ok of Variable.t option * value_set_of_closures
let check_approx_for_set_of_closures t : checked_approx_for_set_of_closures =
match t.descr with
| Value_unresolved value -> Unresolved value
| Value_unknown (Unresolved_value value) ->
Unknown_because_of_unresolved_value value
| Value_set_of_closures value_set_of_closures ->
(* Note that [var] might be [None]; we might be reaching the set of
closures via approximations only, with the variable originally bound
to the set now out of scope. *)
Ok (t.var, value_set_of_closures)
| Value_closure _ | Value_block _ | Value_int _ | Value_char _
| Value_float _ | Value_boxed_int _ | Value_unknown _
| Value_bottom | Value_extern _ | Value_string _ | Value_float_array _
| Value_symbol _ ->
Wrong
type strict_checked_approx_for_set_of_closures =
| Wrong
| Ok of Variable.t option * value_set_of_closures
let strict_check_approx_for_set_of_closures t
: strict_checked_approx_for_set_of_closures =
match check_approx_for_set_of_closures t with
| Ok (var, value_set_of_closures) -> Ok (var, value_set_of_closures)
| Wrong | Unresolved _
| Unknown | Unknown_because_of_unresolved_value _ -> Wrong
type checked_approx_for_closure_allowing_unresolved =
| Wrong
| Unresolved of unresolved_value
| Unknown
| Unknown_because_of_unresolved_value of unresolved_value
| Ok of value_closure * Variable.t option
* Symbol.t option * value_set_of_closures
let check_approx_for_closure_allowing_unresolved t
: checked_approx_for_closure_allowing_unresolved =
match t.descr with
| Value_closure value_closure ->
begin match value_closure.set_of_closures.descr with
| Value_set_of_closures value_set_of_closures ->
let symbol = match value_closure.set_of_closures.symbol with
| Some (symbol, None) -> Some symbol
| None | Some (_, Some _) -> None
in
Ok (value_closure, value_closure.set_of_closures.var,
symbol, value_set_of_closures)
| Value_unresolved _
| Value_closure _ | Value_block _ | Value_int _ | Value_char _
| Value_float _ | Value_boxed_int _ | Value_unknown _
| Value_bottom | Value_extern _ | Value_string _ | Value_float_array _
| Value_symbol _ ->
Wrong
end
| Value_unknown (Unresolved_value value) ->
Unknown_because_of_unresolved_value value
| Value_unresolved symbol -> Unresolved symbol
| Value_set_of_closures _ | Value_block _ | Value_int _ | Value_char _
| Value_float _ | Value_boxed_int _
| Value_bottom | Value_extern _ | Value_string _ | Value_float_array _
| Value_symbol _ ->
Wrong
(* CR-soon mshinwell: This should be unwound once the reason for a value
being unknown can be correctly propagated through the export info. *)
| Value_unknown Other -> Unknown
type checked_approx_for_closure =
| Wrong
| Ok of value_closure * Variable.t option
* Symbol.t option * value_set_of_closures
let check_approx_for_closure t : checked_approx_for_closure =
match check_approx_for_closure_allowing_unresolved t with
| Ok (value_closure, set_of_closures_var, set_of_closures_symbol,
value_set_of_closures) ->
Ok (value_closure, set_of_closures_var, set_of_closures_symbol,
value_set_of_closures)
| Wrong | Unknown | Unresolved _ | Unknown_because_of_unresolved_value _ ->
Wrong
let approx_for_bound_var value_set_of_closures var =
try
Var_within_closure.Map.find var value_set_of_closures.bound_vars
with
| Not_found ->
Misc.fatal_errorf "The set-of-closures approximation %a@ does not \
bind the variable %a@.%s@."
print_value_set_of_closures value_set_of_closures
Var_within_closure.print var
(Printexc.raw_backtrace_to_string (Printexc.get_callstack max_int))
let check_approx_for_float t : float option =
match t.descr with
| Value_float f -> f
| Value_unresolved _
| Value_unknown _ | Value_string _ | Value_float_array _
| Value_bottom | Value_block _ | Value_int _ | Value_char _
| Value_set_of_closures _ | Value_closure _
| Value_extern _ | Value_boxed_int _ | Value_symbol _ ->
None
let float_array_as_constant (t:value_float_array) : float list option =
match t.contents with
| Unknown_or_mutable -> None
| Contents contents ->
Array.fold_right (fun elt acc ->
match acc, elt.descr with
| Some acc, Value_float (Some f) ->
Some (f :: acc)
| None, _
| Some _,
(Value_float None | Value_unresolved _
| Value_unknown _ | Value_string _ | Value_float_array _
| Value_bottom | Value_block _ | Value_int _ | Value_char _
| Value_set_of_closures _ | Value_closure _
| Value_extern _ | Value_boxed_int _ | Value_symbol _)
-> None)
contents (Some [])
let check_approx_for_string t : string option =
match t.descr with
| Value_string { contents } -> contents
| Value_float _
| Value_unresolved _
| Value_unknown _ | Value_float_array _
| Value_bottom | Value_block _ | Value_int _ | Value_char _
| Value_set_of_closures _ | Value_closure _
| Value_extern _ | Value_boxed_int _ | Value_symbol _ ->
None
type switch_branch_selection =
| Cannot_be_taken
| Can_be_taken
| Must_be_taken
let potentially_taken_const_switch_branch t branch =
match t.descr with
| Value_unresolved _
| Value_unknown _
| Value_extern _
| Value_symbol _ ->
(* In theory symbol cannot contain integers but this shouldn't
matter as this will always be an imported approximation *)
Can_be_taken
| Value_int i when i = branch ->
Must_be_taken
| Value_char c when Char.code c = branch ->
Must_be_taken
| Value_int _ | Value_char _ ->
Cannot_be_taken
| Value_block _ | Value_float _ | Value_float_array _
| Value_string _ | Value_closure _ | Value_set_of_closures _
| Value_boxed_int _ | Value_bottom ->
Cannot_be_taken
let potentially_taken_block_switch_branch t tag =
match t.descr with
| (Value_unresolved _
| Value_unknown _
| Value_extern _
| Value_symbol _) ->
Can_be_taken
| (Value_int _| Value_char _) ->
Cannot_be_taken
| Value_block (block_tag, _) when Tag.to_int block_tag = tag ->
Must_be_taken
| Value_float _ when tag = Obj.double_tag ->
Must_be_taken
| Value_float_array _ when tag = Obj.double_array_tag ->
Must_be_taken
| Value_string _ when tag = Obj.string_tag ->
Must_be_taken
| (Value_closure _ | Value_set_of_closures _)
when tag = Obj.closure_tag || tag = Obj.infix_tag ->
Can_be_taken
| Value_boxed_int _ when tag = Obj.custom_tag ->
Must_be_taken
| Value_block _ | Value_float _ | Value_set_of_closures _ | Value_closure _
| Value_string _ | Value_float_array _ | Value_boxed_int _ ->
Cannot_be_taken
| Value_bottom ->
Cannot_be_taken
let function_arity (fun_decl : function_declaration) =
List.length fun_decl.params
let function_declaration_approx ~keep_body fun_var
(fun_decl : Flambda.function_declaration) =
let function_body =
if not (keep_body fun_var fun_decl) then None
else begin
Some { body = fun_decl.body;
stub = fun_decl.stub;
inline = fun_decl.inline;
dbg = fun_decl.dbg;
specialise = fun_decl.specialise;
is_a_functor = fun_decl.is_a_functor;
free_variables = fun_decl.free_variables;
free_symbols = fun_decl.free_symbols;
poll = fun_decl.poll }
end
in
{ function_body;
params = fun_decl.params;
closure_origin = fun_decl.closure_origin; }
let function_declarations_approx ~keep_body
(fun_decls : Flambda.function_declarations) =
let funs =
Variable.Map.mapi (function_declaration_approx ~keep_body) fun_decls.funs
in
{ funs;
is_classic_mode = fun_decls.is_classic_mode;
set_of_closures_id = fun_decls.set_of_closures_id;
set_of_closures_origin = fun_decls.set_of_closures_origin; }
let import_function_declarations_for_pack function_decls
import_set_of_closures_id import_set_of_closures_origin =
{ set_of_closures_id =
import_set_of_closures_id function_decls.set_of_closures_id;
set_of_closures_origin =
import_set_of_closures_origin function_decls.set_of_closures_origin;
funs = function_decls.funs;
is_classic_mode = function_decls.is_classic_mode;
}
let update_function_declarations function_decls ~funs =
let compilation_unit = Compilation_unit.get_current_exn () in
let is_classic_mode = function_decls.is_classic_mode in
let set_of_closures_id = Set_of_closures_id.create compilation_unit in
let set_of_closures_origin = function_decls.set_of_closures_origin in
{ is_classic_mode;
set_of_closures_id;
set_of_closures_origin;
funs;
}
let clear_function_bodies (function_decls : function_declarations) =
let funs =
Variable.Map.map (fun (fun_decl : function_declaration) ->
match fun_decl.function_body with
| None | Some { stub = true; _ } ->
fun_decl
| Some _ ->
{ fun_decl with function_body = None })
function_decls.funs
in
{ function_decls with funs }
let update_function_declaration_body
(function_decl : function_declaration)
(f : Flambda.t -> Flambda.t) =
match function_decl.function_body with
| None -> function_decl
| Some function_body ->
let new_function_body =
let body = f function_body.body in
let free_variables = Flambda.free_variables body in
let free_symbols = Flambda.free_symbols body in
{ function_body with free_variables; free_symbols; body; }
in
{ function_decl with function_body = Some new_function_body }
let make_closure_map input =
let map = ref Closure_id.Map.empty in
let add_set_of_closures _ (function_decls : function_declarations) =
Variable.Map.iter (fun var _ ->
let closure_id = Closure_id.wrap var in
map := Closure_id.Map.add closure_id function_decls !map)
function_decls.funs
in
Set_of_closures_id.Map.iter add_set_of_closures input;
!map
|