1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <stdio.h>
#include <string.h>
#include "caml/alloc.h"
#include "caml/custom.h"
#include "caml/fail.h"
#include "caml/intext.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
/* Comparison resulting in -1,0,1, with type intnat,
without extra integer width conversion (GPR#2250). */
#define COMPARE_INT(v1, v2) \
(intnat)(v1 > v2) - (intnat)(v1 < v2)
static const char * parse_sign_and_base(const char * p,
/*out*/ int * base,
/*out*/ int * signedness,
/*out*/ int * sign)
{
*sign = 1;
if (*p == '-') {
*sign = -1;
p++;
} else if (*p == '+')
p++;
*base = 10; *signedness = 1;
if (*p == '0') {
switch (p[1]) {
case 'x': case 'X':
*base = 16; *signedness = 0; p += 2; break;
case 'o': case 'O':
*base = 8; *signedness = 0; p += 2; break;
case 'b': case 'B':
*base = 2; *signedness = 0; p += 2; break;
case 'u': case 'U':
*signedness = 0; p += 2; break;
}
}
return p;
}
static int parse_digit(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
else if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
else if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
else
return -1;
}
#define INT_ERRMSG "int_of_string"
#define INT32_ERRMSG "Int32.of_string"
#define INT64_ERRMSG "Int64.of_string"
#define INTNAT_ERRMSG "Nativeint.of_string"
static intnat parse_intnat(value s, int nbits, const char *errmsg)
{
const char * p;
uintnat res, threshold;
int sign, base, signedness, d;
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
threshold = CAML_UINTNAT_MAX / base;
d = parse_digit(*p);
if (d < 0 || d >= base) caml_failwith(errmsg);
for (p++, res = d; /*nothing*/; p++) {
char c = *p;
if (c == '_') continue;
d = parse_digit(c);
if (d < 0 || d >= base) break;
/* Detect overflow in multiplication base * res */
if (res > threshold) caml_failwith(errmsg);
res = base * res + d;
/* Detect overflow in addition (base * res) + d */
if (res < (uintnat) d) caml_failwith(errmsg);
}
if (p != String_val(s) + caml_string_length(s)){
caml_failwith(errmsg);
}
if (signedness) {
/* Signed representation expected, allow -2^(nbits-1) to 2^(nbits-1) - 1 */
if (sign >= 0) {
if (res >= (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
} else {
if (res > (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
}
} else {
/* Unsigned representation expected, allow 0 to 2^nbits - 1
and tolerate -(2^nbits - 1) to 0 */
if (nbits < sizeof(uintnat) * 8 && res >= (uintnat)1 << nbits)
caml_failwith(errmsg);
}
return sign < 0 ? -((intnat) res) : (intnat) res;
}
value caml_bswap16_direct(value x)
{
return ((((x & 0x00FF) << 8) |
((x & 0xFF00) >> 8)));
}
CAMLprim value caml_bswap16(value v)
{
intnat x = Int_val(v);
return (Val_int ((((x & 0x00FF) << 8) |
((x & 0xFF00) >> 8))));
}
/* Tagged integers */
CAMLprim value caml_int_compare(value v1, value v2)
{
return Val_long(COMPARE_INT(v1, v2));
}
CAMLprim value caml_int_of_string(value s)
{
return Val_long(parse_intnat(s, 8 * sizeof(value) - 1, INT_ERRMSG));
}
#define FORMAT_BUFFER_SIZE 32
static char parse_format(value fmt,
char * suffix,
char format_string[FORMAT_BUFFER_SIZE])
{
char * p;
char lastletter;
mlsize_t len, len_suffix;
/* Copy OCaml format fmt to format_string,
adding the suffix before the last letter of the format */
len = caml_string_length(fmt);
len_suffix = strlen(suffix);
if (len + len_suffix + 1 >= FORMAT_BUFFER_SIZE)
caml_invalid_argument("format_int: format too long");
memmove(format_string, String_val(fmt), len);
p = format_string + len - 1;
lastletter = *p;
/* Compress two-letter formats, ignoring the [lnL] annotation */
if (p[-1] == 'l' || p[-1] == 'n' || p[-1] == 'L') p--;
memmove(p, suffix, len_suffix); p += len_suffix;
*p++ = lastletter;
*p = 0;
/* Return the conversion type (last letter) */
return lastletter;
}
CAMLprim value caml_format_int(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
char conv;
value res;
conv = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
switch (conv) {
case 'u': case 'x': case 'X': case 'o':
res = caml_alloc_sprintf(format_string, Unsigned_long_val(arg));
break;
default:
res = caml_alloc_sprintf(format_string, Long_val(arg));
break;
}
return res;
}
/* 32-bit integers */
static int int32_cmp(value v1, value v2)
{
int32_t i1 = Int32_val(v1);
int32_t i2 = Int32_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat int32_hash(value v)
{
return Int32_val(v);
}
static void int32_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
caml_serialize_int_4(Int32_val(v));
*bsize_32 = *bsize_64 = 4;
}
static uintnat int32_deserialize(void * dst)
{
*((int32_t *) dst) = caml_deserialize_sint_4();
return 4;
}
static const struct custom_fixed_length int32_length = { 4, 4 };
CAMLexport const struct custom_operations caml_int32_ops = {
"_i",
custom_finalize_default,
int32_cmp,
int32_hash,
int32_serialize,
int32_deserialize,
custom_compare_ext_default,
&int32_length
};
CAMLexport value caml_copy_int32(int32_t i)
{
value res = caml_alloc_custom(&caml_int32_ops, 4, 0, 1);
Int32_val(res) = i;
return res;
}
CAMLprim value caml_int32_neg(value v)
{ return caml_copy_int32(- Int32_val(v)); }
CAMLprim value caml_int32_add(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) + Int32_val(v2)); }
CAMLprim value caml_int32_sub(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) - Int32_val(v2)); }
CAMLprim value caml_int32_mul(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) * Int32_val(v2)); }
CAMLprim value caml_int32_div(value v1, value v2)
{
int32_t dividend = Int32_val(v1);
int32_t divisor = Int32_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == INT32_MIN && divisor == -1) return v1;
return caml_copy_int32(dividend / divisor);
}
CAMLprim value caml_int32_mod(value v1, value v2)
{
int32_t dividend = Int32_val(v1);
int32_t divisor = Int32_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == INT32_MIN && divisor == -1) return caml_copy_int32(0);
return caml_copy_int32(dividend % divisor);
}
CAMLprim value caml_int32_and(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) & Int32_val(v2)); }
CAMLprim value caml_int32_or(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) | Int32_val(v2)); }
CAMLprim value caml_int32_xor(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) ^ Int32_val(v2)); }
CAMLprim value caml_int32_shift_left(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) << Int_val(v2)); }
CAMLprim value caml_int32_shift_right(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) >> Int_val(v2)); }
CAMLprim value caml_int32_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int32((uint32_t)Int32_val(v1) >> Int_val(v2)); }
static int32_t caml_swap32(int32_t x)
{
return (((x & 0x000000FF) << 24) |
((x & 0x0000FF00) << 8) |
((x & 0x00FF0000) >> 8) |
((x & 0xFF000000) >> 24));
}
value caml_int32_direct_bswap(value v)
{ return caml_swap32((int32_t) v); }
CAMLprim value caml_int32_bswap(value v)
{ return caml_copy_int32(caml_swap32(Int32_val(v))); }
CAMLprim value caml_int32_of_int(value v)
{ return caml_copy_int32((int32_t) Long_val(v)); }
CAMLprim value caml_int32_to_int(value v)
{ return Val_long(Int32_val(v)); }
int32_t caml_int32_of_float_unboxed(double x)
{ return (int32_t) x; }
CAMLprim value caml_int32_of_float(value v)
{ return caml_copy_int32((int32_t)(Double_val(v))); }
double caml_int32_to_float_unboxed(int32_t x)
{ return (double) x; }
CAMLprim value caml_int32_to_float(value v)
{ return caml_copy_double((double)(Int32_val(v))); }
intnat caml_int32_compare_unboxed(int32_t i1, int32_t i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_int32_compare(value v1, value v2)
{
return Val_int(caml_int32_compare_unboxed(Int32_val(v1),Int32_val(v2)));
}
CAMLprim value caml_int32_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INT32_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Int32_val(arg));
}
CAMLprim value caml_int32_of_string(value s)
{
return caml_copy_int32((int32_t) parse_intnat(s, 32, INT32_ERRMSG));
}
int32_t caml_int32_bits_of_float_unboxed(double d)
{
union { float f; int32_t i; } u;
u.f = (float) d;
return u.i;
}
double caml_int32_float_of_bits_unboxed(int32_t i)
{
union { float f; int32_t i; } u;
u.i = i;
return (double) u.f;
}
CAMLprim value caml_int32_bits_of_float(value vd)
{
return caml_copy_int32(caml_int32_bits_of_float_unboxed(Double_val(vd)));
}
CAMLprim value caml_int32_float_of_bits(value vi)
{
return caml_copy_double(caml_int32_float_of_bits_unboxed(Int32_val(vi)));
}
/* 64-bit integers */
#ifdef ARCH_ALIGN_INT64
CAMLexport int64_t caml_Int64_val(value v)
{
union { int32_t i[2]; int64_t j; } buffer;
buffer.i[0] = ((int32_t *) Data_custom_val(v))[0];
buffer.i[1] = ((int32_t *) Data_custom_val(v))[1];
return buffer.j;
}
#endif
static int int64_cmp(value v1, value v2)
{
int64_t i1 = Int64_val(v1);
int64_t i2 = Int64_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat int64_hash(value v)
{
int64_t x = Int64_val(v);
uint32_t lo = (uint32_t) x, hi = (uint32_t) (x >> 32);
return hi ^ lo;
}
static void int64_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
caml_serialize_int_8(Int64_val(v));
*bsize_32 = *bsize_64 = 8;
}
static uintnat int64_deserialize(void * dst)
{
#ifndef ARCH_ALIGN_INT64
*((int64_t *) dst) = caml_deserialize_sint_8();
#else
union { int32_t i[2]; int64_t j; } buffer;
buffer.j = caml_deserialize_sint_8();
((int32_t *) dst)[0] = buffer.i[0];
((int32_t *) dst)[1] = buffer.i[1];
#endif
return 8;
}
static const struct custom_fixed_length int64_length = { 8, 8 };
CAMLexport const struct custom_operations caml_int64_ops = {
"_j",
custom_finalize_default,
int64_cmp,
int64_hash,
int64_serialize,
int64_deserialize,
custom_compare_ext_default,
&int64_length
};
CAMLexport value caml_copy_int64(int64_t i)
{
value res = caml_alloc_custom(&caml_int64_ops, 8, 0, 1);
#ifndef ARCH_ALIGN_INT64
Int64_val(res) = i;
#else
union { int32_t i[2]; int64_t j; } buffer;
buffer.j = i;
((int32_t *) Data_custom_val(res))[0] = buffer.i[0];
((int32_t *) Data_custom_val(res))[1] = buffer.i[1];
#endif
return res;
}
CAMLprim value caml_int64_neg(value v)
{ return caml_copy_int64(- Int64_val(v)); }
CAMLprim value caml_int64_add(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) + Int64_val(v2)); }
CAMLprim value caml_int64_sub(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) - Int64_val(v2)); }
CAMLprim value caml_int64_mul(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) * Int64_val(v2)); }
CAMLprim value caml_int64_div(value v1, value v2)
{
int64_t dividend = Int64_val(v1);
int64_t divisor = Int64_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == INT64_MIN && divisor == -1) return v1;
return caml_copy_int64(dividend / divisor);
}
CAMLprim value caml_int64_mod(value v1, value v2)
{
int64_t dividend = Int64_val(v1);
int64_t divisor = Int64_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == INT64_MIN && divisor == -1){
return caml_copy_int64(0);
}
return caml_copy_int64(dividend % divisor);
}
CAMLprim value caml_int64_and(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) & Int64_val(v2)); }
CAMLprim value caml_int64_or(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) | Int64_val(v2)); }
CAMLprim value caml_int64_xor(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) ^ Int64_val(v2)); }
CAMLprim value caml_int64_shift_left(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) << Int_val(v2)); }
CAMLprim value caml_int64_shift_right(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) >> Int_val(v2)); }
CAMLprim value caml_int64_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int64((uint64_t) (Int64_val(v1)) >> Int_val(v2)); }
#ifdef ARCH_SIXTYFOUR
static value caml_swap64(value x)
{
return (((((x) & 0x00000000000000FF) << 56) |
(((x) & 0x000000000000FF00) << 40) |
(((x) & 0x0000000000FF0000) << 24) |
(((x) & 0x00000000FF000000) << 8) |
(((x) & 0x000000FF00000000) >> 8) |
(((x) & 0x0000FF0000000000) >> 24) |
(((x) & 0x00FF000000000000) >> 40) |
(((x) & 0xFF00000000000000) >> 56)));
}
value caml_int64_direct_bswap(value v)
{ return caml_swap64(v); }
#endif
CAMLprim value caml_int64_bswap(value v)
{
int64_t x = Int64_val(v);
return caml_copy_int64
(((x & 0x00000000000000FFULL) << 56) |
((x & 0x000000000000FF00ULL) << 40) |
((x & 0x0000000000FF0000ULL) << 24) |
((x & 0x00000000FF000000ULL) << 8) |
((x & 0x000000FF00000000ULL) >> 8) |
((x & 0x0000FF0000000000ULL) >> 24) |
((x & 0x00FF000000000000ULL) >> 40) |
((x & 0xFF00000000000000ULL) >> 56));
}
CAMLprim value caml_int64_of_int(value v)
{ return caml_copy_int64((int64_t) (Long_val(v))); }
CAMLprim value caml_int64_to_int(value v)
{ return Val_long((intnat) (Int64_val(v))); }
int64_t caml_int64_of_float_unboxed(double x)
{ return (int64_t) x; }
CAMLprim value caml_int64_of_float(value v)
{ return caml_copy_int64((int64_t) (Double_val(v))); }
double caml_int64_to_float_unboxed(int64_t x)
{ return (double) x; }
CAMLprim value caml_int64_to_float(value v)
{ return caml_copy_double((double) (Int64_val(v))); }
CAMLprim value caml_int64_of_int32(value v)
{ return caml_copy_int64((int64_t) (Int32_val(v))); }
CAMLprim value caml_int64_to_int32(value v)
{ return caml_copy_int32((int32_t) (Int64_val(v))); }
CAMLprim value caml_int64_of_nativeint(value v)
{ return caml_copy_int64((int64_t) (Nativeint_val(v))); }
CAMLprim value caml_int64_to_nativeint(value v)
{ return caml_copy_nativeint((intnat) (Int64_val(v))); }
intnat caml_int64_compare_unboxed(int64_t i1, int64_t i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_int64_compare(value v1, value v2)
{
return Val_int(caml_int64_compare_unboxed(Int64_val(v1),Int64_val(v2)));
}
CAMLprim value caml_int64_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INT64_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Int64_val(arg));
}
CAMLprim value caml_int64_of_string(value s)
{
const char * p;
uint64_t res, threshold;
int sign, base, signedness, d;
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
threshold = ((uint64_t) -1) / base;
d = parse_digit(*p);
if (d < 0 || d >= base) caml_failwith(INT64_ERRMSG);
res = d;
for (p++; /*nothing*/; p++) {
char c = *p;
if (c == '_') continue;
d = parse_digit(c);
if (d < 0 || d >= base) break;
/* Detect overflow in multiplication base * res */
if (res > threshold) caml_failwith(INT64_ERRMSG);
res = base * res + d;
/* Detect overflow in addition (base * res) + d */
if (res < (uint64_t) d) caml_failwith(INT64_ERRMSG);
}
if (p != String_val(s) + caml_string_length(s)){
caml_failwith(INT64_ERRMSG);
}
if (signedness) {
/* Signed representation expected, allow -2^63 to 2^63 - 1 only */
if (sign >= 0) {
if (res >= (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
} else {
if (res > (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
}
}
if (sign < 0) res = -(int64_t)res;
return caml_copy_int64(res);
}
int64_t caml_int64_bits_of_float_unboxed(double d)
{
union { double d; int64_t i; int32_t h[2]; } u;
u.d = d;
#if defined(__arm__) && !defined(__ARM_EABI__)
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
return u.i;
}
double caml_int64_float_of_bits_unboxed(int64_t i)
{
union { double d; int64_t i; int32_t h[2]; } u;
u.i = i;
#if defined(__arm__) && !defined(__ARM_EABI__)
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
return u.d;
}
CAMLprim value caml_int64_bits_of_float(value vd)
{
return caml_copy_int64(caml_int64_bits_of_float_unboxed(Double_val(vd)));
}
CAMLprim value caml_int64_float_of_bits(value vi)
{
return caml_copy_double(caml_int64_float_of_bits_unboxed(Int64_val(vi)));
}
/* Native integers */
static int nativeint_cmp(value v1, value v2)
{
intnat i1 = Nativeint_val(v1);
intnat i2 = Nativeint_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat nativeint_hash(value v)
{
intnat n = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
/* 32/64 bits compatibility trick. See explanations in file "hash.c",
function caml_hash_mix_intnat. */
return (n >> 32) ^ (n >> 63) ^ n;
#else
return n;
#endif
}
static void nativeint_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
intnat l = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
if ((intnat)INT32_MIN <= l && l <= (intnat)INT32_MAX) {
caml_serialize_int_1(1);
caml_serialize_int_4((int32_t) l);
} else {
caml_serialize_int_1(2);
caml_serialize_int_8(l);
}
#else
caml_serialize_int_1(1);
caml_serialize_int_4(l);
#endif
*bsize_32 = 4;
*bsize_64 = 8;
}
static uintnat nativeint_deserialize(void * dst)
{
switch (caml_deserialize_uint_1()) {
case 1:
*((intnat *) dst) = caml_deserialize_sint_4();
break;
case 2:
#ifdef ARCH_SIXTYFOUR
*((intnat *) dst) = caml_deserialize_sint_8();
#else
caml_deserialize_error("input_value: native integer value too large");
#endif
break;
default:
caml_deserialize_error("input_value: ill-formed native integer");
}
return sizeof(intnat);
}
static const struct custom_fixed_length nativeint_length = { 4, 8 };
CAMLexport const struct custom_operations caml_nativeint_ops = {
"_n",
custom_finalize_default,
nativeint_cmp,
nativeint_hash,
nativeint_serialize,
nativeint_deserialize,
custom_compare_ext_default,
&nativeint_length
};
CAMLexport value caml_copy_nativeint(intnat i)
{
value res = caml_alloc_custom(&caml_nativeint_ops, sizeof(intnat), 0, 1);
Nativeint_val(res) = i;
return res;
}
CAMLprim value caml_nativeint_neg(value v)
{ return caml_copy_nativeint(- Nativeint_val(v)); }
CAMLprim value caml_nativeint_add(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) + Nativeint_val(v2)); }
CAMLprim value caml_nativeint_sub(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) - Nativeint_val(v2)); }
CAMLprim value caml_nativeint_mul(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) * Nativeint_val(v2)); }
CAMLprim value caml_nativeint_div(value v1, value v2)
{
intnat dividend = Nativeint_val(v1);
intnat divisor = Nativeint_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == CAML_INTNAT_MIN && divisor == -1) return v1;
return caml_copy_nativeint(dividend / divisor);
}
CAMLprim value caml_nativeint_mod(value v1, value v2)
{
intnat dividend = Nativeint_val(v1);
intnat divisor = Nativeint_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == CAML_INTNAT_MIN && divisor == -1){
return caml_copy_nativeint(0);
}
return caml_copy_nativeint(dividend % divisor);
}
CAMLprim value caml_nativeint_and(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) & Nativeint_val(v2)); }
CAMLprim value caml_nativeint_or(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) | Nativeint_val(v2)); }
CAMLprim value caml_nativeint_xor(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) ^ Nativeint_val(v2)); }
CAMLprim value caml_nativeint_shift_left(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) << Int_val(v2)); }
CAMLprim value caml_nativeint_shift_right(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) >> Int_val(v2)); }
CAMLprim value caml_nativeint_shift_right_unsigned(value v1, value v2)
{ return caml_copy_nativeint((uintnat)Nativeint_val(v1) >> Int_val(v2)); }
value caml_nativeint_direct_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
return caml_swap64(v);
#else
return caml_swap32(v);
#endif
}
CAMLprim value caml_nativeint_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
return caml_copy_nativeint(caml_swap64(Nativeint_val(v)));
#else
return caml_copy_nativeint(caml_swap32(Nativeint_val(v)));
#endif
}
CAMLprim value caml_nativeint_of_int(value v)
{ return caml_copy_nativeint(Long_val(v)); }
CAMLprim value caml_nativeint_to_int(value v)
{ return Val_long(Nativeint_val(v)); }
intnat caml_nativeint_of_float_unboxed(double x)
{ return (intnat) x; }
CAMLprim value caml_nativeint_of_float(value v)
{ return caml_copy_nativeint((intnat)(Double_val(v))); }
double caml_nativeint_to_float_unboxed(intnat x)
{ return (double) x; }
CAMLprim value caml_nativeint_to_float(value v)
{ return caml_copy_double((double)(Nativeint_val(v))); }
CAMLprim value caml_nativeint_of_int32(value v)
{ return caml_copy_nativeint(Int32_val(v)); }
CAMLprim value caml_nativeint_to_int32(value v)
{ return caml_copy_int32((int32_t) Nativeint_val(v)); }
intnat caml_nativeint_compare_unboxed(intnat i1, intnat i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_nativeint_compare(value v1, value v2)
{
return Val_int(caml_nativeint_compare_unboxed(Nativeint_val(v1),
Nativeint_val(v2)));
}
CAMLprim value caml_nativeint_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Nativeint_val(arg));
}
CAMLprim value caml_nativeint_of_string(value s)
{
return caml_copy_nativeint(parse_intnat(s, 8 * sizeof(value), INTNAT_ERRMSG));
}
|