1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include "caml/addrmap.h"
#include "caml/config.h"
#include "caml/codefrag.h"
#include "caml/domain.h"
#include "caml/runtime_events.h"
#include "caml/fail.h"
#include "caml/fiber.h"
#include "caml/finalise.h"
#include "caml/globroots.h"
#include "caml/gc_stats.h"
#include "caml/memory.h"
#include "caml/memprof.h"
#include "caml/mlvalues.h"
#include "caml/platform.h"
#include "caml/roots.h"
#include "caml/signals.h"
#include "caml/shared_heap.h"
#include "caml/startup_aux.h"
#include "caml/weak.h"
/* NB the MARK_STACK_INIT_SIZE must be larger than the number of objects
that can be in a pool, see POOL_WSIZE */
#define MARK_STACK_INIT_SIZE (1 << 12)
/* The mark stack consists of two parts:
1. the stack - a dynamic array of spans of fields that need to be marked, and
2. the compressed stack - a bitset of fields that need to be marked.
The stack is bounded relative to the heap size. When the stack
overflows the bound, then entries from the stack are compressed and
transferred into the compressed stack, expect for "large" entries,
spans of more than BITS_PER_WORD entries, that are more compactly
represented as spans and remain on the uncompressed stack.
When the stack is empty, the compressed stack is processed.
The compressed stack iterator marks the point up to which
compressed stack entries have already been processed.
*/
typedef struct {
value_ptr start;
value_ptr end;
} mark_entry; /* represents fields in the span [start, end) */
struct mark_stack {
mark_entry* stack;
uintnat count;
uintnat size;
struct addrmap compressed_stack;
addrmap_iterator compressed_stack_iter;
};
/* Default speed setting for the major GC. */
uintnat caml_percent_free = Percent_free_def;
/* This variable is only written with the world stopped, so it need not be
atomic */
uintnat caml_major_cycles_completed = 0;
/* [num_domains_to_sweep] records the number of domains to sweep in the current
major cycle. The number is set to the [num_domains_in_stw] at the start of
the cycle and _strictly decreases_ to 0.
Domains created in a given cycle will not have any sweep work in that cycle.
Sweep changes GARBAGE coloured objects in the domain's own pools to FREE
(not a distinct colour; object header is set to 0) and adds them to the free
list. No object will have the GARBAGE colour in the domain's own pools since
the domain starts with an empty pool with no objects and new objects are
allocated with colour MARKED. Hence, they do not affect
[num_domains_to_sweep].
Terminating domains terminate after sweeping is complete for their domain.
*/
static atomic_uintnat num_domains_to_sweep;
/* [num_domains_to_mark] records the number of domains to mark in the current
major cycle. The number is set to the [num_domains_in_stw] at the start of
the cycle. The value of [num_domains_to_mark] may decrease or increase.
[num_domains_to_mark] may grow larger than the value of [num_domains_in_stw]
at the start of the cycle. This is because [caml_modify] may push a block
into a potentially empty mark stack of the newly spawned domain.
Terminating domains empty their mark stack before terminating. */
static atomic_uintnat num_domains_to_mark;
/* [num_domains_to_ephe_sweep] is set to the [participating_count] at the start
of the [Phase_sweep_ephe] and strictly decreases. */
static atomic_uintnat num_domains_to_ephe_sweep;
/* [num_domains_to_final_update_first] and [num_domains_to_final_update_last]
are initialised to [num_domains_in_stw] at the start of the cycle. Whenever
a domain finishes processing its first or last finalisers, it decrements the
appropriate counter.
Newly created domains increment both the counters. Terminating domain
orphans its finalisers and then decrements the counters. See
[caml_final_domain_terminate]. */
static atomic_uintnat num_domains_to_final_update_first;
static atomic_uintnat num_domains_to_final_update_last;
/* When domains terminate, they will orphan their finalisers. As mentioned in
the comment attached to [num_domains_to_final_update_*] counters, a domain
will decrement the counters when the corresponding finalisers are processed
for that domain. We would like to preserve this invariant when adopting
orphaned finalisers. To this end, we orphan and adopt finalisers only in
[Phase_sweep_and_mark_main] when [num_domains_to_final_update_*] counters
have not been decremented for the domain yet.
[num_domains_orphaning_finalisers] keeps a count of the number of domains
currently orphaning finalisers. This counter is only used in the
[Phase_sweep_and_mark_main] to determine whether to proceed to
[Phase_mark_final]. If domains are currently orphaning finalisers, we remain
in [Phase_sweep_and_mark_main] so that the orphaned finalisers can be
adopted before moving onto [Phase_mark_final] where the [GC.finalise]
(finalise first) finalisers are processed. */
static atomic_uintnat num_domains_orphaning_finalisers = 0;
/* These two counters keep track of how much work the GC is supposed to
do in order to keep up with allocation. Both are in GC work units.
`alloc_counter` increases when we allocate: the number of words allocated
is converted to GC work units and added to this counter.
`work_counter` increases when the GC has done some work.
The difference between the two is how much the GC is lagging behind
(or in advance of) allocations.
These counters can wrap around (see function `diffmod`) as long as they
don't get too far apart, which is guaranteed by the limited size of
memory.
*/
static atomic_uintnat alloc_counter;
static atomic_uintnat work_counter;
enum global_roots_status{
WORK_UNSTARTED,
WORK_STARTED
};
static atomic_uintnat domain_global_roots_started;
gc_phase_t caml_gc_phase;
/* The caml_gc_phase global is only ever updated at the end of the STW
section, by the last domain leaving a barrier. This means that no
synchronization is required on most accesses.
We know of two situations in the runtime that could run in parallel
with a phase update, and cannot safely access the gc phase:
- The domain_terminate logic runs after the thread has un-registered
itself as a STW participant, so it may race with a STW section.
- Opportunistic collections may happen while a domain is waiting on
a STW barrier, so it might race with the code running inside
another in-STW barrier. (It is possible that a deeper analysis of
the current runtime code would in fact rule out such a race, but
it is simpler to avoid phase accesses during opportunistic
collections.)
*/
Caml_inline char caml_gc_phase_char(int may_access_gc_phase) {
if (!may_access_gc_phase)
return 'U';
switch (caml_gc_phase) {
case Phase_sweep_and_mark_main:
return 'M';
case Phase_mark_final:
return 'F';
case Phase_sweep_ephe:
return 'E';
default:
return 'U';
}
}
extern value caml_ephe_none; /* See weak.c */
static struct ephe_cycle_info_t {
atomic_uintnat num_domains_todo;
/* Number of domains that need to scan their ephemerons in the current major
* GC cycle. This field is decremented when ephe_info->todo list at a domain
* becomes empty. */
atomic_uintnat ephe_cycle;
/* Ephemeron cycle count */
atomic_uintnat num_domains_done;
/* Number of domains that have marked their ephemerons in the current
* ephemeron cycle. */
} ephe_cycle_info;
/* In the first major cycle, there is no ephemeron marking to be done. */
/* ephe_cycle_info is always updated with the critical section protected by
* ephe_lock or in the global barrier. However, the fields may be read without
* the lock. */
static caml_plat_mutex ephe_lock = CAML_PLAT_MUTEX_INITIALIZER;
#define PREFETCH_BUFFER_SIZE (1 << 8)
#define PREFETCH_BUFFER_MIN 64 /* keep pb at least this full */
#define PREFETCH_BUFFER_MASK (PREFETCH_BUFFER_SIZE - 1)
typedef struct prefetch_buffer {
uintnat enqueued;
uintnat dequeued;
uintnat waterline;
value buffer[PREFETCH_BUFFER_SIZE];
} prefetch_buffer_t;
Caml_inline bool pb_full(const prefetch_buffer_t *pb)
{
return pb->enqueued == (pb->dequeued + PREFETCH_BUFFER_SIZE);
}
Caml_inline uintnat pb_size(const prefetch_buffer_t *pb)
{
return pb->enqueued - pb->dequeued;
}
Caml_inline bool pb_above_waterline(const prefetch_buffer_t *pb)
{
return ((pb->enqueued - pb->dequeued) > pb->waterline);
}
Caml_inline void pb_drain_mode(prefetch_buffer_t *pb)
{
pb->waterline = 0;
}
Caml_inline void pb_fill_mode(prefetch_buffer_t *pb)
{
pb->waterline = PREFETCH_BUFFER_MIN;
}
Caml_inline void pb_push(prefetch_buffer_t* pb, value v)
{
CAMLassert(Is_block(v));
CAMLassert(!Is_young(v));
CAMLassert(v != Debug_free_major);
CAMLassert(pb->enqueued < pb->dequeued + PREFETCH_BUFFER_SIZE);
pb->buffer[pb->enqueued & PREFETCH_BUFFER_MASK] = v;
pb->enqueued += 1;
}
Caml_inline value pb_pop(prefetch_buffer_t *pb)
{
CAMLassert(pb->enqueued > pb->dequeued);
value v = pb->buffer[pb->dequeued & PREFETCH_BUFFER_MASK];
pb->dequeued += 1;
return v;
}
Caml_inline void prefetch_block(value v)
{
/* Prefetch a block so that scanning it later avoids cache misses.
We will access at least the header, but we don't yet know how
many of the fields we will access - the block might be already
marked, not scannable, or very short. The compromise here is to
prefetch the header and the first few fields.
We issue two prefetches, with the second being a few words ahead
of the first. Most of the time, these will land in the same
cacheline, be coalesced by hardware, and so not cost any more
than a single prefetch. Two memory operations are issued only
when the two prefetches land in different cachelines.
In the case where the block is not already in cache, and yet is
already marked, not markable, or extremely short, then we waste
somewhere between 1/8-1/2 of a prefetch operation (in expectation,
depending on alignment, word size, and cache line size), which is
cheap enough to make this worthwhile. */
caml_prefetch((const void *)Hp_val(v));
caml_prefetch((const void *)&Field(v, 3));
}
static void ephe_next_cycle (void)
{
caml_plat_lock_blocking(&ephe_lock);
atomic_fetch_add(&ephe_cycle_info.ephe_cycle, +1);
CAMLassert(atomic_load_acquire(&ephe_cycle_info.num_domains_done) <=
atomic_load_acquire(&ephe_cycle_info.num_domains_todo));
atomic_store(&ephe_cycle_info.num_domains_done, 0);
caml_plat_unlock(&ephe_lock);
}
static void ephe_todo_list_emptied (void)
{
caml_plat_lock_blocking(&ephe_lock);
/* Force next ephemeron marking cycle in order to avoid reasoning about
* whether the domain has already incremented
* [ephe_cycle_info.num_domains_done] counter. */
atomic_store(&ephe_cycle_info.num_domains_done, 0);
atomic_fetch_add(&ephe_cycle_info.ephe_cycle, +1);
/* Since the todo list is empty, this domain does not need to participate in
* further ephemeron cycles. */
atomic_fetch_sub(&ephe_cycle_info.num_domains_todo, 1);
CAMLassert(atomic_load_acquire(&ephe_cycle_info.num_domains_done) <=
atomic_load_acquire(&ephe_cycle_info.num_domains_todo));
caml_plat_unlock(&ephe_lock);
}
/* Record that ephemeron marking was done for the given ephemeron cycle. */
static void record_ephe_marking_done (uintnat ephe_cycle)
{
CAMLassert (ephe_cycle <= atomic_load_acquire(&ephe_cycle_info.ephe_cycle));
CAMLassert (Caml_state->marking_done);
if (ephe_cycle < atomic_load_acquire(&ephe_cycle_info.ephe_cycle))
return;
caml_plat_lock_blocking(&ephe_lock);
if (ephe_cycle == atomic_load(&ephe_cycle_info.ephe_cycle)) {
Caml_state->ephe_info->cycle = ephe_cycle;
atomic_fetch_add(&ephe_cycle_info.num_domains_done, +1);
CAMLassert(atomic_load_acquire(&ephe_cycle_info.num_domains_done) <=
atomic_load_acquire(&ephe_cycle_info.num_domains_todo));
}
caml_plat_unlock(&ephe_lock);
}
/*******************************************************************************
* Orphaning and adoption
******************************************************************************/
/* These are biased data structures left over from terminating domains.
Synchronization:
- operations that mutate the structure
(adding new orphaned values or adopting orphans)
are protected from each other using [orphaned_lock];
this is simpler than using atomic lists, and not performance-sensitive
- the read-only function [no_orphaned_work()] uses atomic accesses
to avoid taking a lock (it is called more often)
*/
static struct {
value _Atomic ephe_list_live;
struct caml_final_info * _Atomic final_info;
} orph_structs = {0, NULL};
static caml_plat_mutex orphaned_lock = CAML_PLAT_MUTEX_INITIALIZER;
Caml_inline value ephe_list_tail(value e)
{
value last = 0;
while (e != 0) {
CAMLassert (Tag_val(e) == Abstract_tag);
last = e;
e = Ephe_link(e);
}
return last;
}
#ifdef DEBUG
static void orph_ephe_list_verify_status (int status)
{
value v;
v = orph_structs.ephe_list_live;
while (v) {
CAMLassert (Tag_val(v) == Abstract_tag);
CAMLassert (Has_status_val(v, status));
v = Ephe_link(v);
}
}
#endif
#define EPHE_MARK_DEFAULT 0
#define EPHE_MARK_FORCE_ALIVE 1
static intnat ephe_mark (intnat budget, uintnat for_cycle, int force_alive);
void caml_orphan_ephemerons (caml_domain_state* domain_state)
{
struct caml_ephe_info* ephe_info = domain_state->ephe_info;
if (ephe_info->todo == 0 &&
ephe_info->live == 0 &&
ephe_info->must_sweep_ephe == 0)
return;
/* Force all ephemerons and their data on todo list to be alive */
if (ephe_info->todo) {
while (ephe_info->todo) {
ephe_mark (100000, 0, EPHE_MARK_FORCE_ALIVE);
}
ephe_todo_list_emptied ();
}
CAMLassert (ephe_info->todo == 0);
if (ephe_info->live) {
value live_tail = ephe_list_tail(ephe_info->live);
CAMLassert(Ephe_link(live_tail) == 0);
caml_plat_lock_blocking(&orphaned_lock);
Ephe_link(live_tail) = orph_structs.ephe_list_live;
orph_structs.ephe_list_live = ephe_info->live;
ephe_info->live = 0;
caml_plat_unlock(&orphaned_lock);
}
if (ephe_info->must_sweep_ephe) {
ephe_info->must_sweep_ephe = 0;
atomic_fetch_add_verify_ge0(&num_domains_to_ephe_sweep, -1);
}
CAMLassert (ephe_info->must_sweep_ephe == 0);
CAMLassert (ephe_info->live == 0);
CAMLassert (ephe_info->todo == 0);
}
void caml_orphan_finalisers (caml_domain_state* domain_state)
{
struct caml_final_info* f = domain_state->final_info;
if (f->todo_head != NULL || f->first.size != 0 || f->last.size != 0) {
/* have some final structures */
atomic_fetch_add(&num_domains_orphaning_finalisers, +1);
if (caml_gc_phase != Phase_sweep_and_mark_main) {
/* Force a major GC cycle to simplify constraints for orphaning
finalisers. See note attached to the declaration of
[num_domains_orphaning_finalisers] variable in major_gc.c */
caml_finish_major_cycle(0);
}
CAMLassert(caml_gc_phase == Phase_sweep_and_mark_main);
CAMLassert (!f->updated_first);
CAMLassert (!f->updated_last);
/* Add the finalisers to [orph_structs] */
caml_plat_lock_blocking(&orphaned_lock);
f->next = orph_structs.final_info;
orph_structs.final_info = f;
caml_plat_unlock(&orphaned_lock);
/* Create a dummy final info */
f = domain_state->final_info = caml_alloc_final_info();
atomic_fetch_add_verify_ge0(&num_domains_orphaning_finalisers, -1);
}
/* [caml_orphan_finalisers] is called in a while loop in [domain_terminate].
We take care to decrement the [num_domains_to_final_update*] counters only
if we have not already decremented it for the current cycle. */
if(!f->updated_first) {
atomic_fetch_add_verify_ge0(&num_domains_to_final_update_first, -1);
f->updated_first = 1;
}
if(!f->updated_last) {
atomic_fetch_add_verify_ge0(&num_domains_to_final_update_last, -1);
f->updated_last = 1;
}
}
static int no_orphaned_work (void)
{
return
atomic_load_acquire(&orph_structs.ephe_list_live) == 0 &&
atomic_load_acquire(&orph_structs.final_info) == NULL;
}
static void adopt_orphaned_work (void)
{
caml_domain_state* domain_state = Caml_state;
value orph_ephe_list_live, last;
struct caml_final_info *f, *myf, *temp;
if (no_orphaned_work() || caml_domain_is_terminating())
return;
caml_plat_lock_blocking(&orphaned_lock);
orph_ephe_list_live = orph_structs.ephe_list_live;
orph_structs.ephe_list_live = 0;
f = orph_structs.final_info;
orph_structs.final_info = NULL;
caml_plat_unlock(&orphaned_lock);
if (orph_ephe_list_live) {
last = ephe_list_tail(orph_ephe_list_live);
CAMLassert(Ephe_link(last) == 0);
Ephe_link(last) = domain_state->ephe_info->live;
domain_state->ephe_info->live = orph_ephe_list_live;
}
while (f != NULL) {
myf = domain_state->final_info;
CAMLassert (caml_gc_phase == Phase_sweep_and_mark_main);
/* Since we are in [Phase_sweep_and_mark_main], the current domain has not
updated its finalisers. */
CAMLassert (!myf->updated_first);
CAMLassert (!myf->updated_last);
if (f->todo_head) {
/* Adopt the finalising set. */
if (myf->todo_tail == NULL) {
CAMLassert(myf->todo_head == NULL);
myf->todo_head = f->todo_head;
myf->todo_tail = f->todo_tail;
} else {
myf->todo_tail->next = f->todo_head;
myf->todo_tail = f->todo_tail;
}
}
/* Adopt the finalisable set */
if (f->first.young > 0) {
caml_final_merge_finalisable (&f->first, &myf->first);
}
if (f->last.young > 0) {
caml_final_merge_finalisable (&f->last, &myf->last);
}
temp = f;
f = f->next;
caml_stat_free (temp);
}
}
static inline intnat max2 (intnat a, intnat b)
{
if (a > b){
return a;
}else{
return b;
}
}
static inline intnat min2 (intnat a, intnat b)
{
if (a < b){
return a;
}else{
return b;
}
}
static inline intnat max3(intnat a, intnat b, intnat c)
{
if (a > b){
return max2 (a, c);
}else{
return max2 (b, c);
}
}
/* Take two natural numbers n1 and n2 and let N = 2^{64}.
Assume that n1 and n2 are not too far apart (less than N/2).
Given unsigned numbers x1 = n1 modulo N and x2 = n2 modulo N, return
the (signed) difference between n1 and n2.
*/
static inline intnat diffmod (uintnat x1, uintnat x2)
{
return (intnat) (x1 - x2);
}
/* The [log_events] parameter is used to disable writing to the ring for two
reasons:
1. To prevent spamming the ring with numerous events generated during
an opportunistic GC slice.
2. To avoid logging events when the calling domain is not part of the
Stop-The-World (STW) participant set. If the domain is not part of
the STW set, the ring could be torn down concurrently while this domain
attempts to write to it. */
static void
update_major_slice_work(intnat howmuch,
int may_access_gc_phase,
int log_events /* log events to the ring? */)
{
intnat alloc_work, dependent_work, extra_work, new_work;
intnat my_alloc_count, my_alloc_direct_count, my_dependent_count;
double my_extra_count;
caml_domain_state *dom_st = Caml_state;
uintnat heap_words, heap_size, heap_sweep_words, total_cycle_work;
my_alloc_count = dom_st->allocated_words;
my_alloc_direct_count = dom_st->allocated_words_direct;
my_dependent_count = dom_st->dependent_allocated;
my_extra_count = dom_st->extra_heap_resources;
dom_st->stat_major_words += dom_st->allocated_words;
dom_st->allocated_words = 0;
dom_st->allocated_words_direct = 0;
dom_st->dependent_allocated = 0;
dom_st->extra_heap_resources = 0.0;
/*
Free memory at the start of the GC cycle (garbage + free list) (assumed):
FM = heap_words * caml_percent_free
/ (100 + caml_percent_free)
Assuming steady state and enforcing a constant allocation rate, then
FM is divided in 2/3 for garbage and 1/3 for free list.
G = 2 * FM / 3
G is also the amount of memory that will be used during this cycle
(still assuming steady state).
Proportion of G consumed since the previous slice:
PH = dom_st->allocated_words / G
= dom_st->allocated_words * 3 * (100 + caml_percent_free)
/ (2 * heap_words * caml_percent_free)
Proportion of extra-heap resources consumed since the previous slice:
PE = dom_st->extra_heap_resources
Proportion of total work to do in this slice:
P = max (PH, PE)
Amount of marking work for the GC cycle:
MW = heap_words * 100 / (100 + caml_percent_free)
Amount of sweeping work for the GC cycle:
SW = heap_sweep_words
Amount of total work for the GC cycle:
TW = MW + SW
= heap_words * 100 / (100 + caml_percent_free) + heap_sweep_words
Amount of time to spend on this slice:
T = P * TT
Since we must do TW amount of work in TT time, the amount of work done
for this slice is:
S = P * TW
*/
heap_size = caml_heap_size(dom_st->shared_heap);
heap_words = Wsize_bsize(heap_size);
heap_sweep_words = heap_words;
total_cycle_work =
heap_sweep_words
+ (uintnat) ((double) heap_words * 100.0 / (100.0 + caml_percent_free));
if (heap_words > 0) {
double alloc_ratio =
total_cycle_work
* 3.0 * (100 + caml_percent_free)
/ heap_words / caml_percent_free / 2.0;
alloc_work = (intnat) (my_alloc_count * alloc_ratio);
} else {
alloc_work = 0;
}
if (dom_st->dependent_size > 0) {
double dependent_ratio =
total_cycle_work
* (100 + caml_percent_free)
/ (double)dom_st->dependent_size / (double)caml_percent_free;
dependent_work = (intnat) (my_dependent_count * dependent_ratio);
}else{
dependent_work = 0;
}
extra_work = (intnat) (my_extra_count * (double) total_cycle_work);
caml_gc_message (0x40, "heap_words = %"
ARCH_INTNAT_PRINTF_FORMAT "u\n",
(uintnat)heap_words);
caml_gc_message (0x40, "allocated_words = %"
ARCH_INTNAT_PRINTF_FORMAT "u\n",
my_alloc_count);
caml_gc_message (0x40, "allocated_words_direct = %"
ARCH_INTNAT_PRINTF_FORMAT "u\n",
my_alloc_direct_count);
caml_gc_message (0x40, "alloc work-to-do = %"
ARCH_INTNAT_PRINTF_FORMAT "d\n",
alloc_work);
caml_gc_message (0x40, "dependent_words = %"
ARCH_INTNAT_PRINTF_FORMAT "u\n",
my_dependent_count);
caml_gc_message (0x40, "dependent work-to-do = %"
ARCH_INTNAT_PRINTF_FORMAT "d\n",
dependent_work);
caml_gc_message (0x40, "extra_heap_resources = %"
ARCH_INTNAT_PRINTF_FORMAT "uu\n",
(uintnat) (my_extra_count * 1000000));
caml_gc_message (0x40, "extra work-to-do = %"
ARCH_INTNAT_PRINTF_FORMAT "d\n",
extra_work);
new_work = max3 (alloc_work, dependent_work, extra_work);
atomic_fetch_add (&work_counter, dom_st->major_work_done_between_slices);
dom_st->major_work_done_between_slices = 0;
atomic_fetch_add (&alloc_counter, new_work);
if (howmuch == AUTO_TRIGGERED_MAJOR_SLICE ||
howmuch == GC_CALCULATE_MAJOR_SLICE) {
dom_st->slice_target = atomic_load (&alloc_counter);
dom_st->slice_budget = 0;
}else{
/* forced or opportunistic GC slice with explicit quantity */
dom_st->slice_target = atomic_load (&work_counter); /* already reached */
dom_st->slice_budget = howmuch;
}
caml_gc_log("Updated major work: [%c] "
" %"ARCH_INTNAT_PRINTF_FORMAT "u heap_words, "
" %"ARCH_INTNAT_PRINTF_FORMAT "u allocated, "
" %"ARCH_INTNAT_PRINTF_FORMAT "d alloc_work, "
" %"ARCH_INTNAT_PRINTF_FORMAT "d dependent_work, "
" %"ARCH_INTNAT_PRINTF_FORMAT "d extra_work, "
" %"ARCH_INTNAT_PRINTF_FORMAT "u work counter %s, "
" %"ARCH_INTNAT_PRINTF_FORMAT "u alloc counter, "
" %"ARCH_INTNAT_PRINTF_FORMAT "u slice target, "
" %"ARCH_INTNAT_PRINTF_FORMAT "d slice budget"
,
caml_gc_phase_char(may_access_gc_phase),
(uintnat)heap_words, my_alloc_count,
alloc_work, dependent_work, extra_work,
atomic_load (&work_counter),
atomic_load (&work_counter) > atomic_load (&alloc_counter)
? "[ahead]" : "[behind]",
atomic_load (&alloc_counter),
dom_st->slice_target, dom_st->slice_budget
);
if (log_events) {
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_WORDS, (uintnat)heap_words);
CAML_EV_COUNTER(EV_C_MAJOR_ALLOCATED_WORDS, my_alloc_count);
CAML_EV_COUNTER(EV_C_MAJOR_ALLOCATED_WORK, alloc_work);
CAML_EV_COUNTER(EV_C_MAJOR_DEPENDENT_WORK, dependent_work);
CAML_EV_COUNTER(EV_C_MAJOR_EXTRA_WORK, extra_work);
CAML_EV_COUNTER(EV_C_MAJOR_WORK_COUNTER, atomic_load (&work_counter));
CAML_EV_COUNTER(EV_C_MAJOR_ALLOC_COUNTER, atomic_load (&alloc_counter));
CAML_EV_COUNTER(EV_C_MAJOR_SLICE_TARGET, dom_st->slice_target);
CAML_EV_COUNTER(EV_C_MAJOR_SLICE_BUDGET, dom_st->slice_budget);
}
}
#define Chunk_size 0x4000
typedef enum {
Slice_uninterruptible,
Slice_interruptible,
Slice_opportunistic
} collection_slice_mode;
static intnat get_major_slice_work(collection_slice_mode mode){
caml_domain_state *dom_st = Caml_state;
if (mode == Slice_interruptible && caml_incoming_interrupts_queued())
return 0;
/* calculate how much work remains to do for this slice */
intnat budget =
max2 (diffmod (dom_st->slice_target, atomic_load (&work_counter)),
dom_st->slice_budget);
return min2(budget, Chunk_size);
}
/* Register the work done by a chunk of slice.
Clear requested_global_major_slice if the work counter has caught up with
the slice's target counter. */
static void commit_major_slice_work(intnat words_done) {
caml_domain_state *dom_st = Caml_state;
caml_gc_log ("Commit major slice work: "
" %"ARCH_INTNAT_PRINTF_FORMAT"d words_done, ",
words_done);
dom_st->slice_budget -= words_done;
atomic_fetch_add (&work_counter, words_done);
if (diffmod (dom_st->slice_target, atomic_load (&work_counter)) <= 0){
/* We've done enough work by ourselves, no need to interrupt the other
domains. */
dom_st->requested_global_major_slice = 0;
}
}
static void mark_stack_prune(struct mark_stack* stk);
#ifdef DEBUG
#define Is_markable(v) \
(CAMLassert (v != Debug_free_major), \
Is_block(v) && !Is_young(v))
#else
#define Is_markable(v) (Is_block(v) && !Is_young(v))
#endif
static void realloc_mark_stack (struct mark_stack* stk)
{
mark_entry* new;
uintnat mark_stack_large_bsize = 0;
uintnat mark_stack_bsize = stk->size * sizeof(mark_entry);
uintnat local_heap_bsize = caml_heap_size(Caml_state->shared_heap);
/* When the mark stack might not increase, we count the large mark entries
to adjust our alloaction. This is needed because large mark stack entries
will not compress and because we are using a domain local heap bound we
need to fit large blocks into the local mark stack. See PR#11284 */
if (mark_stack_bsize >= local_heap_bsize / 32) {
for (uintnat i = 0; i < stk->count; ++i) {
mark_entry* me = &stk->stack[i];
if (me->end - me->start > BITS_PER_WORD)
mark_stack_large_bsize += sizeof(mark_entry);
}
}
if (mark_stack_bsize - mark_stack_large_bsize < local_heap_bsize / 32) {
uintnat target_bsize = (mark_stack_bsize - mark_stack_large_bsize) * 2
+ mark_stack_large_bsize;
caml_gc_log ("Growing mark stack to %"ARCH_INTNAT_PRINTF_FORMAT"uk bytes"
"(large block %"ARCH_INTNAT_PRINTF_FORMAT"uk bytes)\n",
target_bsize / 1024, mark_stack_large_bsize / 1024);
new = (mark_entry*) caml_stat_resize_noexc ((char*) stk->stack,
target_bsize);
if (new != NULL) {
stk->stack = new;
stk->size = target_bsize / sizeof(mark_entry);
return;
}
caml_gc_log ("No room for growing mark stack. Compressing..\n");
}
caml_gc_log ("Mark stack size is %"ARCH_INTNAT_PRINTF_FORMAT"u "
"bytes (> major heap size of this domain %"
ARCH_INTNAT_PRINTF_FORMAT"u bytes / 32). Compressing..\n",
mark_stack_bsize,
local_heap_bsize);
mark_stack_prune(stk);
}
Caml_inline void mark_stack_push_range(struct mark_stack* stk,
value_ptr start, value_ptr end)
{
mark_entry* me;
if (stk->count == stk->size)
realloc_mark_stack(stk);
me = &stk->stack[stk->count++];
me->start = start;
me->end = end;
}
/* returns the work done by skipping unmarkable objects */
static intnat mark_stack_push_block(struct mark_stack* stk, value block)
{
int i, end;
uintnat block_wsz = Wosize_val(block), offset = 0;
if (Tag_val(block) == Closure_tag) {
/* Skip the code pointers and integers at beginning of closure;
start scanning at the first word of the environment part. */
offset = Start_env_closinfo(Closinfo_val(block));
CAMLassert(offset <= Wosize_val(block)
&& offset >= Start_env_closinfo(Closinfo_val(block)));
}
CAMLassert(Has_status_val(block, caml_global_heap_state.MARKED));
CAMLassert(Is_block(block));
CAMLassert(!Is_young(block));
CAMLassert(Tag_val(block) != Infix_tag);
CAMLassert(Tag_val(block) < No_scan_tag);
CAMLassert(Tag_val(block) != Cont_tag);
/* Optimisation to avoid pushing small, unmarkable objects such as
[Some 42] into the mark stack. */
end = (block_wsz < 8 ? block_wsz : 8);
for (i = offset; i < end; i++) {
value v = Field(block, i);
if (Is_markable(v))
break;
}
if (i == block_wsz){
/* nothing left to mark and credit header */
return Whsize_wosize(block_wsz - offset);
}
mark_stack_push_range(stk,
Op_val(block) + i,
Op_val(block) + block_wsz);
/* take credit for the work we skipped due to the optimisation.
we will take credit for the header later as part of marking. */
return i - offset;
}
/* This function shrinks the mark stack back to the MARK_STACK_INIT_SIZE size
and is called at domain termination via caml_finish_marking. */
void caml_shrink_mark_stack (void)
{
struct mark_stack* stk = Caml_state->mark_stack;
intnat init_stack_bsize = MARK_STACK_INIT_SIZE * sizeof(mark_entry);
mark_entry* shrunk_stack;
caml_gc_log ("Shrinking mark stack to %"
ARCH_INTNAT_PRINTF_FORMAT "uk bytes\n",
init_stack_bsize / 1024);
shrunk_stack = (mark_entry*) caml_stat_resize_noexc ((char*) stk->stack,
init_stack_bsize);
if (shrunk_stack != NULL) {
stk->stack = shrunk_stack;
stk->size = MARK_STACK_INIT_SIZE;
}else{
caml_gc_log ("Mark stack shrinking failed");
}
}
void caml_darken_cont(value cont);
static void mark_slice_darken(struct mark_stack* stk, value child,
intnat* work)
{
header_t chd;
if (Is_markable(child)){
/* This part of the code is duplicated in do_some_marking for performance
* reasons.
* Changes here should probably be reflected in do_some_marking. */
/* Annotating an acquire barrier on the header because TSan does not see the
* happens-before relationship established by address dependencies with
* initializing writes in shared_heap.c allocation (#12894) */
CAML_TSAN_ANNOTATE_HAPPENS_AFTER(Hp_val(child));
chd = Hd_val(child);
if (Tag_hd(chd) == Infix_tag) {
child -= Infix_offset_hd(chd);
chd = Hd_val(child);
}
CAMLassert(!Has_status_hd(chd, caml_global_heap_state.GARBAGE));
if (Has_status_hd(chd, caml_global_heap_state.UNMARKED)){
Caml_state->stat_blocks_marked++;
if (Tag_hd(chd) == Cont_tag){
caml_darken_cont(child);
*work -= Wosize_hd(chd);
} else {
again:
if (Tag_hd(chd) == Lazy_tag || Tag_hd(chd) == Forcing_tag){
if(!atomic_compare_exchange_strong(Hp_atomic_val(child), &chd,
With_status_hd(chd, caml_global_heap_state.MARKED))){
chd = Hd_val(child);
goto again;
}
} else {
atomic_store_relaxed(
Hp_atomic_val(child),
With_status_hd(chd, caml_global_heap_state.MARKED));
}
if(Tag_hd(chd) < No_scan_tag){
*work -= mark_stack_push_block(stk, child);
} else {
*work -= Wosize_hd(chd);
}
}
}
}
}
static CAMLno_tsan
#if defined(WITH_THREAD_SANITIZER)
Caml_noinline
#endif
value volatile_load_uninstrumented(volatile value* p) {
return *p;
}
Caml_noinline static intnat do_some_marking(struct mark_stack* stk,
intnat budget) {
prefetch_buffer_t pb = { .enqueued = 0, .dequeued = 0,
.waterline = PREFETCH_BUFFER_MIN };
mark_entry me;
/* These global values are cached in locals,
so that they can be stored in registers */
struct global_heap_state heap_state = caml_global_heap_state;
uintnat blocks_marked = 0;
while (1) {
if (pb_above_waterline(&pb)) {
/* Dequeue from prefetch buffer */
value block = pb_pop(&pb);
CAMLassert(Is_markable(block));
/* This part of the code is a duplicate of mark_slice_darken for
* performance reasons.
* Changes here should probably be reflected here in mark_slice_darken.*/
/* Annotating an acquire barrier on the header because TSan does not see
* the happens-before relationship established by address dependencies
* with initializing writes in shared_heap.c allocation (#12894) */
CAML_TSAN_ANNOTATE_HAPPENS_AFTER(Hp_val(block));
header_t hd = Hd_val(block);
if (Tag_hd(hd) == Infix_tag) {
block -= Infix_offset_hd(hd);
hd = Hd_val(block);
}
CAMLassert(!Has_status_hd(hd, heap_state.GARBAGE));
if (!Has_status_hd(hd, heap_state.UNMARKED)) {
/* Already black, nothing to do */
continue;
}
blocks_marked++;
if (Tag_hd(hd) == Cont_tag) {
caml_darken_cont(block);
budget -= Wosize_hd(hd);
continue;
}
again:
if (Tag_hd(hd) == Lazy_tag || Tag_hd(hd) == Forcing_tag) {
if (!atomic_compare_exchange_strong(Hp_atomic_val(block), &hd,
With_status_hd(hd, caml_global_heap_state.MARKED))) {
hd = Hd_val(block);
goto again;
}
} else {
atomic_store_relaxed(
Hp_atomic_val(block),
With_status_hd(hd, caml_global_heap_state.MARKED));
}
budget--; /* header word */
if (Tag_hd(hd) >= No_scan_tag) {
/* Nothing to scan here */
budget -= Wosize_hd(hd);
continue;
}
me.start = Op_val(block);
me.end = me.start + Wosize_hd(hd);
if (Tag_hd(hd) == Closure_tag) {
uintnat env_offset = Start_env_closinfo(Closinfo_val(block));
budget -= env_offset;
me.start += env_offset;
}
}
else if (budget <= 0 || stk->count == 0) {
if (pb.waterline > 0) {
/* Dequeue from pb even when close to empty, because
we have nothing else to do */
pb_drain_mode(&pb);
continue;
}
else {
/* Couldn't find work with pb in draining mode,
so there's nothing to do */
break;
}
}
else {
me = stk->stack[--stk->count];
}
value_ptr scan_end = me.end;
if (scan_end - me.start > budget) {
intnat scan_len = budget < 0 ? 0 : budget;
scan_end = me.start + scan_len;
}
for (; me.start < scan_end; me.start++) {
CAMLassert(budget >= 0);
/* This load may race with a concurrent caml_modify. It does not
constitute a data race as this is a volatile load. However, TSan will
wrongly see a race here (see section 3.2 of comment in tsan.c). We
therefore make sure it is never TSan-instrumented. */
value child = volatile_load_uninstrumented(me.start);
budget--;
if (Is_markable(child)) {
if (pb_full(&pb))
break;
prefetch_block(child);
pb_push(&pb, child);
}
}
if (me.start < me.end) {
/* Didn't finish scanning this object, either because budget <= 0,
or the prefetch buffer filled up. Leave the rest on the stack. */
mark_stack_push_range(stk, me.start, me.end);
caml_prefetch((void*)(me.start + 1));
if (pb_size(&pb) > PREFETCH_BUFFER_MIN) {
/* We may have just discovered more work when we were about to run out.
Reset waterline so that we try to refill the buffer again. */
pb_fill_mode(&pb);
}
}
}
Caml_state->stat_blocks_marked += blocks_marked;
CAMLassert(pb_size(&pb) == 0);
return budget;
}
/* Compressed mark stack
We use a bitset, implemented as a hashtable storing word-sized
integers (uintnat). Each integer represents a "chunk" of addresses
that may or may not be present in the stack.
*/
static const uintnat chunk_mask = ~(uintnat)(BITS_PER_WORD-1);
static inline uintnat ptr_to_chunk(value_ptr ptr) {
return ((uintnat)(ptr) / sizeof(value)) & chunk_mask;
}
static inline uintnat ptr_to_chunk_offset(value_ptr ptr) {
return ((uintnat)(ptr) / sizeof(value)) & ~chunk_mask;
}
static inline value_ptr chunk_and_offset_to_ptr(uintnat chunk, uintnat offset) {
return (value_ptr)((chunk + offset) * sizeof(value));
}
/* mark until the budget runs out or marking is done */
static intnat mark(intnat budget) {
caml_domain_state *domain_state = Caml_state;
while (budget > 0 && !domain_state->marking_done) {
budget = do_some_marking(domain_state->mark_stack, budget);
if (budget > 0) {
struct mark_stack* mstk = domain_state->mark_stack;
addrmap_iterator it = mstk->compressed_stack_iter;
if (caml_addrmap_iter_ok(&mstk->compressed_stack, it)) {
uintnat chunk = caml_addrmap_iter_key(&mstk->compressed_stack, it);
uintnat bitset = caml_addrmap_iter_value(&mstk->compressed_stack, it);
/* NB: must update the iterator here, as possible that
mark_slice_darken could lead to the mark stack being pruned
and invalidation of the iterator */
mstk->compressed_stack_iter =
caml_addrmap_next(&mstk->compressed_stack, it);
for(int ofs=0; ofs<BITS_PER_WORD; ofs++) {
if(bitset & ((uintnat)1 << ofs)) {
value_ptr p = chunk_and_offset_to_ptr(chunk, ofs);
mark_slice_darken(domain_state->mark_stack, *p, &budget);
}
}
} else {
ephe_next_cycle ();
domain_state->marking_done = 1;
atomic_fetch_add_verify_ge0(&num_domains_to_mark, -1);
}
}
}
return budget;
}
static scanning_action_flags darken_scanning_flags = 0;
void caml_darken_cont(value cont)
{
CAMLassert(Is_block(cont));
CAMLassert(!Is_young(cont));
CAMLassert(Tag_val(cont) == Cont_tag);
{
SPIN_WAIT {
header_t hd = atomic_load_relaxed(Hp_atomic_val(cont));
CAMLassert(!Has_status_hd(hd, caml_global_heap_state.GARBAGE));
if (Has_status_hd(hd, caml_global_heap_state.MARKED)) {
/* Perform an acquire load to synchronize with the marking domain */
hd = atomic_load_acquire(Hp_atomic_val(cont));
if (Has_status_hd(hd, caml_global_heap_state.MARKED))
break;
}
if (Has_status_hd(hd, caml_global_heap_state.UNMARKED) &&
atomic_compare_exchange_strong(
Hp_atomic_val(cont), &hd,
With_status_hd(hd, NOT_MARKABLE))) {
value stk = Field(cont, 0);
if (Ptr_val(stk) != NULL)
caml_scan_stack(&caml_darken, darken_scanning_flags, Caml_state,
Ptr_val(stk), 0);
atomic_store_release(Hp_atomic_val(cont),
With_status_hd(hd, caml_global_heap_state.MARKED));
}
}
}
}
void caml_darken(void* state, value v, volatile value* ignored) {
header_t hd;
if (!Is_markable (v)) return; /* foreign stack, at least */
hd = Hd_val(v);
if (Tag_hd(hd) == Infix_tag) {
v -= Infix_offset_hd(hd);
hd = Hd_val(v);
}
if (Has_status_hd(hd, caml_global_heap_state.UNMARKED)) {
caml_domain_state* domain_state = (caml_domain_state*)state;
if (domain_state->marking_done) {
atomic_fetch_add(&num_domains_to_mark, 1);
domain_state->marking_done = 0;
}
if (Tag_hd(hd) == Cont_tag) {
caml_darken_cont(v);
} else {
atomic_store_relaxed(
Hp_atomic_val(v),
With_status_hd(hd, caml_global_heap_state.MARKED));
if (Tag_hd(hd) < No_scan_tag) {
mark_stack_push_block(domain_state->mark_stack, v);
}
}
}
}
static intnat ephe_mark (intnat budget, uintnat for_cycle,
/* Forces ephemerons and their data to be alive */
int force_alive)
{
value v, data, key, f, todo;
value* prev_linkp;
header_t hd;
mlsize_t size, i;
caml_domain_state* domain_state = Caml_state;
int alive_data;
intnat marked = 0, made_live = 0;
if (domain_state->ephe_info->cursor.cycle == for_cycle &&
!force_alive) {
prev_linkp = domain_state->ephe_info->cursor.todop;
todo = *prev_linkp;
} else {
todo = domain_state->ephe_info->todo;
prev_linkp = &domain_state->ephe_info->todo;
}
while (todo != 0 && budget > 0) {
v = todo;
todo = Ephe_link(v);
CAMLassert (Tag_val(v) == Abstract_tag);
hd = Hd_val(v);
data = Ephe_data(v);
alive_data = 1;
if (force_alive)
caml_darken (domain_state, v, 0);
/* If ephemeron is unmarked, data is dead */
if (is_unmarked(v)) alive_data = 0;
size = Wosize_hd(hd);
for (i = CAML_EPHE_FIRST_KEY; alive_data && i < size; i++) {
key = Field(v, i);
ephemeron_again:
if (key != caml_ephe_none && Is_block(key)) {
if (Tag_val(key) == Forward_tag) {
f = Forward_val(key);
if (Is_block(f)) {
if (Tag_val(f) == Forward_tag || Tag_val(f) == Lazy_tag ||
Tag_val(f) == Forcing_tag || Tag_val(f) == Double_tag) {
/* Do not short-circuit the pointer */
} else {
Field(v, i) = key = f;
goto ephemeron_again;
}
}
}
else {
if (Tag_val (key) == Infix_tag) key -= Infix_offset_val (key);
if (is_unmarked (key))
alive_data = 0;
}
}
}
budget -= Whsize_wosize(i);
if (force_alive || alive_data) {
if (data != caml_ephe_none && Is_block(data)) {
caml_darken (domain_state, data, 0);
}
Ephe_link(v) = domain_state->ephe_info->live;
domain_state->ephe_info->live = v;
*prev_linkp = todo;
made_live++;
} else {
/* Leave this ephemeron on the todo list */
prev_linkp = &Ephe_link(v);
}
marked++;
}
caml_gc_log
("Mark Ephemeron: %s. Ephemeron cycle=%"ARCH_INTNAT_PRINTF_FORMAT"d "
"examined=%"ARCH_INTNAT_PRINTF_FORMAT"d "
"marked=%"ARCH_INTNAT_PRINTF_FORMAT"d",
domain_state->ephe_info->cursor.cycle == for_cycle ?
"Continued from cursor" : "Discarded cursor",
for_cycle, marked, made_live);
domain_state->ephe_info->cursor.cycle = for_cycle;
domain_state->ephe_info->cursor.todop = prev_linkp;
return budget;
}
static intnat ephe_sweep (caml_domain_state* domain_state, intnat budget)
{
value v;
CAMLassert (caml_gc_phase == Phase_sweep_ephe);
while (domain_state->ephe_info->todo != 0 && budget > 0) {
v = domain_state->ephe_info->todo;
domain_state->ephe_info->todo = Ephe_link(v);
CAMLassert (Tag_val(v) == Abstract_tag);
if (is_unmarked(v)) {
/* The whole array is dead, drop this ephemeron */
budget -= 1;
} else {
caml_ephe_clean(v);
Ephe_link(v) = domain_state->ephe_info->live;
domain_state->ephe_info->live = v;
budget -= Whsize_val(v);
}
}
return budget;
}
static void cycle_major_heap_from_stw_single(
caml_domain_state* domain,
uintnat num_domains_in_stw)
{
/* Cycle major heap */
/* FIXME: delete caml_cycle_heap_from_stw_single
and have per-domain copies of the data? */
caml_cycle_heap_from_stw_single();
caml_gc_log("GC cycle %lu completed (heap cycled)",
(long unsigned int)caml_major_cycles_completed);
caml_major_cycles_completed++;
caml_gc_message(0x40, "Starting major GC cycle\n");
if (atomic_load_relaxed(&caml_verb_gc) & 0x400) {
struct gc_stats s;
intnat heap_words, not_garbage_words, swept_words;
caml_compute_gc_stats(&s);
heap_words = s.heap_stats.pool_words + s.heap_stats.large_words;
not_garbage_words = s.heap_stats.pool_live_words
+ s.heap_stats.large_words;
swept_words = domain->swept_words;
caml_gc_log ("heap_words: %"ARCH_INTNAT_PRINTF_FORMAT"d "
"not_garbage_words %"ARCH_INTNAT_PRINTF_FORMAT"d "
"swept_words %"ARCH_INTNAT_PRINTF_FORMAT"d",
heap_words, not_garbage_words, swept_words);
static struct {
intnat heap_words;
intnat not_garbage_words;
} last_cycle = {0, 0};
if (last_cycle.heap_words != 0) {
/* At the end of a major cycle, no object has colour MARKED.
[not_garbage_words] counts all objects which are UNMARKED.
Importantly, this includes both live objects and objects which are
unreachable in the current cycle (i.e, garbage). But we don't get
to know which objects are garbage until the end of the next cycle.
live_words@N = not_garbage_words@N - swept_words@N+1
space_overhead@N =
100.0 * (heap_words@N - live_words@N) / live_words@N
*/
intnat live_words = last_cycle.not_garbage_words - swept_words;
double space_overhead = 100.0 * (double)(last_cycle.heap_words
- live_words) / live_words;
caml_gc_log("Previous cycle's space_overhead: %lf", space_overhead);
}
last_cycle.heap_words = heap_words;
last_cycle.not_garbage_words = not_garbage_words;
}
domain->swept_words = 0;
atomic_store_release(&num_domains_to_sweep, num_domains_in_stw);
atomic_store_release(&num_domains_to_mark, num_domains_in_stw);
caml_gc_phase = Phase_sweep_and_mark_main;
atomic_store(&ephe_cycle_info.num_domains_todo, num_domains_in_stw);
atomic_store(&ephe_cycle_info.ephe_cycle, 1);
atomic_store(&ephe_cycle_info.num_domains_done, 0);
atomic_store_release(&num_domains_to_ephe_sweep, 0);
/* Will be set to the correct number when switching to
[Phase_sweep_ephe] */
atomic_store_release(&num_domains_to_final_update_first,
num_domains_in_stw);
atomic_store_release(&num_domains_to_final_update_last,
num_domains_in_stw);
atomic_store(&domain_global_roots_started, WORK_UNSTARTED);
caml_code_fragment_cleanup_from_stw_single();
}
struct cycle_callback_params {
int force_compaction;
};
static void stw_cycle_all_domains(
caml_domain_state* domain, void* args,
int participating_count,
caml_domain_state** participating)
{
/* We copy params because the stw leader may leave early. No barrier needed
because there's one in the minor gc and after. */
struct cycle_callback_params params = *((struct cycle_callback_params*)args);
/* TODO: Not clear this memprof work is really part of the "cycle"
* operation. It's more like ephemeron-cleaning really. An earlier
* version had a separate callback for this, but resulted in
* failures because using caml_try_run_on_all_domains() on it would
* mysteriously put all domains back into mark/sweep.
*/
CAML_EV_BEGIN(EV_MAJOR_MEMPROF_CLEAN);
caml_memprof_after_major_gc(domain);
CAML_EV_END(EV_MAJOR_MEMPROF_CLEAN);
CAML_EV_BEGIN(EV_MAJOR_GC_CYCLE_DOMAINS);
CAMLassert(domain == Caml_state);
CAMLassert(atomic_load_acquire(&ephe_cycle_info.num_domains_todo) ==
atomic_load_acquire(&ephe_cycle_info.num_domains_done));
CAMLassert(atomic_load(&num_domains_to_mark) == 0);
CAMLassert(atomic_load(&num_domains_to_sweep) == 0);
CAMLassert(atomic_load(&num_domains_to_ephe_sweep) == 0);
caml_empty_minor_heap_no_major_slice_from_stw
(domain, (void*)0, participating_count, participating);
CAML_EV_BEGIN(EV_MAJOR_GC_STW);
Caml_global_barrier_if_final(participating_count) {
cycle_major_heap_from_stw_single(domain, (uintnat) participating_count);
}
/* If the heap is to be verified, do it before the domains continue
running OCaml code. */
if (caml_params->verify_heap) {
caml_verify_heap_from_stw(domain);
caml_gc_log("Heap verified");
/* This global barrier avoids races between the verify_heap code
and the rest of the STW critical section, for example the parts
that mark global roots. */
caml_global_barrier(participating_count);
}
caml_cycle_heap(domain->shared_heap);
/* Compact here if requested (or, in some future version, if the heap overhead
is too high). */
if (params.force_compaction) {
caml_compact_heap(domain, participating_count, participating);
}
/* Update GC stats (as these could have significantly changed if there was a
compaction) */
caml_collect_gc_stats_sample_stw(domain);
/* Collect domain-local stats to emit to runtime events */
struct heap_stats local_stats;
caml_collect_heap_stats_sample(Caml_state->shared_heap, &local_stats);
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_POOL_WORDS,
(uintnat)local_stats.pool_words);
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_POOL_LIVE_WORDS,
(uintnat)local_stats.pool_live_words);
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_LARGE_WORDS,
(uintnat)local_stats.large_words);
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_POOL_FRAG_WORDS,
(uintnat)(local_stats.pool_frag_words));
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_POOL_LIVE_BLOCKS,
(uintnat)local_stats.pool_live_blocks);
CAML_EV_COUNTER(EV_C_MAJOR_HEAP_LARGE_BLOCKS,
(uintnat)local_stats.large_blocks);
domain->sweeping_done = 0;
/* Mark roots for new cycle */
domain->marking_done = 0;
CAML_EV_BEGIN(EV_MAJOR_MARK_ROOTS);
caml_do_roots (&caml_darken, darken_scanning_flags, domain, domain, 0);
{
uintnat work_unstarted = WORK_UNSTARTED;
if(atomic_compare_exchange_strong(&domain_global_roots_started,
&work_unstarted,
WORK_STARTED)){
caml_scan_global_roots(&caml_darken, domain);
}
}
CAML_EV_END(EV_MAJOR_MARK_ROOTS);
CAML_EV_BEGIN(EV_MAJOR_MEMPROF_ROOTS);
caml_memprof_scan_roots(caml_darken, darken_scanning_flags, domain,
domain, false);
CAML_EV_END(EV_MAJOR_MEMPROF_ROOTS);
if (domain->mark_stack->count == 0 &&
!caml_addrmap_iter_ok(&domain->mark_stack->compressed_stack,
domain->mark_stack->compressed_stack_iter)
) {
atomic_fetch_add_verify_ge0(&num_domains_to_mark, -1);
domain->marking_done = 1;
}
/* Ephemerons */
#ifdef DEBUG
orph_ephe_list_verify_status (caml_global_heap_state.UNMARKED);
#endif
/* Adopt orphaned work from domains that were spawned and terminated in the
previous cycle. */
adopt_orphaned_work ();
CAMLassert(domain->ephe_info->todo == (value) NULL);
domain->ephe_info->todo = domain->ephe_info->live;
domain->ephe_info->live = (value) NULL;
domain->ephe_info->must_sweep_ephe = 0;
domain->ephe_info->cycle = 0;
domain->ephe_info->cursor.todop = NULL;
domain->ephe_info->cursor.cycle = 0;
if (domain->ephe_info->todo == (value) NULL)
ephe_todo_list_emptied();
/* Finalisers */
domain->final_info->updated_first = 0;
domain->final_info->updated_last = 0;
/* To ensure a mutator doesn't resume while global roots are being marked.
Mutators can alter the set of global roots, to preserve its correctness,
they should not run while global roots are being marked.*/
caml_global_barrier(participating_count);
/* Someone should flush the allocation stats we gathered during the cycle */
if( participating[0] == domain ) {
CAML_EV_ALLOC_FLUSH();
}
CAML_EV_END(EV_MAJOR_GC_STW);
CAML_EV_END(EV_MAJOR_GC_CYCLE_DOMAINS);
}
static int is_complete_phase_sweep_and_mark_main (void)
{
return
/* Marking is done */
caml_gc_phase == Phase_sweep_and_mark_main &&
atomic_load_acquire (&num_domains_to_sweep) == 0 &&
atomic_load_acquire (&num_domains_to_mark) == 0 &&
/* No domains are orphaning finalisers. */
atomic_load_acquire (&num_domains_orphaning_finalisers) == 0 &&
/* Ephemeron marking is done */
atomic_load_acquire(&ephe_cycle_info.num_domains_todo) ==
atomic_load_acquire(&ephe_cycle_info.num_domains_done) &&
/* All orphaned ephemerons have been adopted */
no_orphaned_work();
}
static int is_complete_phase_mark_final (void)
{
return
/* updated finalise first values */
caml_gc_phase == Phase_mark_final &&
atomic_load_acquire (&num_domains_to_final_update_first) == 0 &&
/* Marking is done */
atomic_load_acquire (&num_domains_to_mark) == 0 &&
/* Ephemeron marking is done */
atomic_load_acquire(&ephe_cycle_info.num_domains_todo) ==
atomic_load_acquire(&ephe_cycle_info.num_domains_done) &&
/* All orphaned ephemerons have been adopted */
no_orphaned_work();
}
static int is_complete_phase_sweep_ephe (void)
{
return
/* All domains have swept their ephemerons */
caml_gc_phase == Phase_sweep_ephe &&
atomic_load_acquire (&num_domains_to_ephe_sweep) == 0 &&
/* All domains have updated finalise last values */
atomic_load_acquire (&num_domains_to_final_update_last) == 0 &&
/* All orphaned structures have been adopted */
no_orphaned_work();
}
static void stw_try_complete_gc_phase(
caml_domain_state* domain, void* unused,
int participant_count,
caml_domain_state** participating)
{
CAML_EV_BEGIN(EV_MAJOR_GC_PHASE_CHANGE);
Caml_global_barrier_if_final(participant_count) {
if (is_complete_phase_sweep_and_mark_main()) {
caml_gc_phase = Phase_mark_final;
} else if (is_complete_phase_mark_final()) {
caml_gc_phase = Phase_sweep_ephe;
atomic_store_release(&num_domains_to_ephe_sweep, participant_count);
for (int i = 0; i < participant_count; i++)
participating[i]->ephe_info->must_sweep_ephe = 1;
}
}
CAML_EV_END(EV_MAJOR_GC_PHASE_CHANGE);
}
intnat caml_opportunistic_major_work_available (caml_domain_state* domain_state)
{
return !domain_state->sweeping_done || !domain_state->marking_done;
}
static char collection_slice_mode_char(collection_slice_mode mode)
{
switch(mode) {
case Slice_uninterruptible:
return 'u';
case Slice_interruptible:
return 'i';
case Slice_opportunistic:
return 'o';
default:
return ' ';
}
}
static void major_collection_slice(intnat howmuch,
int participant_count,
caml_domain_state** barrier_participants,
collection_slice_mode mode,
int force_compaction)
{
caml_domain_state* domain_state = Caml_state;
intnat sweep_work = 0, mark_work = 0;
uintnat blocks_marked_before = domain_state->stat_blocks_marked;
uintnat saved_ephe_cycle;
uintnat saved_major_cycle = caml_major_cycles_completed;
intnat budget;
/* Opportunistic slices may run concurrently with gc phase updates. */
int may_access_gc_phase = (mode != Slice_opportunistic);
int log_events = mode != Slice_opportunistic ||
(atomic_load_relaxed(&caml_verb_gc) & 0x40);
update_major_slice_work(howmuch, may_access_gc_phase, log_events);
/* When a full slice of major GC work is done,
or the slice is interrupted (in mode Slice_interruptible),
get_major_slice_work(mode) will return a budget <= 0 */
/* shortcut out if there is no opportunistic work to be done
* NB: needed particularly to avoid caml_ev spam when polling */
if (mode == Slice_opportunistic &&
!caml_opportunistic_major_work_available(domain_state)) {
commit_major_slice_work (0);
return;
}
if (log_events) CAML_EV_BEGIN(EV_MAJOR_SLICE);
call_timing_hook(&caml_major_slice_begin_hook);
if (!domain_state->sweeping_done) {
if (log_events) CAML_EV_BEGIN(EV_MAJOR_SWEEP);
while (!domain_state->sweeping_done &&
(budget = get_major_slice_work(mode)) > 0) {
intnat left = caml_sweep(domain_state->shared_heap, budget);
intnat work_done = budget - left;
sweep_work += work_done;
commit_major_slice_work (work_done);
if (work_done == 0) {
domain_state->sweeping_done = 1;
atomic_fetch_add_verify_ge0(&num_domains_to_sweep, -1);
}
}
if (log_events) CAML_EV_END(EV_MAJOR_SWEEP);
}
mark_again:
if (!domain_state->marking_done &&
get_major_slice_work(mode) > 0) {
if (log_events) CAML_EV_BEGIN(EV_MAJOR_MARK);
while (!domain_state->marking_done &&
(budget = get_major_slice_work(mode)) > 0) {
intnat left = mark(budget);
intnat work_done = budget - left;
mark_work += work_done;
commit_major_slice_work(work_done);
}
if (log_events) CAML_EV_END(EV_MAJOR_MARK);
}
if (mode != Slice_opportunistic) {
/* Finalisers */
if (caml_gc_phase == Phase_mark_final &&
get_major_slice_work(mode) > 0 &&
caml_final_update_first(domain_state)) {
/* This domain has updated finalise first values */
atomic_fetch_add_verify_ge0(&num_domains_to_final_update_first, -1);
if (!domain_state->marking_done &&
get_major_slice_work(mode) > 0)
goto mark_again;
}
if (caml_gc_phase == Phase_sweep_ephe &&
get_major_slice_work(mode) > 0 &&
caml_final_update_last(domain_state)) {
/* This domain has updated finalise last values */
atomic_fetch_add_verify_ge0(&num_domains_to_final_update_last, -1);
/* Nothing has been marked while updating last */
}
#ifdef DEBUG
orph_ephe_list_verify_status (caml_global_heap_state.MARKED);
#endif
adopt_orphaned_work();
/* Ephemerons */
if (caml_gc_phase != Phase_sweep_ephe) {
/* Ephemeron Marking */
saved_ephe_cycle = atomic_load_acquire(&ephe_cycle_info.ephe_cycle);
if (domain_state->ephe_info->todo != (value) NULL &&
saved_ephe_cycle > domain_state->ephe_info->cycle &&
get_major_slice_work(mode) > 0) {
CAML_EV_BEGIN(EV_MAJOR_EPHE_MARK);
int ephe_completed_marking = 0;
while (domain_state->ephe_info->todo != (value) NULL &&
saved_ephe_cycle > domain_state->ephe_info->cycle &&
(budget = get_major_slice_work(mode)) > 0) {
intnat left = ephe_mark(budget, saved_ephe_cycle, EPHE_MARK_DEFAULT);
intnat work_done = budget - left;
commit_major_slice_work (work_done);
// FIXME: Can we delete this?
if (left > 0) {
ephe_completed_marking = 1;
break;
}
}
CAML_EV_END(EV_MAJOR_EPHE_MARK);
if (domain_state->ephe_info->todo == (value)NULL) {
ephe_todo_list_emptied ();
}
if (ephe_completed_marking) {
if (!domain_state->marking_done)
goto mark_again;
else
record_ephe_marking_done(saved_ephe_cycle);
}
}
}
if (caml_gc_phase == Phase_sweep_ephe) {
/* Ephemeron Sweeping */
if (domain_state->ephe_info->must_sweep_ephe) {
/* Move the ephemerons on the live list to the todo list. This is
needed since the live list may contain ephemerons with unmarked
keys, which need to be cleaned. This code is executed exactly once
per major cycle per domain. */
domain_state->ephe_info->must_sweep_ephe = 0;
value e = ephe_list_tail (domain_state->ephe_info->todo);
if (e == (value)NULL) {
domain_state->ephe_info->todo = domain_state->ephe_info->live;
} else {
CAMLassert(Ephe_link(e) == (value)NULL);
Ephe_link(e) = domain_state->ephe_info->live;
}
domain_state->ephe_info->live = (value)NULL;
/* If the todo list is empty, then the ephemeron has no sweeping work
* to do. */
if (domain_state->ephe_info->todo == 0) {
atomic_fetch_add_verify_ge0(&num_domains_to_ephe_sweep, -1);
}
}
if (domain_state->ephe_info->todo != 0) {
CAMLassert (domain_state->ephe_info->must_sweep_ephe == 0);
/* Sweep the ephemeron todo list */
CAML_EV_BEGIN(EV_MAJOR_EPHE_SWEEP);
while (domain_state->ephe_info->todo != 0 &&
(budget = get_major_slice_work(mode)) > 0) {
intnat left = ephe_sweep (domain_state, budget);
intnat work_done = budget - left;
commit_major_slice_work(work_done);
}
CAML_EV_END(EV_MAJOR_EPHE_SWEEP);
if (domain_state->ephe_info->todo == 0) {
atomic_fetch_add_verify_ge0(&num_domains_to_ephe_sweep, -1);
}
}
}
/* Complete GC phase */
if (is_complete_phase_sweep_and_mark_main() ||
is_complete_phase_mark_final ()) {
CAMLassert (caml_gc_phase != Phase_sweep_ephe);
if (barrier_participants) {
stw_try_complete_gc_phase(
domain_state,
(void*)0,
participant_count,
barrier_participants);
} else {
caml_try_run_on_all_domains (&stw_try_complete_gc_phase, 0, 0);
}
if (get_major_slice_work(mode) > 0) goto mark_again;
}
}
call_timing_hook(&caml_major_slice_end_hook);
if (log_events) CAML_EV_END(EV_MAJOR_SLICE);
caml_gc_log
("Major slice [%c%c%c]: %ld sweep, %ld mark (%lu blocks)",
collection_slice_mode_char(mode),
!caml_incoming_interrupts_queued() ? '.' : '*',
caml_gc_phase_char(may_access_gc_phase),
(long)sweep_work, (long)mark_work,
(unsigned long)(domain_state->stat_blocks_marked
- blocks_marked_before));
if (mode != Slice_opportunistic && is_complete_phase_sweep_ephe()) {
/* To handle the case where multiple domains try to finish the major cycle
simultaneously, we loop until the current cycle has ended, ignoring
whether [caml_try_run_on_all_domains] succeeds. */
saved_major_cycle = caml_major_cycles_completed;
struct cycle_callback_params params;
params.force_compaction = force_compaction;
while (saved_major_cycle == caml_major_cycles_completed) {
if (barrier_participants) {
stw_cycle_all_domains
(domain_state, (void*)¶ms,
participant_count, barrier_participants);
} else {
caml_try_run_on_all_domains
(&stw_cycle_all_domains, (void*)¶ms, 0);
}
}
}
}
void caml_opportunistic_major_collection_slice(intnat howmuch)
{
major_collection_slice(howmuch, 0, 0, Slice_opportunistic, 0);
}
void caml_major_collection_slice(intnat howmuch)
{
uintnat major_slice_epoch = atomic_load (&caml_major_slice_epoch);
/* if this is an auto-triggered GC slice, make it interruptible */
if (howmuch == AUTO_TRIGGERED_MAJOR_SLICE) {
major_collection_slice(
AUTO_TRIGGERED_MAJOR_SLICE,
0,
0,
Slice_interruptible,
0
);
if (caml_incoming_interrupts_queued()) {
caml_gc_log("Major slice interrupted, rescheduling major slice");
caml_request_major_slice(0);
}
} else {
/* TODO: could make forced API slices interruptible, but would need to do
accounting or pass up interrupt */
major_collection_slice(howmuch, 0, 0, Slice_uninterruptible, 0);
}
/* Record that this domain has completed a major slice for this minor cycle.
*/
Caml_state->major_slice_epoch = major_slice_epoch;
}
struct finish_major_cycle_params {
uintnat saved_major_cycles;
int force_compaction;
};
static void stw_finish_major_cycle (caml_domain_state* domain, void* arg,
int participating_count,
caml_domain_state** participating)
{
/* We must copy params because the leader may exit this
before other domains do. There is at least one barrier somewhere
in the major cycle ending, so we don't need one immediately
after this. */
struct finish_major_cycle_params params =
*((struct finish_major_cycle_params*)arg);
CAMLassert (domain == Caml_state);
/* We are in a STW critical section here. There is no obvious call
to a barrier at the end of the callback, but the [while] loop
will only terminate when [caml_major_cycles_completed] is
incremented, and this happens in [cycle_all_domains] inside
a barrier. */
caml_empty_minor_heap_no_major_slice_from_stw
(domain, (void*)0, participating_count, participating);
CAML_EV_BEGIN(EV_MAJOR_FINISH_CYCLE);
while (params.saved_major_cycles == caml_major_cycles_completed) {
major_collection_slice(10000000, participating_count, participating,
Slice_uninterruptible, params.force_compaction);
}
CAML_EV_END(EV_MAJOR_FINISH_CYCLE);
}
void caml_finish_major_cycle (int force_compaction)
{
uintnat saved_major_cycles = caml_major_cycles_completed;
while( saved_major_cycles == caml_major_cycles_completed ) {
struct finish_major_cycle_params params;
params.force_compaction = force_compaction;
params.saved_major_cycles = caml_major_cycles_completed;
caml_try_run_on_all_domains(&stw_finish_major_cycle, (void*)¶ms, 0);
}
}
#ifdef DEBUG
int caml_mark_stack_is_empty(void)
{
return Caml_state->mark_stack->count == 0;
}
#endif
void caml_empty_mark_stack (void)
{
while (!Caml_state->marking_done){
mark(1000);
caml_handle_incoming_interrupts();
}
if (Caml_state->stat_blocks_marked)
caml_gc_log("Finished marking major heap. Marked %u blocks",
(unsigned)Caml_state->stat_blocks_marked);
Caml_state->stat_blocks_marked = 0;
}
void caml_finish_marking (void)
{
if (!Caml_state->marking_done) {
CAML_EV_BEGIN(EV_MAJOR_FINISH_MARKING);
caml_empty_mark_stack();
caml_shrink_mark_stack();
Caml_state->stat_major_words += Caml_state->allocated_words;
Caml_state->allocated_words = 0;
Caml_state->allocated_words_direct = 0;
CAML_EV_END(EV_MAJOR_FINISH_MARKING);
}
}
void caml_finish_sweeping (void)
{
if (Caml_state->sweeping_done) return;
CAML_EV_BEGIN(EV_MAJOR_FINISH_SWEEPING);
while (!Caml_state->sweeping_done) {
if (caml_sweep(Caml_state->shared_heap, 10) > 0) {
/* just finished sweeping */
CAMLassert(Caml_state->sweeping_done == 0);
Caml_state->sweeping_done = 1;
atomic_fetch_add_verify_ge0(&num_domains_to_sweep, -1);
break;
}
caml_handle_incoming_interrupts();
}
CAML_EV_END(EV_MAJOR_FINISH_SWEEPING);
}
Caml_inline int add_addr(struct addrmap* amap, value_ptr ptr) {
uintnat chunk = ptr_to_chunk(ptr);
uintnat offset = ptr_to_chunk_offset(ptr);
uintnat flag = (uintnat)1 << offset;
int new_entry = 0;
value* amap_pos = caml_addrmap_insert_pos(amap, chunk);
if (*amap_pos == ADDRMAP_NOT_PRESENT) {
new_entry = 1;
*amap_pos = 0;
}
CAMLassert(ptr == chunk_and_offset_to_ptr(chunk, offset));
if (!(*amap_pos & flag)) {
*amap_pos |= flag;
}
return new_entry;
}
static void mark_stack_prune(struct mark_stack* stk)
{
/* Since addrmap is (currently) using open address hashing, we cannot insert
new compressed stack entries into an existing, partially-processed
compressed stack. Thus, we create a new compressed stack and insert the
unprocessed entries of the existing compressed stack into the new one. */
uintnat old_compressed_entries = 0;
struct addrmap new_compressed_stack = ADDRMAP_INIT;
for (addrmap_iterator it = stk->compressed_stack_iter;
caml_addrmap_iter_ok(&stk->compressed_stack, it);
it = caml_addrmap_next(&stk->compressed_stack, it)) {
value k = caml_addrmap_iter_key(&stk->compressed_stack, it);
value v = caml_addrmap_iter_value(&stk->compressed_stack, it);
caml_addrmap_insert(&new_compressed_stack, k, v);
++old_compressed_entries;
}
if (old_compressed_entries > 0) {
caml_gc_log("Preserved %"ARCH_INTNAT_PRINTF_FORMAT "d compressed entries",
old_compressed_entries);
}
caml_addrmap_clear(&stk->compressed_stack);
stk->compressed_stack = new_compressed_stack;
/* scan mark stack and compress entries */
uintnat new_stk_count = 0, compressed_entries = 0, total_words = 0;
for (uintnat i = 0; i < stk->count; i++) {
mark_entry me = stk->stack[i];
total_words += me.end - me.start;
if (me.end - me.start > BITS_PER_WORD) {
/* keep entry in the stack as more efficient and move to front */
stk->stack[new_stk_count++] = me;
} else {
while(me.start < me.end) {
compressed_entries += add_addr(&stk->compressed_stack,
me.start);
me.start++;
}
}
}
caml_gc_log("Compressed %"ARCH_INTNAT_PRINTF_FORMAT "d mark stack words into "
"%"ARCH_INTNAT_PRINTF_FORMAT "d mark stack entries and "
"%"ARCH_INTNAT_PRINTF_FORMAT "d compressed entries",
total_words, new_stk_count,
compressed_entries+old_compressed_entries);
stk->count = new_stk_count;
CAMLassert(stk->count < stk->size);
/* setup the compressed stack iterator */
stk->compressed_stack_iter = caml_addrmap_iterator(&stk->compressed_stack);
}
int caml_init_major_gc(caml_domain_state* d) {
d->mark_stack = caml_stat_alloc_noexc(sizeof(struct mark_stack));
if(d->mark_stack == NULL) {
return -1;
}
d->mark_stack->stack =
caml_stat_alloc_noexc(MARK_STACK_INIT_SIZE * sizeof(mark_entry));
if(d->mark_stack->stack == NULL) {
caml_stat_free(d->mark_stack);
d->mark_stack = NULL;
return -1;
}
d->mark_stack->count = 0;
d->mark_stack->size = MARK_STACK_INIT_SIZE;
caml_addrmap_init(&d->mark_stack->compressed_stack);
d->mark_stack->compressed_stack_iter =
caml_addrmap_iterator(&d->mark_stack->compressed_stack);
/* Fresh domains do not need to performing marking or sweeping. */
d->sweeping_done = 1;
d->marking_done = 1;
/* Finalisers. Fresh domains participate in updating finalisers. */
d->final_info = caml_alloc_final_info ();
if(d->final_info == NULL) {
caml_stat_free(d->mark_stack->stack);
caml_stat_free(d->mark_stack);
return -1;
}
d->ephe_info = caml_alloc_ephe_info();
if(d->ephe_info == NULL) {
caml_stat_free(d->final_info);
caml_stat_free(d->mark_stack->stack);
caml_stat_free(d->mark_stack);
d->final_info = NULL;
d->mark_stack = NULL;
return -1;
}
atomic_fetch_add(&num_domains_to_final_update_first, 1);
atomic_fetch_add(&num_domains_to_final_update_last, 1);
return 0;
}
void caml_teardown_major_gc(void) {
caml_domain_state* d = Caml_state;
/* At this point we have been removed from the STW participant set,
so we may not access the gc phase. */
int may_access_gc_phase = 0;
/* Account for latest allocations, but do not write to the event ring since
we are out of the STW participant set; the ring may be torn down
concurrently. */
update_major_slice_work (0, may_access_gc_phase, 0);
CAMLassert(!caml_addrmap_iter_ok(&d->mark_stack->compressed_stack,
d->mark_stack->compressed_stack_iter));
caml_addrmap_clear(&d->mark_stack->compressed_stack);
CAMLassert(d->mark_stack->count == 0);
caml_stat_free(d->mark_stack->stack);
caml_stat_free(d->mark_stack);
d->mark_stack = NULL;
}
void caml_finalise_heap (void)
{
return;
}
|