1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* Structured output */
/* The interface of this file is "caml/intext.h" */
#include <string.h>
#include <assert.h>
#include "caml/alloc.h"
#include "caml/codefrag.h"
#include "caml/config.h"
#include "caml/custom.h"
#include "caml/fail.h"
#include "caml/gc.h"
#include "caml/intext.h"
#include "caml/io.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/reverse.h"
#include "caml/shared_heap.h"
/* Flags affecting marshaling */
enum {
NO_SHARING = 1, /* Flag to ignore sharing */
CLOSURES = 2, /* Flag to allow marshaling code pointers */
COMPAT_32 = 4, /* Flag to ensure that output can safely
be read back on a 32-bit platform */
COMPRESSED = 8 /* Flag to request compression if available */
};
/* Stack for pending values to marshal */
#define EXTERN_STACK_INIT_SIZE 256
#define EXTERN_STACK_MAX_SIZE (1024*1024*100)
struct extern_item { volatile value * v; mlsize_t count; };
/* Hash table to record already-marshaled objects and their positions */
struct object_position { value obj; uintnat pos; };
/* The hash table uses open addressing, linear probing, and a redundant
representation:
- a bitvector [present] records which entries of the table are occupied;
- an array [entries] records (object, position) pairs for the entries
that are occupied.
The bitvector is much smaller than the array (1/128th on 64-bit
platforms, 1/64th on 32-bit platforms), so it has better locality,
making it faster to determine that an object is not in the table.
Also, it makes it faster to empty or initialize a table: only the
[present] bitvector needs to be filled with zeros, the [entries]
array can be left uninitialized.
*/
struct position_table {
int shift;
mlsize_t size; /* size == 1 << (wordsize - shift) */
mlsize_t mask; /* mask == size - 1 */
mlsize_t threshold; /* threshold == a fixed fraction of size */
uintnat * present; /* [Bitvect_size(size)] */
struct object_position * entries; /* [size] */
};
#define Bits_word (8 * sizeof(uintnat))
#define Bitvect_size(n) (((n) + Bits_word - 1) / Bits_word)
#define POS_TABLE_INIT_SIZE_LOG2 8
#define POS_TABLE_INIT_SIZE (1 << POS_TABLE_INIT_SIZE_LOG2)
struct caml_extern_state {
int extern_flags; /* logical or of some of the flags */
uintnat obj_counter; /* Number of objects emitted so far */
uintnat size_32; /* Size in words of 32-bit block for struct. */
uintnat size_64; /* Size in words of 64-bit block for struct. */
/* Stack for pending value to marshal */
struct extern_item extern_stack_init[EXTERN_STACK_INIT_SIZE];
struct extern_item * extern_stack;
struct extern_item * extern_stack_limit;
/* Hash table to record already marshalled objects */
uintnat pos_table_present_init[Bitvect_size(POS_TABLE_INIT_SIZE)];
struct object_position pos_table_entries_init[POS_TABLE_INIT_SIZE];
struct position_table pos_table;
/* To buffer the output */
char * extern_userprovided_output;
char * extern_ptr;
char * extern_limit;
struct caml_output_block * extern_output_first;
struct caml_output_block * extern_output_block;
};
static void init_extern_stack(struct caml_extern_state* s)
{
/* (Re)initialize the globals for next time around */
s->extern_stack = s->extern_stack_init;
s->extern_stack_limit = s->extern_stack + EXTERN_STACK_INIT_SIZE;
}
static struct caml_extern_state* init_extern_state (void)
{
Caml_check_caml_state();
struct caml_extern_state* s;
if (Caml_state->extern_state != NULL)
return Caml_state->extern_state;
s = caml_stat_alloc(sizeof(struct caml_extern_state));
s->extern_flags = 0;
s->obj_counter = 0;
s->size_32 = 0;
s->size_64 = 0;
init_extern_stack(s);
Caml_state->extern_state = s;
return s;
}
static struct caml_extern_state* get_extern_state (void)
{
Caml_check_caml_state();
if (Caml_state->extern_state == NULL)
caml_fatal_error (
"extern_state not initialized: it is likely that a caml_serialize_* "
"function was called without going through caml_output_*."
);
return Caml_state->extern_state;
}
void caml_free_extern_state (void)
{
if (Caml_state->extern_state != NULL) {
caml_stat_free(Caml_state->extern_state);
Caml_state->extern_state = NULL;
}
}
/* Hook for compression */
_Bool (*caml_extern_compress_output)(struct caml_output_block **) = NULL;
/* Forward declarations */
CAMLnoret static void extern_out_of_memory(struct caml_extern_state* s);
CAMLnoret static
void extern_invalid_argument(struct caml_extern_state* s, char *msg);
CAMLnoret static void extern_failwith(struct caml_extern_state* s, char *msg);
CAMLnoret static void extern_stack_overflow(struct caml_extern_state* s);
static void free_extern_output(struct caml_extern_state* s);
static void extern_free_stack(struct caml_extern_state* s)
{
/* Free the extern stack if needed */
if (s->extern_stack != s->extern_stack_init) {
caml_stat_free(s->extern_stack);
init_extern_stack(s);
}
}
static struct extern_item * extern_resize_stack(struct caml_extern_state* s,
struct extern_item * sp)
{
asize_t newsize = 2 * (s->extern_stack_limit - s->extern_stack);
asize_t sp_offset = sp - s->extern_stack;
struct extern_item * newstack;
if (newsize >= EXTERN_STACK_MAX_SIZE) extern_stack_overflow(s);
newstack = caml_stat_calloc_noexc(newsize, sizeof(struct extern_item));
if (newstack == NULL) extern_stack_overflow(s);
/* Copy items from the old stack to the new stack */
memcpy (newstack, s->extern_stack,
sizeof(struct extern_item) * sp_offset);
/* Free the old stack if it is not the initial stack */
if (s->extern_stack != s->extern_stack_init)
caml_stat_free(s->extern_stack);
s->extern_stack = newstack;
s->extern_stack_limit = newstack + newsize;
return newstack + sp_offset;
}
/* Multiplicative Fibonacci hashing
(Knuth, TAOCP vol 3, section 6.4, page 518).
HASH_FACTOR is (sqrt(5) - 1) / 2 * 2^wordsize. */
#ifdef ARCH_SIXTYFOUR
#define HASH_FACTOR 11400714819323198486UL
#else
#define HASH_FACTOR 2654435769UL
#endif
#define Hash(v,shift) (((uintnat)(v) * HASH_FACTOR) >> (shift))
/* When the table becomes 2/3 full, its size is increased. */
#define Threshold(sz) (((sz) * 2) / 3)
/* Initialize the position table */
static void extern_init_position_table(struct caml_extern_state* s)
{
if (s->extern_flags & NO_SHARING) return;
s->pos_table.size = POS_TABLE_INIT_SIZE;
s->pos_table.shift = 8 * sizeof(value) - POS_TABLE_INIT_SIZE_LOG2;
s->pos_table.mask = POS_TABLE_INIT_SIZE - 1;
s->pos_table.threshold = Threshold(POS_TABLE_INIT_SIZE);
s->pos_table.present = s->pos_table_present_init;
s->pos_table.entries = s->pos_table_entries_init;
memset(s->pos_table_present_init, 0,
Bitvect_size(POS_TABLE_INIT_SIZE) * sizeof(uintnat));
}
/* Free the position table */
static void extern_free_position_table(struct caml_extern_state* s)
{
if (s->extern_flags & NO_SHARING) return;
if (s->pos_table.present != s->pos_table_present_init) {
caml_stat_free(s->pos_table.present);
caml_stat_free(s->pos_table.entries);
/* Protect against repeated calls to extern_free_position_table */
s->pos_table.present = s->pos_table_present_init;
s->pos_table.entries = s->pos_table_entries_init;
}
}
/* Accessing bitvectors */
Caml_inline uintnat bitvect_test(uintnat * bv, uintnat i)
{
return bv[i / Bits_word] & ((uintnat) 1 << (i & (Bits_word - 1)));
}
Caml_inline void bitvect_set(uintnat * bv, uintnat i)
{
bv[i / Bits_word] |= ((uintnat) 1 << (i & (Bits_word - 1)));
}
/* Grow the position table */
static void extern_resize_position_table(struct caml_extern_state *s)
{
mlsize_t new_size, new_byte_size;
int new_shift;
uintnat * new_present;
struct object_position * new_entries;
uintnat h;
struct position_table old = s->pos_table;
/* Grow the table quickly (x 8) up to 10^6 entries,
more slowly (x 2) afterwards. */
if (old.size < 1000000) {
new_size = 8 * old.size;
new_shift = old.shift - 3;
} else {
new_size = 2 * old.size;
new_shift = old.shift - 1;
}
if (new_size == 0
|| caml_umul_overflow(new_size, sizeof(struct object_position),
&new_byte_size))
extern_out_of_memory(s);
new_entries = caml_stat_alloc_noexc(new_byte_size);
if (new_entries == NULL) extern_out_of_memory(s);
new_present =
caml_stat_calloc_noexc(Bitvect_size(new_size), sizeof(uintnat));
if (new_present == NULL) {
caml_stat_free(new_entries);
extern_out_of_memory(s);
}
s->pos_table.size = new_size;
s->pos_table.shift = new_shift;
s->pos_table.mask = new_size - 1;
s->pos_table.threshold = Threshold(new_size);
s->pos_table.present = new_present;
s->pos_table.entries = new_entries;
/* Insert every entry of the old table in the new table */
for (uintnat i = 0; i < old.size; i++) {
if (! bitvect_test(old.present, i)) continue;
h = Hash(old.entries[i].obj, s->pos_table.shift);
while (bitvect_test(new_present, h)) {
h = (h + 1) & s->pos_table.mask;
}
bitvect_set(new_present, h);
new_entries[h] = old.entries[i];
}
/* Free the old tables if they are not the initial ones */
if (old.present != s->pos_table_present_init) {
caml_stat_free(old.present);
caml_stat_free(old.entries);
}
}
/* Determine whether the given object [obj] is in the hash table.
If so, set [*pos_out] to its position in the output and return 1.
If not, set [*h_out] to the hash value appropriate for
[extern_record_location] and return 0. */
Caml_inline int extern_lookup_position(struct caml_extern_state *s, value obj,
uintnat * pos_out, uintnat * h_out)
{
uintnat h = Hash(obj, s->pos_table.shift);
while (1) {
if (! bitvect_test(s->pos_table.present, h)) {
*h_out = h;
return 0;
}
if (s->pos_table.entries[h].obj == obj) {
*pos_out = s->pos_table.entries[h].pos;
return 1;
}
h = (h + 1) & s->pos_table.mask;
}
}
/* Record the output position for the given object [obj]. */
/* The [h] parameter is the index in the hash table where the object
must be inserted. It was determined during lookup. */
static void extern_record_location(struct caml_extern_state* s,
value obj, uintnat h)
{
if (s->extern_flags & NO_SHARING) return;
bitvect_set(s->pos_table.present, h);
s->pos_table.entries[h].obj = obj;
s->pos_table.entries[h].pos = s->obj_counter;
s->obj_counter++;
if (s->obj_counter >= s->pos_table.threshold)
extern_resize_position_table(s);
}
/* To buffer the output */
static void init_extern_output(struct caml_extern_state* s)
{
s->extern_userprovided_output = NULL;
s->extern_output_first =
caml_stat_alloc_noexc(sizeof(struct caml_output_block));
if (s->extern_output_first == NULL) caml_raise_out_of_memory();
s->extern_output_block = s->extern_output_first;
s->extern_output_block->next = NULL;
s->extern_ptr = s->extern_output_block->data;
s->extern_limit = s->extern_output_block->data + SIZE_EXTERN_OUTPUT_BLOCK;
}
static void close_extern_output(struct caml_extern_state* s)
{
if (s->extern_userprovided_output == NULL){
s->extern_output_block->end = s->extern_ptr;
}
}
static void free_extern_output(struct caml_extern_state* s)
{
if (s->extern_userprovided_output == NULL) {
for (struct caml_output_block *blk = s->extern_output_first, *nextblk;
blk != NULL;
blk = nextblk) {
nextblk = blk->next;
caml_stat_free(blk);
}
s->extern_output_first = NULL;
}
extern_free_stack(s);
extern_free_position_table(s);
}
static void grow_extern_output(struct caml_extern_state *s, intnat required)
{
struct caml_output_block * blk;
intnat extra;
if (s->extern_userprovided_output != NULL) {
extern_failwith(s, "Marshal.to_buffer: buffer overflow");
}
s->extern_output_block->end = s->extern_ptr;
if (required <= SIZE_EXTERN_OUTPUT_BLOCK / 2)
extra = 0;
else
extra = required;
blk = caml_stat_alloc_noexc(sizeof(struct caml_output_block) + extra);
if (blk == NULL) extern_out_of_memory(s);
s->extern_output_block->next = blk;
s->extern_output_block = blk;
s->extern_output_block->next = NULL;
s->extern_ptr = s->extern_output_block->data;
s->extern_limit =
s->extern_output_block->data + SIZE_EXTERN_OUTPUT_BLOCK + extra;
}
static intnat extern_output_length(struct caml_extern_state* s)
{
struct caml_output_block * blk;
intnat len;
if (s->extern_userprovided_output != NULL) {
return s->extern_ptr - s->extern_userprovided_output;
} else {
for (len = 0, blk = s->extern_output_first; blk != NULL; blk = blk->next)
len += blk->end - blk->data;
return len;
}
}
/* Exception raising, with cleanup */
static void extern_out_of_memory(struct caml_extern_state* s)
{
free_extern_output(s);
caml_raise_out_of_memory();
}
static void extern_invalid_argument(struct caml_extern_state *s, char *msg)
{
free_extern_output(s);
caml_invalid_argument(msg);
}
static void extern_failwith(struct caml_extern_state* s, char *msg)
{
free_extern_output(s);
caml_failwith(msg);
}
static void extern_stack_overflow(struct caml_extern_state* s)
{
caml_gc_message (0x04, "Stack overflow in marshaling value\n");
free_extern_output(s);
caml_raise_out_of_memory();
}
/* Conversion to big-endian */
Caml_inline void store16(char * dst, int n)
{
dst[0] = n >> 8; dst[1] = n;
}
Caml_inline void store32(char * dst, intnat n)
{
dst[0] = n >> 24; dst[1] = n >> 16; dst[2] = n >> 8; dst[3] = n;
}
Caml_inline void store64(char * dst, int64_t n)
{
dst[0] = n >> 56; dst[1] = n >> 48; dst[2] = n >> 40; dst[3] = n >> 32;
dst[4] = n >> 24; dst[5] = n >> 16; dst[6] = n >> 8; dst[7] = n;
}
static int storevlq(char * dst, uintnat n)
{
/* Find number of base-128 digits (always at least one) */
int ndigits = 1;
for (uintnat m = n >> 7; m != 0; m >>= 7) ndigits++;
/* Convert number */
dst += ndigits - 1;
*dst = n & 0x7F;
for (n >>= 7; n != 0; n >>= 7) *--dst = 0x80 | (n & 0x7F);
/* Return length of number */
return ndigits;
}
/* Write characters, integers, and blocks in the output buffer */
Caml_inline void writebyte(struct caml_extern_state* s, int c)
{
if (s->extern_ptr >= s->extern_limit) grow_extern_output(s, 1);
*s->extern_ptr++ = c;
}
static void writeblock(struct caml_extern_state* s, const char * data,
intnat len)
{
if (s->extern_ptr + len > s->extern_limit) grow_extern_output(s, len);
memcpy(s->extern_ptr, data, len);
s->extern_ptr += len;
}
Caml_inline void writeblock_float8(struct caml_extern_state* s,
const double * data, intnat ndoubles)
{
#if ARCH_FLOAT_ENDIANNESS == 0x01234567 || ARCH_FLOAT_ENDIANNESS == 0x76543210
writeblock(s, (const char *) data, ndoubles * 8);
#else
caml_serialize_block_float_8(data, ndoubles);
#endif
}
static void writecode8(struct caml_extern_state* s,
int code, intnat val)
{
if (s->extern_ptr + 2 > s->extern_limit) grow_extern_output(s, 2);
s->extern_ptr[0] = code;
s->extern_ptr[1] = val;
s->extern_ptr += 2;
}
static void writecode16(struct caml_extern_state* s,
int code, intnat val)
{
if (s->extern_ptr + 3 > s->extern_limit) grow_extern_output(s, 3);
s->extern_ptr[0] = code;
store16(s->extern_ptr + 1, (int) val);
s->extern_ptr += 3;
}
static void writecode32(struct caml_extern_state* s,
int code, intnat val)
{
if (s->extern_ptr + 5 > s->extern_limit) grow_extern_output(s, 5);
s->extern_ptr[0] = code;
store32(s->extern_ptr + 1, val);
s->extern_ptr += 5;
}
#ifdef ARCH_SIXTYFOUR
static void writecode64(struct caml_extern_state* s,
int code, intnat val)
{
if (s->extern_ptr + 9 > s->extern_limit) grow_extern_output(s, 9);
s->extern_ptr[0] = code;
store64(s->extern_ptr + 1, val);
s->extern_ptr += 9;
}
#endif
/* Marshaling integers */
Caml_inline void extern_int(struct caml_extern_state* s, intnat n)
{
if (n >= 0 && n < 0x40) {
writebyte(s, PREFIX_SMALL_INT + n);
} else if (n >= -(1 << 7) && n < (1 << 7)) {
writecode8(s, CODE_INT8, n);
} else if (n >= -(1 << 15) && n < (1 << 15)) {
writecode16(s, CODE_INT16, n);
#ifdef ARCH_SIXTYFOUR
} else if (n < -((intnat)1 << 30) || n >= ((intnat)1 << 30)) {
if (s->extern_flags & COMPAT_32)
extern_failwith(s, "output_value: integer cannot be read back on "
"32-bit platform");
writecode64(s, CODE_INT64, n);
#endif
} else {
writecode32(s, CODE_INT32, n);
}
}
/* Marshaling references to previously-marshaled blocks */
Caml_inline void extern_shared_reference(struct caml_extern_state* s,
uintnat d)
{
if (d < 0x100) {
writecode8(s, CODE_SHARED8, d);
} else if (d < 0x10000) {
writecode16(s, CODE_SHARED16, d);
#ifdef ARCH_SIXTYFOUR
} else if (d >= (uintnat)1 << 32) {
writecode64(s, CODE_SHARED64, d);
#endif
} else {
writecode32(s, CODE_SHARED32, d);
}
}
/* Marshaling block headers */
Caml_inline void extern_header(struct caml_extern_state* s,
mlsize_t sz, tag_t tag)
{
if (tag < 16 && sz < 8) {
writebyte(s, PREFIX_SMALL_BLOCK + tag + (sz << 4));
} else {
header_t hd = Make_header(sz, tag, NOT_MARKABLE);
#ifdef ARCH_SIXTYFOUR
if (sz > 0x3FFFFF && (s->extern_flags & COMPAT_32))
extern_failwith(s, "output_value: array cannot be read back on "
"32-bit platform");
if (hd < (uintnat)1 << 32)
writecode32(s, CODE_BLOCK32, hd);
else
writecode64(s, CODE_BLOCK64, hd);
#else
writecode32(s, CODE_BLOCK32, hd);
#endif
}
}
/* Marshaling strings */
Caml_inline void extern_string(struct caml_extern_state *s,
value v, mlsize_t len)
{
if (len < 0x20) {
writebyte(s, PREFIX_SMALL_STRING + len);
} else if (len < 0x100) {
writecode8(s, CODE_STRING8, len);
} else {
#ifdef ARCH_SIXTYFOUR
if (len > 0xFFFFFB && (s->extern_flags & COMPAT_32))
extern_failwith(s, "output_value: string cannot be read back on "
"32-bit platform");
if (len < (uintnat)1 << 32)
writecode32(s, CODE_STRING32, len);
else
writecode64(s, CODE_STRING64, len);
#else
writecode32(s, CODE_STRING32, len);
#endif
}
writeblock(s, String_val(v), len);
}
/* Marshaling FP numbers */
Caml_inline void extern_double(struct caml_extern_state* s, value v)
{
writebyte(s, CODE_DOUBLE_NATIVE);
writeblock_float8(s, (double *) v, 1);
}
/* Marshaling FP arrays */
Caml_inline void extern_double_array(struct caml_extern_state* s,
value v, mlsize_t nfloats)
{
if (nfloats < 0x100) {
writecode8(s, CODE_DOUBLE_ARRAY8_NATIVE, nfloats);
} else {
#ifdef ARCH_SIXTYFOUR
if (nfloats > 0x1FFFFF && (s->extern_flags & COMPAT_32))
extern_failwith(s, "output_value: float array cannot be read back on "
"32-bit platform");
if (nfloats < (uintnat) 1 << 32)
writecode32(s, CODE_DOUBLE_ARRAY32_NATIVE, nfloats);
else
writecode64(s, CODE_DOUBLE_ARRAY64_NATIVE, nfloats);
#else
writecode32(s, CODE_DOUBLE_ARRAY32_NATIVE, nfloats);
#endif
}
writeblock_float8(s, (double *) v, nfloats);
}
/* Marshaling custom blocks */
Caml_inline void extern_custom(struct caml_extern_state* s, value v,
/*out*/ uintnat * sz_32,
/*out*/ uintnat * sz_64)
{
char * size_header;
char const * ident = Custom_ops_val(v)->identifier;
void (*serialize)(value v, uintnat * bsize_32, uintnat * bsize_64)
= Custom_ops_val(v)->serialize;
const struct custom_fixed_length* fixed_length
= Custom_ops_val(v)->fixed_length;
if (serialize == NULL)
extern_invalid_argument(s, "output_value: abstract value (Custom)");
if (fixed_length == NULL) {
writebyte(s, CODE_CUSTOM_LEN);
writeblock(s, ident, strlen(ident) + 1);
/* Reserve 12 bytes for the lengths (sz_32 and sz_64). */
if (s->extern_ptr + 12 >= s->extern_limit) grow_extern_output(s, 12);
size_header = s->extern_ptr;
s->extern_ptr += 12;
serialize(v, sz_32, sz_64);
/* Store length before serialized block */
store32(size_header, *sz_32);
store64(size_header + 4, *sz_64);
} else {
writebyte(s, CODE_CUSTOM_FIXED);
writeblock(s, ident, strlen(ident) + 1);
serialize(v, sz_32, sz_64);
if (*sz_32 != fixed_length->bsize_32 ||
*sz_64 != fixed_length->bsize_64)
caml_fatal_error(
"output_value: incorrect fixed sizes specified by %s",
ident);
}
}
/* Marshaling code pointers */
static void extern_code_pointer(struct caml_extern_state* s, char * codeptr)
{
struct code_fragment * cf;
const char * digest;
cf = caml_find_code_fragment_by_pc(codeptr);
if (cf != NULL) {
if ((s->extern_flags & CLOSURES) == 0)
extern_invalid_argument(s, "output_value: functional value");
digest = (const char *) caml_digest_of_code_fragment(cf);
if (digest == NULL)
extern_invalid_argument(s, "output_value: private function");
CAMLassert(cf == caml_find_code_fragment_by_digest((unsigned char*)digest));
writecode32(s, CODE_CODEPOINTER, codeptr - cf->code_start);
writeblock(s, digest, 16);
} else {
extern_invalid_argument(s, "output_value: abstract value (outside heap)");
}
}
/* Marshaling the non-environment part of closures */
Caml_inline mlsize_t extern_closure_up_to_env(struct caml_extern_state* s,
value v)
{
mlsize_t startenv, i;
value info;
startenv = Start_env_closinfo(Closinfo_val(v));
i = 0;
do {
/* The infix header */
if (i > 0) extern_int(s, Long_val(Field(v, i++)));
/* The default entry point */
extern_code_pointer(s, (char *) Field(v, i++));
/* The closure info. */
info = Field(v, i++);
extern_int(s, Long_val(info));
/* The direct entry point if arity is neither 0 nor 1 */
if (Arity_closinfo(info) != 0 && Arity_closinfo(info) != 1) {
extern_code_pointer(s, (char *) Field(v, i++));
}
} while (i < startenv);
CAMLassert(i == startenv);
return startenv;
}
/* Marshal the given value in the output buffer */
static void extern_rec(struct caml_extern_state* s, value v)
{
struct extern_item * sp;
uintnat h = 0;
uintnat pos = 0;
/* for Double_tag and Double_array_tag */
static_assert(sizeof(double) == 8, "");
extern_init_position_table(s);
sp = s->extern_stack;
while(1) {
if (Is_long(v)) {
extern_int(s, Long_val(v));
}
else {
header_t hd = Hd_val(v);
tag_t tag = Tag_hd(hd);
mlsize_t sz = Wosize_hd(hd);
if (tag == Forward_tag) {
value f = Forward_val (v);
if (Is_block (f)
&& ( Tag_val (f) == Forward_tag
|| Tag_val (f) == Lazy_tag
|| Tag_val (f) == Forcing_tag
#ifdef FLAT_FLOAT_ARRAY
|| Tag_val (f) == Double_tag
#endif
)){
/* Do not short-circuit the pointer. */
}else{
v = f;
continue;
}
}
/* Atoms are treated specially for two reasons: they are not allocated
in the externed block, and they are automatically shared. */
if (sz == 0) {
extern_header(s, 0, tag);
goto next_item;
}
/* Check if object already seen */
if (! (s->extern_flags & NO_SHARING)) {
if (extern_lookup_position(s, v, &pos, &h)) {
/* #4056: using absolute references for shared objects improves
compressibility. */
uintnat d = s->extern_flags & COMPRESSED ? pos : s->obj_counter - pos;
extern_shared_reference(s, d);
goto next_item;
}
}
/* Output the contents of the object */
switch(tag) {
case String_tag: {
mlsize_t len = caml_string_length(v);
extern_string(s, v, len);
s->size_32 += 1 + (len + 4) / 4;
s->size_64 += 1 + (len + 8) / 8;
extern_record_location(s, v, h);
break;
}
case Double_tag: {
extern_double(s, v);
s->size_32 += 1 + 2;
s->size_64 += 1 + 1;
extern_record_location(s, v, h);
break;
}
case Double_array_tag: {
mlsize_t nfloats;
nfloats = Wosize_val(v) / Double_wosize;
extern_double_array(s, v, nfloats);
s->size_32 += 1 + nfloats * 2;
s->size_64 += 1 + nfloats;
extern_record_location(s, v, h);
break;
}
case Abstract_tag:
extern_invalid_argument(s, "output_value: abstract value (Abstract)");
break;
case Infix_tag:
writecode32(s, CODE_INFIXPOINTER, Infix_offset_hd(hd));
v = v - Infix_offset_hd(hd); /* PR#5772 */
continue;
case Custom_tag: {
uintnat sz_32, sz_64;
extern_custom(s, v, &sz_32, &sz_64);
s->size_32 += 2 + ((sz_32 + 3) >> 2); /* header + ops + data */
s->size_64 += 2 + ((sz_64 + 7) >> 3);
extern_record_location(s, v, h);
break;
}
case Closure_tag: {
mlsize_t i;
extern_header(s, sz, tag);
s->size_32 += 1 + sz;
s->size_64 += 1 + sz;
extern_record_location(s, v, h);
i = extern_closure_up_to_env(s, v);
if (i >= sz) goto next_item;
/* Remember that we still have to serialize fields i + 1 ... sz - 1 */
if (i < sz - 1) {
sp++;
if (sp >= s->extern_stack_limit)
sp = extern_resize_stack(s, sp);
sp->v = &Field(v, i + 1);
sp->count = sz - i - 1;
}
/* Continue serialization with the first environment field */
v = Field(v, i);
continue;
}
case Cont_tag:
extern_invalid_argument(s, "output_value: continuation value");
break;
default: {
extern_header(s, sz, tag);
s->size_32 += 1 + sz;
s->size_64 += 1 + sz;
extern_record_location(s, v, h);
/* Remember that we still have to serialize fields 1 ... sz - 1 */
if (sz > 1) {
sp++;
if (sp >= s->extern_stack_limit)
sp = extern_resize_stack(s, sp);
sp->v = &Field(v, 1);
sp->count = sz - 1;
}
/* Continue serialization with the first field */
v = Field(v, 0);
continue;
}
}
}
next_item:
/* Pop one more item to marshal, if any */
if (sp == s->extern_stack) {
/* We are done. Cleanup the stack and leave the function */
extern_free_stack(s);
extern_free_position_table(s);
return;
}
v = *((sp->v)++);
if (--(sp->count) == 0) sp--;
}
/* Never reached as function leaves with return */
}
static const int extern_flag_values[] = {
NO_SHARING, CLOSURES, COMPAT_32, COMPRESSED
};
static intnat extern_value(struct caml_extern_state* s, value v, value flags,
/*out*/ char header[MAX_INTEXT_HEADER_SIZE],
/*out*/ int * header_len)
{
intnat res_len;
/* Parse flag list */
s->extern_flags = caml_convert_flag_list(flags, extern_flag_values);
/* Turn compression off if Zlib missing or if called from
caml_output_value_to_block */
#ifdef HAS_ZSTD
if (s->extern_userprovided_output) s->extern_flags &= ~COMPRESSED;
#else
s->extern_flags &= ~COMPRESSED;
#endif
/* Initializations */
s->obj_counter = 0;
s->size_32 = 0;
s->size_64 = 0;
/* Marshal the object */
extern_rec(s, v);
/* Record end of output */
close_extern_output(s);
/* Compress if requested */
if (s->extern_flags & COMPRESSED) {
uintnat uncompressed_len = extern_output_length(s);
if (!caml_extern_compress_output(&(s->extern_output_first)))
extern_out_of_memory(s);
res_len = extern_output_length(s);
/* Check lengths if compat32 mode is requested */
#ifdef ARCH_SIXTYFOUR
if (s->extern_flags & COMPAT_32
&& (uncompressed_len >= (uintnat)1 << 32
|| res_len >= (uintnat)1 << 32
|| s->size_32 >= (uintnat)1 << 32
|| s->size_64 >= (uintnat)1 << 32)) {
free_extern_output(s);
caml_failwith("output_value: object too big to be read back on "
"32-bit platform");
}
#endif
/* Write the header in compressed format */
store32(header, Intext_magic_number_compressed);
int pos = 5, len;
len = storevlq(header + pos, res_len); pos += len;
len = storevlq(header + pos, uncompressed_len); pos += len;
len = storevlq(header + pos, s->obj_counter); pos += len;
len = storevlq(header + pos, s->size_32); pos += len;
len = storevlq(header + pos, s->size_64); pos += len;
header[4] = pos;
*header_len = pos;
return res_len;
}
/* Write the header */
res_len = extern_output_length(s);
#ifdef ARCH_SIXTYFOUR
if (res_len >= ((intnat)1 << 32) ||
s->size_32 >= ((intnat)1 << 32) || s->size_64 >= ((intnat)1 << 32)) {
/* The object is too big for the small header format.
Fail if we are in compat32 mode, or use big header. */
if (s->extern_flags & COMPAT_32) {
free_extern_output(s);
caml_failwith("output_value: object too big to be read back on "
"32-bit platform");
}
store32(header, Intext_magic_number_big);
store32(header + 4, 0);
store64(header + 8, res_len);
store64(header + 16, s->obj_counter);
store64(header + 24, s->size_64);
*header_len = 32;
return res_len;
}
#endif
/* Use the small header format */
store32(header, Intext_magic_number_small);
store32(header + 4, res_len);
store32(header + 8, s->obj_counter);
store32(header + 12, s->size_32);
store32(header + 16, s->size_64);
*header_len = 20;
return res_len;
}
void caml_output_val(struct channel *chan, value v, value flags)
{
char header[MAX_INTEXT_HEADER_SIZE];
int header_len;
struct caml_output_block * blk, * nextblk;
struct caml_extern_state* s = init_extern_state ();
if (! caml_channel_binary_mode(chan))
caml_failwith("output_value: not a binary channel");
init_extern_output(s);
extern_value(s, v, flags, header, &header_len);
/* During [caml_really_putblock], concurrent [caml_output_val] operations
can take place (via context switching in systhreads),
and [extern_output_first] may change. So, save it in a local variable. */
blk = s->extern_output_first;
caml_really_putblock(chan, header, header_len);
while (blk != NULL) {
caml_really_putblock(chan, blk->data, blk->end - blk->data);
nextblk = blk->next;
caml_stat_free(blk);
blk = nextblk;
}
}
CAMLprim value caml_output_value(value vchan, value v, value flags)
{
CAMLparam3 (vchan, v, flags);
struct channel * channel = Channel(vchan);
caml_channel_lock(channel);
caml_output_val(channel, v, flags);
caml_flush_if_unbuffered(channel);
caml_channel_unlock(channel);
CAMLreturn (Val_unit);
}
CAMLprim value caml_output_value_to_bytes(value v, value flags)
{
char header[MAX_INTEXT_HEADER_SIZE];
int header_len;
intnat data_len, ofs;
value res;
struct caml_output_block * blk, * nextblk;
struct caml_extern_state* s = init_extern_state ();
init_extern_output(s);
data_len = extern_value(s, v, flags, header, &header_len);
/* PR#4030: it is prudent to save extern_output_first before allocating
the result, as in caml_output_val */
blk = s->extern_output_first;
res = caml_alloc_string(header_len + data_len);
ofs = 0;
memcpy(&Byte(res, ofs), header, header_len);
ofs += header_len;
while (blk != NULL) {
intnat n = blk->end - blk->data;
memcpy(&Byte(res, ofs), blk->data, n);
ofs += n;
nextblk = blk->next;
caml_stat_free(blk);
blk = nextblk;
}
return res;
}
CAMLprim value caml_output_value_to_string(value v, value flags)
{
return caml_output_value_to_bytes(v,flags);
}
CAMLexport intnat caml_output_value_to_block(value v, value flags,
char * buf, intnat len)
{
char header[MAX_INTEXT_HEADER_SIZE];
int header_len;
intnat data_len;
struct caml_extern_state* s = init_extern_state ();
/* At this point we don't know the size of the header.
Guess that it is small, and fix up later if not. */
s->extern_userprovided_output = buf + 20;
s->extern_ptr = s->extern_userprovided_output;
s->extern_limit = buf + len;
data_len = extern_value(s, v, flags, header, &header_len);
if (header_len != 20) {
/* Bad guess! Need to shift the output to make room for big header.
Make sure there is room. */
if (header_len + data_len > len)
caml_failwith("Marshal.to_buffer: buffer overflow");
memmove(buf + header_len, buf + 20, data_len);
}
memcpy(buf, header, header_len);
return header_len + data_len;
}
CAMLprim value caml_output_value_to_buffer(value buf, value ofs, value len,
value v, value flags)
{
intnat l =
caml_output_value_to_block(v, flags,
&Byte(buf, Long_val(ofs)), Long_val(len));
return Val_long(l);
}
CAMLexport void caml_output_value_to_malloc(value v, value flags,
/*out*/ char ** buf,
/*out*/ intnat * len)
{
char header[MAX_INTEXT_HEADER_SIZE];
int header_len;
intnat data_len;
char * res;
struct caml_extern_state* s = init_extern_state ();
init_extern_output(s);
data_len = extern_value(s, v, flags, header, &header_len);
res = malloc(header_len + data_len);
if (res == NULL) extern_out_of_memory(s);
*buf = res;
*len = header_len + data_len;
memcpy(res, header, header_len);
res += header_len;
for (struct caml_output_block *blk = s->extern_output_first, *nextblk;
blk != NULL;
blk = nextblk) {
intnat n = blk->end - blk->data;
memcpy(res, blk->data, n);
res += n;
nextblk = blk->next;
caml_stat_free(blk);
}
}
/* Functions for writing user-defined marshallers */
CAMLexport void caml_serialize_int_1(int i)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 1 > s->extern_limit) grow_extern_output(s, 1);
s->extern_ptr[0] = i;
s->extern_ptr += 1;
}
CAMLexport void caml_serialize_int_2(int i)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 2 > s->extern_limit) grow_extern_output(s, 2);
store16(s->extern_ptr, i);
s->extern_ptr += 2;
}
CAMLexport void caml_serialize_int_4(int32_t i)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 4 > s->extern_limit) grow_extern_output(s, 4);
store32(s->extern_ptr, i);
s->extern_ptr += 4;
}
CAMLexport void caml_serialize_int_8(int64_t i)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 8 > s->extern_limit) grow_extern_output(s, 8);
store64(s->extern_ptr, i);
s->extern_ptr += 8;
}
CAMLexport void caml_serialize_float_4(float f)
{
caml_serialize_block_4(&f, 1);
}
CAMLexport void caml_serialize_float_8(double f)
{
caml_serialize_block_float_8(&f, 1);
}
CAMLexport void caml_serialize_block_1(void * data, intnat len)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + len > s->extern_limit) grow_extern_output(s, len);
memcpy(s->extern_ptr, data, len);
s->extern_ptr += len;
}
CAMLexport void caml_serialize_block_2(void * data, intnat len)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 2 * len > s->extern_limit)
grow_extern_output(s, 2 * len);
#ifndef ARCH_BIG_ENDIAN
{
unsigned char * p;
char * q;
for (p = data, q = s->extern_ptr; len > 0; len--, p += 2, q += 2)
Reverse_16(q, p);
s->extern_ptr = q;
}
#else
memcpy(s->extern_ptr, data, len * 2);
s->extern_ptr += len * 2;
#endif
}
CAMLexport void caml_serialize_block_4(void * data, intnat len)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 4 * len > s->extern_limit)
grow_extern_output(s, 4 * len);
#ifndef ARCH_BIG_ENDIAN
{
unsigned char * p;
char * q;
for (p = data, q = s->extern_ptr; len > 0; len--, p += 4, q += 4)
Reverse_32(q, p);
s->extern_ptr = q;
}
#else
memcpy(s->extern_ptr, data, len * 4);
s->extern_ptr += len * 4;
#endif
}
CAMLexport void caml_serialize_block_8(void * data, intnat len)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 8 * len > s->extern_limit)
grow_extern_output(s, 8 * len);
#ifndef ARCH_BIG_ENDIAN
{
unsigned char * p;
char * q;
for (p = data, q = s->extern_ptr; len > 0; len--, p += 8, q += 8)
Reverse_64(q, p);
s->extern_ptr = q;
}
#else
memcpy(s->extern_ptr, data, len * 8);
s->extern_ptr += len * 8;
#endif
}
CAMLexport void caml_serialize_block_float_8(void * data, intnat len)
{
struct caml_extern_state* s = get_extern_state ();
if (s->extern_ptr + 8 * len > s->extern_limit) grow_extern_output(s, 8 * len);
#if ARCH_FLOAT_ENDIANNESS == 0x01234567
memcpy(s->extern_ptr, data, len * 8);
s->extern_ptr += len * 8;
#elif ARCH_FLOAT_ENDIANNESS == 0x76543210
{
unsigned char * p;
char * q;
for (p = data, q = s->extern_ptr; len > 0; len--, p += 8, q += 8)
Reverse_64(q, p);
s->extern_ptr = q;
}
#else
{
unsigned char * p;
char * q;
for (p = data, q = s->extern_ptr; len > 0; len--, p += 8, q += 8)
Permute_64(q, 0x01234567, p, ARCH_FLOAT_ENDIANNESS);
s->extern_ptr = q;
}
#endif
}
CAMLprim value caml_obj_reachable_words(value v)
{
intnat size;
struct extern_item * sp;
uintnat h = 0;
uintnat pos = 0;
struct caml_extern_state *s = init_extern_state ();
s->obj_counter = 0;
s->extern_flags = 0;
extern_init_position_table(s);
sp = s->extern_stack;
size = 0;
/* In Multicore OCaml, we don't distinguish between major heap blocks and
* out-of-heap blocks, so we end up counting out-of-heap blocks too. */
while (1) {
if (Is_long(v)) {
/* Tagged integers contribute 0 to the size, nothing to do */
} else if (extern_lookup_position(s, v, &pos, &h)) {
/* Already seen and counted, nothing to do */
} else {
header_t hd = Hd_val(v);
tag_t tag = Tag_hd(hd);
mlsize_t sz = Wosize_hd(hd);
/* Infix pointer: go back to containing closure */
if (tag == Infix_tag) {
v = v - Infix_offset_hd(hd);
continue;
}
/* Remember that we've visited this block */
extern_record_location(s, v, h);
/* The block contributes to the total size */
size += 1 + sz; /* header word included */
if (tag < No_scan_tag) {
/* i is the position of the first field to traverse recursively */
uintnat i =
tag == Closure_tag ? Start_env_closinfo(Closinfo_val(v)) : 0;
if (i < sz) {
if (i < sz - 1) {
/* Remember that we need to count fields i + 1 ... sz - 1 */
sp++;
if (sp >= s->extern_stack_limit)
sp = extern_resize_stack(s, sp);
sp->v = &Field(v, i + 1);
sp->count = sz - i - 1;
}
/* Continue with field i */
v = Field(v, i);
continue;
}
}
}
/* Pop one more item to traverse, if any */
if (sp == s->extern_stack) break;
v = *((sp->v)++);
if (--(sp->count) == 0) sp--;
}
extern_free_stack(s);
extern_free_position_table(s);
return Val_long(size);
}
|