1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* Operations on arrays */
#include <string.h>
#include "caml/alloc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/signals.h"
#include "caml/runtime_events.h"
static const mlsize_t mlsize_t_max = CAML_UINTNAT_MAX;
/* returns number of elements (either fields or floats) */
/* [ 'a array -> int ] */
CAMLexport mlsize_t caml_array_length(value array)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return Wosize_val(array) / Double_wosize;
else
#endif
return Wosize_val(array);
}
CAMLexport int caml_is_double_array(value array)
{
return (Tag_val(array) == Double_array_tag);
}
/* Note: the OCaml types on the following primitives will work both with
and without the -no-flat-float-array configure-time option. If you
respect them, your C code should work in both configurations.
*/
/* [ 'a array -> int -> 'a ] where 'a != float */
CAMLprim value caml_array_get_addr(value array, value index)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
return Field(array, idx);
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
d = Double_flat_field(array, idx);
Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC);
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_get(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_get_addr(array, index);
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
CAMLprim value caml_array_set_addr(value array, value index, value newval)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
caml_modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ floatarray -> int -> float -> unit ] */
CAMLprim value caml_floatarray_set(value array, value index, value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_set(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_set_addr(array, index, newval);
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_unsafe_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
d = Double_flat_field(array, idx);
Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC);
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_unsafe_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_unsafe_get(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return Field(array, Long_val(index));
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
static value caml_array_unsafe_set_addr(value array, value index,value newval)
{
intnat idx = Long_val(index);
caml_modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ floatarray -> int -> float -> unit ] */
/* [MM]: [caml_array_unsafe_set_addr] has a fence for enforcing the OCaml
memory model through its use of [caml_modify].
[MM] [TODO]: [caml_floatarray_unsafe_set] will also need a similar fence in
[Store_double_flat_field]. */
CAMLprim value caml_floatarray_unsafe_set(value array, value index,value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_unsafe_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_unsafe_set(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_unsafe_set_addr(array, index, newval);
}
/* [len] is a [value] representing number of floats. */
/* [ int -> floatarray ] */
CAMLprim value caml_floatarray_create(value len)
{
mlsize_t wosize = Long_val(len) * Double_wosize;
value result;
if (wosize <= Max_young_wosize){
if (wosize == 0)
return Atom(0);
else
Alloc_small (result, wosize, Double_array_tag, Alloc_small_enter_GC);
}else if (wosize > Max_wosize)
caml_invalid_argument("Float.Array.create");
else {
result = caml_alloc_shr (wosize, Double_array_tag);
}
/* Give the GC a chance to run, and run memprof callbacks */
return caml_process_pending_actions_with_root(result);
}
CAMLprim value caml_floatarray_make_unboxed(intnat size, double init)
{
if (size == 0) {
return Atom(0);
}
value res;
mlsize_t wsize = size * Double_wosize;
if (wsize > Max_wosize) caml_invalid_argument("Array.make");
res = caml_alloc(wsize, Double_array_tag);
for (mlsize_t i = 0; i < size; i++) {
Store_double_flat_field(res, i, init);
}
/* Give the GC a chance to run, and run memprof callbacks */
return caml_process_pending_actions_with_root(res);
}
/* [int -> float -> floatarray] */
CAMLprim value caml_floatarray_make(value len, value init)
{
return caml_floatarray_make_unboxed(Long_val(len), Double_val(init));
}
/* [int -> 'a -> uniform_array] */
CAMLprim value caml_uniform_array_make(value len, value init)
{
CAMLparam2 (len, init);
CAMLlocal1 (res);
mlsize_t size = Long_val(len);
if (size == 0) {
CAMLreturn(Atom(0));
} else if (size <= Max_young_wosize) {
res = caml_alloc_small(size, 0);
for (mlsize_t i = 0; i < size; i++) Field(res, i) = init;
}
else if (size > Max_wosize) caml_invalid_argument("Array.make");
else {
if (Is_block(init) && Is_young(init)) {
/* We don't want to create so many major-to-minor references,
so [init] is moved to the major heap by doing a minor GC. */
CAML_EV_COUNTER (EV_C_FORCE_MINOR_MAKE_VECT, 1);
caml_minor_collection ();
}
CAMLassert(!(Is_block(init) && Is_young(init)));
res = caml_alloc_shr(size, 0);
/* We now know that [init] is not in the minor heap, so there is
no need to call [caml_initialize]. */
for (mlsize_t i = 0; i < size; i++) Field(res, i) = init;
}
/* Give the GC a chance to run, and run memprof callbacks */
caml_process_pending_actions ();
CAMLreturn (res);
}
/* [len] is a [value] representing number of words or floats */
CAMLprim value caml_array_make(value len, value init)
{
#ifdef FLAT_FLOAT_ARRAY
if (Is_block(init)
&& Tag_val(init) == Double_tag) {
return caml_floatarray_make(len, init);
}
#endif
return caml_uniform_array_make(len, init);
}
/* [len] is a [value] representing number of floats */
/* [ int -> float array ] */
CAMLprim value caml_array_create_float(value len)
{
#ifdef FLAT_FLOAT_ARRAY
return caml_floatarray_create (len);
#else
/* A signaling NaN, statically allocated */
static const uintnat some_float_contents[] = {
Caml_out_of_heap_header(Double_wosize, Double_tag),
#if defined(ARCH_SIXTYFOUR)
0x7FF0000000000001
#elif defined(ARCH_BIG_ENDIAN)
0x7FF00000, 0x00000001,
#else
0x00000001, 0x7FF00000
#endif
};
value some_float = Val_hp(some_float_contents);
return caml_array_make (len, some_float);
#endif
}
/* This primitive is used internally by the compiler to compile
explicit array expressions.
For float arrays when FLAT_FLOAT_ARRAY is true, it takes an array of
boxed floats and returns the corresponding flat-allocated [float array].
In all other cases, it just returns its argument unchanged.
*/
CAMLprim value caml_array_of_uniform_array(value init)
{
#ifdef FLAT_FLOAT_ARRAY
CAMLparam1 (init);
mlsize_t wsize, size;
CAMLlocal2 (v, res);
size = Wosize_val(init);
if (size == 0) {
CAMLreturn (init);
} else {
v = Field(init, 0);
if (Is_long(v)
|| Tag_val(v) != Double_tag) {
CAMLreturn (init);
} else {
wsize = size * Double_wosize;
if (wsize <= Max_young_wosize) {
res = caml_alloc_small(wsize, Double_array_tag);
} else {
res = caml_alloc_shr(wsize, Double_array_tag);
}
for (mlsize_t i = 0; i < size; i++) {
double d = Double_val(Field(init, i));
Store_double_flat_field(res, i, d);
}
/* run memprof callbacks */
caml_process_pending_actions();
CAMLreturn (res);
}
}
#else
return init;
#endif
}
/* #13003: previous names for array-creation primitives,
kept for backward-compatibility only. */
CAMLprim value caml_make_vect(value len, value init)
{
return caml_array_make(len, init);
}
CAMLprim value caml_make_float_vect(value len)
{
return caml_array_create_float(len);
}
CAMLprim value caml_make_array(value array)
{
return caml_array_of_uniform_array(array);
}
/* Blitting */
/* [wo_memmove] copies [nvals] values from [src] to [dst]. If there is a single
domain running, then we use [memmove]. Otherwise, we copy one word at a
time.
Since the [memmove] implementation does not guarantee that the writes are
always word-sized, we explicitly perform word-sized writes of the release
kind to avoid mixed-mode accesses. Performing release writes should be
sufficient to prevent smart compilers from coalescing the writes into vector
writes, and hence prevent mixed-mode accesses. [MM].
*/
static void wo_memmove (volatile value* const dst,
volatile const value* const src,
mlsize_t nvals)
{
if (caml_domain_alone ()) {
memmove ((value*)dst, (value*)src, nvals * sizeof (value));
} else {
/* See memory model [MM] notes in memory.c */
atomic_thread_fence(memory_order_acquire);
if (dst < src) {
/* copy ascending */
for (mlsize_t i = 0; i < nvals; i++)
atomic_store_release(&((atomic_value*)dst)[i], src[i]);
} else {
/* copy descending */
for (mlsize_t i = nvals; i > 0; i--)
atomic_store_release(&((atomic_value*)dst)[i-1], src[i-1]);
}
}
}
/* [MM] [TODO]: Not consistent with the memory model. See the discussion in
https://github.com/ocaml-multicore/ocaml-multicore/pull/822. */
CAMLprim value caml_floatarray_blit(value a1, value ofs1, value a2, value ofs2,
value n)
{
if (Long_val(n) == 0) return Val_unit;
/* Note: size-0 floatarrays do not have Double_array_tag,
but only size-0 blits are possible on them, so they
do not reach this point. */
CAMLassert (Tag_val(a1) == Double_array_tag);
CAMLassert (Tag_val(a2) == Double_array_tag);
/* See memory model [MM] notes in memory.c */
atomic_thread_fence(memory_order_acquire);
memmove((double *)a2 + Long_val(ofs2),
(double *)a1 + Long_val(ofs1),
Long_val(n) * sizeof(double));
return Val_unit;
}
CAMLprim value caml_uniform_array_blit(
value a1, value ofs1, value a2, value ofs2, value n)
{
volatile value * src, * dst;
intnat count;
if (Long_val(n) == 0)
/* See comment on size-0 floatarrays in [caml_floatarray_blit]. */
return Val_unit;
CAMLassert (Tag_val(a1) != Double_array_tag);
CAMLassert (Tag_val(a2) != Double_array_tag);
if (Is_young(a2)) {
/* Arrays of values, destination is in young generation.
Here too we can do a direct copy since this cannot create
old-to-young pointers, nor mess up with the incremental major GC.
Again, wo_memmove takes care of overlap. */
wo_memmove(&Field(a2, Long_val(ofs2)),
&Field(a1, Long_val(ofs1)),
Long_val(n));
return Val_unit;
}
/* Array of values, destination is in old generation.
We must use caml_modify. */
count = Long_val(n);
if (a1 == a2 && Long_val(ofs1) < Long_val(ofs2)) {
/* Copy in descending order */
for (dst = &Field(a2, Long_val(ofs2) + count - 1),
src = &Field(a1, Long_val(ofs1) + count - 1);
count > 0;
count--, src--, dst--) {
caml_modify(dst, *src);
}
} else {
/* Copy in ascending order */
for (dst = &Field(a2, Long_val(ofs2)), src = &Field(a1, Long_val(ofs1));
count > 0;
count--, src++, dst++) {
caml_modify(dst, *src);
}
}
/* Many caml_modify in a row can create a lot of old-to-young refs.
Give the minor GC a chance to run if it needs to. */
caml_check_urgent_gc(Val_unit);
return Val_unit;
}
CAMLprim value caml_array_blit(value a1, value ofs1, value a2, value ofs2,
value n)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(a2) == Double_array_tag)
return caml_floatarray_blit(a1, ofs1, a2, ofs2, n);
#endif
return caml_uniform_array_blit(a1, ofs1, a2, ofs2, n);
}
/* generic [gather] functions for extraction and concatenation of sub-arrays */
/* The lengths are specified in number of floats,
as returned by [caml_array_length]. */
static value caml_floatarray_gather(intnat num_arrays,
value arrays[/*num_arrays*/],
intnat offsets[/*num_arrays*/],
intnat lengths[/*num_arrays*/])
{
CAMLparamN(arrays, num_arrays);
value res; /* no need to register it as a root */
/* Determine total size, in number of floats. */
mlsize_t size = 0;
for (mlsize_t i = 0; i < num_arrays; i++) {
if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat");
size += lengths[i];
CAMLassert(Tag_val(arrays[i]) == Double_array_tag
|| Wosize_val(arrays[i]) == 0);
}
if (size == 0) {
/* If total size = 0, just return empty array */
res = Atom(0);
}
/* This is an array of floats. We can use memcpy directly. */
if (size > Max_wosize/Double_wosize) caml_invalid_argument("Array.concat");
mlsize_t wsize = size * Double_wosize; /* total size, in words */
res = caml_alloc(wsize, Double_array_tag);
mlsize_t pos = 0;
for (mlsize_t i = 0; i < num_arrays; i++) {
/* [res] is freshly allocated, and no other domain has a reference to it.
Hence, a plain [memcpy] is sufficient. */
memcpy((double *)res + pos,
(double *)arrays[i] + offsets[i],
lengths[i] * sizeof(double));
pos += lengths[i];
}
CAMLassert(pos == size);
CAMLreturn(res);
}
static value caml_uniform_array_gather(intnat num_arrays,
value arrays[/*num_arrays*/],
intnat offsets[/*num_arrays*/],
intnat lengths[/*num_arrays*/])
{
CAMLparamN(arrays, num_arrays);
value res; /* no need to register it as a root */
/* Determine total size */
mlsize_t size = 0;
for (mlsize_t i = 0; i < num_arrays; i++) {
if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat");
size += lengths[i];
CAMLassert(Tag_val(arrays[i]) != Double_array_tag);
}
if (size == 0) {
/* If total size = 0, just return an empty array */
res = Atom(0);
}
else if (size <= Max_young_wosize) {
/* Array of values, small enough to fit in young generation.
We can use memcpy directly. */
res = caml_alloc_small(size, 0);
mlsize_t pos = 0;
for (mlsize_t i = 0; i < num_arrays; i++) {
/* [res] is freshly allocated, and no other domain has a reference to it.
Hence, a plain [memcpy] is sufficient. */
memcpy((value*)&Field(res, pos),
(value*)&Field(arrays[i], offsets[i]),
lengths[i] * sizeof(value));
pos += lengths[i];
}
CAMLassert(pos == size);
}
else if (size > Max_wosize) {
/* Array of values, too big. */
caml_invalid_argument("Array.concat");
} else {
/* Array of values, must be allocated in old generation and filled
using caml_initialize. */
res = caml_alloc_shr(size, 0);
mlsize_t pos = 0;
for (mlsize_t i = 0; i < num_arrays; i++) {
volatile value *src = &Field(arrays[i], offsets[i]);
for (mlsize_t count = lengths[i];
count > 0;
count--, src++, pos++) {
caml_initialize(&Field(res, pos), *src);
}
}
CAMLassert(pos == size);
/* Many caml_initialize in a row can create a lot of old-to-young
refs. Give the minor GC a chance to run if it needs to.
Run memprof callbacks for the major allocation. */
res = caml_process_pending_actions_with_root (res);
}
CAMLreturn (res);
}
static value caml_array_gather(intnat num_arrays,
value arrays[/*num_arrays*/],
intnat offsets[/*num_arrays*/],
intnat lengths[/*num_arrays*/])
{
#ifdef FLAT_FLOAT_ARRAY
for (mlsize_t i = 0; i < num_arrays; i++) {
/* An array is either an empty array,
or a float array, or a non-float array.
We know which implementation to use on the first non-empty array. */
if (Wosize_val(arrays[i]) == 0)
continue;
else if (Tag_val(arrays[i]) == Double_array_tag)
return caml_floatarray_gather(num_arrays, arrays, offsets, lengths);
else
break;
}
/* If we reach this point, all arrays were empty.
Calling the uniform_ version below is correct
-- it will return an empty array. */
#endif
return caml_uniform_array_gather(num_arrays, arrays, offsets, lengths);
}
CAMLprim value caml_floatarray_sub(value a, value ofs, value len)
{
value arrays[1] = { a };
intnat offsets[1] = { Long_val(ofs) };
intnat lengths[1] = { Long_val(len) };
return caml_floatarray_gather(1, arrays, offsets, lengths);
}
CAMLprim value caml_uniform_array_sub(value a, value ofs, value len)
{
value arrays[1] = { a };
intnat offsets[1] = { Long_val(ofs) };
intnat lengths[1] = { Long_val(len) };
return caml_uniform_array_gather(1, arrays, offsets, lengths);
}
CAMLprim value caml_array_sub(value a, value ofs, value len)
{
value arrays[1] = { a };
intnat offsets[1] = { Long_val(ofs) };
intnat lengths[1] = { Long_val(len) };
return caml_array_gather(1, arrays, offsets, lengths);
}
CAMLprim value caml_floatarray_append(value a1, value a2)
{
value arrays[2] = { a1, a2 };
intnat offsets[2] = { 0, 0 };
/* sizes are specified in number of floats */
intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) };
return caml_floatarray_gather(2, arrays, offsets, lengths);
}
CAMLprim value caml_uniform_array_append(value a1, value a2)
{
value arrays[2] = { a1, a2 };
intnat offsets[2] = { 0, 0 };
intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) };
return caml_uniform_array_gather(2, arrays, offsets, lengths);
}
CAMLprim value caml_array_append(value a1, value a2)
{
value arrays[2] = { a1, a2 };
intnat offsets[2] = { 0, 0 };
intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) };
return caml_array_gather(2, arrays, offsets, lengths);
}
CAMLprim value caml_array_concat(value al)
{
#define STATIC_SIZE 16
value static_arrays[STATIC_SIZE], * arrays;
intnat static_offsets[STATIC_SIZE], * offsets;
intnat static_lengths[STATIC_SIZE], * lengths;
intnat n, i;
value l, res;
/* Length of list = number of arrays */
for (n = 0, l = al; l != Val_emptylist; l = Field(l, 1)) n++;
/* Allocate extra storage if too many arrays */
if (n <= STATIC_SIZE) {
arrays = static_arrays;
offsets = static_offsets;
lengths = static_lengths;
} else {
arrays = caml_stat_alloc(n * sizeof(value));
offsets = caml_stat_alloc_noexc(n * sizeof(intnat));
if (offsets == NULL) {
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
lengths = caml_stat_alloc_noexc(n * sizeof(value));
if (lengths == NULL) {
caml_stat_free(offsets);
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
}
/* Build the parameters to caml_array_gather */
for (i = 0, l = al; l != Val_emptylist; l = Field(l, 1), i++) {
arrays[i] = Field(l, 0);
offsets[i] = 0;
lengths[i] = caml_array_length(Field(l, 0));
}
/* Do the concatenation */
res = caml_array_gather(n, arrays, offsets, lengths);
/* Free the extra storage if needed */
if (n > STATIC_SIZE) {
caml_stat_free(arrays);
caml_stat_free(offsets);
caml_stat_free(lengths);
}
return res;
}
CAMLprim value caml_floatarray_fill_unboxed(
value array, intnat ofs, intnat len, double d)
{
for (; len > 0; len--, ofs++)
Store_double_flat_field(array, ofs, d);
return Val_unit;
}
CAMLprim value caml_floatarray_fill(
value array, value v_ofs, value v_len, value val)
{
return caml_floatarray_fill_unboxed(
array, Long_val(v_ofs), Long_val(v_len), Double_val(val));
}
CAMLprim value caml_uniform_array_fill(
value array, value v_ofs, value v_len, value val)
{
intnat ofs = Long_val(v_ofs);
intnat len = Long_val(v_len);
volatile value* fp;
/* This duplicates the logic of caml_modify. Please refer to the
implementation of that function for a description of GC
invariants we need to enforce.*/
fp = &Field(array, ofs);
if (Is_young(array)) {
for (; len > 0; len--, fp++) *fp = val;
} else {
int is_val_young_block = Is_block(val) && Is_young(val);
for (; len > 0; len--, fp++) {
value old = *fp;
if (old == val) continue;
*fp = val;
if (Is_block(old)) {
if (Is_young(old)) continue;
caml_darken(Caml_state, old, NULL);
}
if (is_val_young_block)
Ref_table_add(&Caml_state->minor_tables->major_ref, fp);
}
if (is_val_young_block) caml_check_urgent_gc (Val_unit);
}
return Val_unit;
}
CAMLprim value caml_array_fill(value array,
value v_ofs,
value v_len,
value val)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag) {
return caml_floatarray_fill(array, v_ofs, v_len, val);
}
#endif
return caml_uniform_array_fill(array, v_ofs, v_len, val);
}
|