1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Jacques-Henri Jourdan, projet Gallium, INRIA Paris */
/* */
/* Copyright 2016 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <math.h>
#include <stdbool.h>
#include "caml/alloc.h"
#include "caml/backtrace.h"
#include "caml/backtrace_prim.h"
#include "caml/callback.h"
#include "caml/fail.h"
#include "caml/frame_descriptors.h"
#include "caml/memory.h"
#include "caml/memprof.h"
#include "caml/mlvalues.h"
#include "caml/platform.h"
#include "caml/runtime_events.h"
#include "caml/shared_heap.h"
/* Design
*
* 1. Data Design
*
* 1.1. Configuration
*
* A Gc.Memprof.t value (a "profile" from the OCaml point of view) is
* a block on the OCaml heap containing the profile configuration. As
* a profile may be shared between threads and domains, keeping it on
* the OCaml heap allows us not to worry about its liveness - pointers
* to it from memprof data structures are simply treated as GC roots.
* The "status" field in this object allows distinct domains to safely
* `stop` and `discard` (with atomic reads and writes).
*
* 1.2. Entries
*
* Each block of memory tracked by memprof is represented by an
* "entry" structure (entry_s, *entry_t). It tracks the state of the
* block of memory, and its progress through the various callbacks.
*
* A resizable table of entry structures is called an "entries" table
* (entries_s, *entries_t). It tracks ranges of those entries which
* may (a) be ripe for running a callback, (b) be marked for deletion,
* or (c) contain pointers to the minor heap (to be scanned in a minor
* collection). As processing each of these actions proceeds linearly
* through the table, this tracking is done simply by keeping the
* lowest possible entry index for each purpose. The code to perform
* each action (running a callback, evicting a deleted entry, or
* scanning a pointer) checks whether an entry does require the action
* before performing it.
*
* The entries table also has a pointer to the configuration object on
* the OCaml heap, for the profile under which all the entries in the
* table were sampled. This allows callbacks on the table to be run at
* any later time, regardless of the currently-sampling profile of the
* particular domain running the callback. A consequence is that all
* entries in a table must be from the same profile.
*
* After a profile is "discarded", entries may still exist for blocks
* allocated in that profile, but no callbacks will be called for it
* (those entries themselves will be discarded lazily).
*
* There is code for iterating over entries in a table, which is used
* when scanning for GC roots or updating tables to reflect GC activity
* (see below).
*
* 1.3. Threads
*
* The memprof state of a particular systhread is a "thread state"
* (memprof_thread_s, *memprof_thread_t). It has an entries table, for
* blocks allocated by this thread whose allocation callback has not
* yet completed. All allocation callbacks are guaranteed to be called
* by the thread performing the allocation (in the rare circumstance in
* which this is impossible, the tracking entry is discarded).
*
* This thread state structure exists whether or not the systhreads
* module is initialized (one thread state per domain), and whether or
* not memprof is running.
*
* 1.4. Domains
*
* The memprof state of a domain is a "domain state"
* (memprof_domain_s, *memprof_domain_t). It has an entries table, for
* blocks allocated in this domain whose allocation callbacks have
* completed. If a domain terminates, or starts a new profile, while
* it still has tracked entries from a previous profile, those tracked
* entries become "orphaned" (see below).
*
* The domain state has a linked list of thread states for all the
* threads in the domain, and a pointer to the current thread state.
*
* This structure exists whether or not memprof is running. A pointer
* to it is kept in the caml_domain_state.
*
* 1.5. Orphans
*
* When sampling is stopped for a profile, all domains and threads
* continue to manage the entry tables for it as before, but without
* sampling and creating new entries. However, if a domain _starts_ a
* profile while it has entries (tracked blocks) from a previous
* profile which has not been "discarded", it moves those entries to
* its "orphans" list - a linked list of entry tables - for subsequent
* processing.
*
* If a domain is terminated, all its current and orphaned entries
* (and those of its threads) are moved to a global `orphans`
* list. This list, and its protective lock `orphans_lock`, are the
* only memprof global variables. No domain processes the entries in
* the global orphans list directly: the first domain to look at the
* list (either at a collection or when checking for pending
* callbacks) adopts all entry tables on it into its own orphans list,
* and then processes them as its own.
*
* 2. Synchronisation
*
* Mostly threads and domains are free to run callbacks on their own
* allocated blocks without explicitly synchronising. Care is taken
* not to assume that the memprof state of any given thread or entry
* in a domain is preserved outside of memprof code, as another thread
* in the same domain may run and modify that state, but we assume
* that the systhreads module effectively serializes entries to
* memprof within a single domain (for these purposes, entering and
* returning from a callback is treated as leaving and re-entering
* memprof code).
*
* However, there are some structures shared between domains. The main
* such structure is the profile configuration object on the Caml
* heap. The only field written in this object is the status field,
* used to communicate between domains sharing the profile, when a
* profile is stopped or discarded. This field is inspected or set
* atomically by the `Status` and `Set_status` macros. If a profile is
* found to be discarded (`CONFIG_STATUS_DISCARDED`) then no domain
* need take any action on it (and we can lazily discard any state
* from it).
*
* The only other data shared between domains is the global orphans
* list. As noted above, this is protected by a single global lock,
* `orphans_lock`. Because an entry table only gets onto the global
* orphans list when its owning domain terminates (at which point all
* threads of that domain have terminated), and a table is adopted
* from the global orphans list before being processed, all callbacks
* and other entry table processing is performed by a thread of the
* domain which owns the entry table. (and actions of those threads
* are serialized by `systhreads`).
*
* 3. Interface with GC
*
* 3.1. Root scanning
*
* Memprof may have a large number of strong GC roots: one per tracked
* block, pointing to the tracking information ('minor or 'major, in
* the Gc.Memprof.tracker sense), plus the pointer to a config block
* in every entries table. Rather than manually registering and
* deregistering all of these, the GC calls caml_memprof_scan_roots()
* to scan them, in either minor or major collections. This function
* is called by all domains in parallel. A single domain adopts any
* global orphaned entries tables, and then each domain scans its own
* roots.
*
* 3.2. Updating block status.
*
* After a major or minor GC, memprof has to check tracked blocks to
* discover whether they have survived the GC, or (for a minor GC)
* whether they have been promoted to the major heap. This is done by
* caml_memprof_after_minor_gc() and caml_memprof_after_major_gc(),
* which share the system for iterating over entries tables as used by
* caml_memprof_scan_roots(). Again, these functions are called by all
* domains in parallel; a single domain starts by adopting any global
* orphaned entries tables, and then each domain updates its own
* entries.
*
* 3.3. Compaction
*
* GC compaction may move all objects in the major heap, so all
* memprof roots must be scanned and potentially updated, including
* the weak roots (i.e. pointers to the tracked blocks). This is done
* by the same caml_memprof_scan_roots() function as root scanning in
* regular GCs, using a boolean argument to indicate that weak roots
* should also be scanned.
*
* 4. Random Number Generation
*
* 4.1. Requirements
*
* We sample every word of allocation with the same probability
* (lambda, usually very small) - a Bernoulli trial. For the
* allocation of a block on the shared heap, or any allocation from
* the C runtime, we need to know how many samples we make of that
* block (usually zero). This is a **binomial random variable**,
* parameterized by lambda and N (the number of words in the block,
* including the header).
*
* For allocations by Caml on the minor heap, we use the existing GC
* trigger mechanism, to cause Caml to enter the runtime when "the
* next sample" is due. The amount of allocation before "the next
* sample" is a **geometric random variable**, parameterized by
* lambda.
*
* 4.2. Implementation
*
* We focus on generating geometric pseudo-random numbers (PRNs), and
* simulate binomial PRNs for parameters (lambda, N) by counting
* geometric PRNs for lambda which sum to no more than N.
*
* We use a high-quality high-performance 32-bit uniform PRNG
* (xoshiro128+), with per-domain state vectors. We initialize the
* per-domain state vector with a low-quality PRNG (SplitMX64), seeded
* separately for each domain.
*
* To convert from a uniform PRN `u` to a geometric PRN `g`, we compute
*
* g = floor(1 + log(u) / log(1-lambda))
*
* where we treat u as uniformly distributed in [0,1]. We pre-compute
* 1/log(1-lambda) (called `one_log1m_lambda` here), and compute
* log(u) using a combination of type punning and a 3rd-degree
* polynomial (see `log_approx()`).
*
* For further efficiency we generate geometric PRNs in blocks, and
* the generating code is designed to be vectorizable.
*
* 5. Backtraces
*
* We have to be able to sample the current backtrace at any
* allocation point, and pass it (as a Caml array) to the allocation
* callback. We assume that in most cases these backtraces have short
* lifetimes, so we don't want to allocate them on the shared
* heap. However, we can't always allocate them directly on the Caml
* minor heap, as some allocations (e.g. allocating in the shared heap
* from the runtime) may take place at points at which GC is not safe
* (and so minor-heap allocation is not permitted). In those cases we
* "stash" the backtrace on the C heap, and copy it onto the Caml heap
* when we are about to call the allocation callback.
*
* 6. Sampling
*
* We sample allocation for all threads in a domain which has a
* currently sampling profile, except when such a thread is running a
* memprof callback, which "suspends" sampling on that thread.
*
* Allocation sampling divides into two cases: one simple and one
* complex.
*
* 6.1. Simple Sampling
*
* When sampling an allocation by the runtime (as opposed to
* allocation by Caml), an entry is added to the thread's entry table,
* for subsequent processing. No allocation callback is called at
* allocation time, because the heap may not be consistent so
* allocation by the callback is not safe (see "Backtraces").
*
* 6.2. Minor Heap Caml Allocation Sampling
*
* Caml code allocates on the minor heap by pointer-bumping, and only
* drops into the runtime if the `young_ptr` allocation pointer hits
* the `young_trigger`, usually triggering a garbage collection. When
* profiling, we set the trigger at the next word which we want to
* sample (see "Random Number Generation"), thus allowing us to enter
* memprof code at the approporiate allocation point. However,
* sampling the allocation is more complex in this case for several
* reasons:
*
* - Deferred allocation. A sampled block is not actually allocated
* until the runtime returns to the GC poll point in Caml code,
* after the memprof sampling code has run. So we have to predict
* the address of the sampled block for the entry record, to track
* its future promotion or collection. Until the allocation callback
* has run, instead of the allocated block address, the entry holds
* the offset in words of the block within the combined allocation,
* and the entry's `offset` field is set.
*
* - Combined allocations. A single GC poll point in Caml code may
* combine the allocation of several distinct blocks, each of which
* may be sampled independently. We create an entry for each sampled
* block and then run all allocation callbacks.
*
* - Prompt allocation callbacks. We call allocation callbacks
* directly from memprof as we sample the allocated blocks. These
* callbacks could be deferred (as are the ones in the "Simple
* Sampling" case), but that would require twice as many entries
* into memprof code. So the allocation callback is called before
* the sampled block is actually allocated (see above), and several
* allocation callbacks may be called at any given GC poll point
* (due to combined allocations). We take care to arrange heap
* metadata such that it is safe to run allocation callbacks (which
* may allocate and trigger minor and major GCs).
*
* - Other callbacks. In order to call the allocation callbacks from
* the poll point, we process the thread's entries table. This may
* call other callbacks for the same thread (specifically: deferred
* "Simple Sampling" callbacks).
*
* - Callback effects. Any callback may raise an exception, stop
* sampling, start a new profile, and/or discard a profile.
*
* If a callback raises an exception, none of the allocations from
* the current poll point will take place. However, some allocation
* callbacks may already have been called. If so, we mark those
* entries as "deallocated", so that matching deallocation callbacks
* will run. We simply delete any tracking entry from the current
* poll point which has not yet run an allocation callback. Then we
* propagate the exception up to Caml.
*
* If a callback stops sampling, subsequent allocations from the
* current poll point will not be sampled.
*
* If a callback stops sampling and starts a new profile, none of
* the allocations from the current poll point are subsequently
* tracked (through promotion and/or deallocation), as it's not
* possible to reconstruct the allocation addresses of the tracking
* entries, so they are simply deleted (or marked as deallocated, as
* in the exceptional case). The new profile effectively begins with
* the following poll point or other allocation.
*
* Most of this complexity is managed in caml_memprof_sample_young().
*
* 7. Callbacks
*
* Some callbacks are run at allocation time, for allocations from
* Caml (see under "Sampling" above). Other allocation callbacks, and
* all post-allocation callbacks, are run during
* `caml_memprof_run_callbacks_res()`, which is called by the
* runtime's general pending-action mechanism at poll points.
*
* We set the domain's action-pending flag when we notice we have
* pending callbacks. Caml drops into the runtime at a poll point, and
* calls `caml_memprof_run_callbacks_res()`, whenever the
* action-pending flag is set, whether or not memprof set it. So
* memprof maintains its own per-domain `pending` flag, to avoid
* suspending/unsuspending sampling, and checking all the entries
* tables, when there are no pending callbacks.
*
* This is particularly important because when we unsuspend sampling,
* we reset the young-limit, which has the side-effect of setting the
* domain's action-pending flag. TODO: consider changing
* `caml_reset_young_limit` so it doesn't do this.
*
* Allocation callbacks are always run by the thread which made the
* allocation, unless that thread terminates before running the
* callback, in which case it is inherited by the domain.
*
* Callbacks are run by iterating through candidate entries in a entry
* table. See under "Entries" above. A single entry may have more than
* one callback to run (if, for example, it has been promoted *and*
* garbage collected since the last time callbacks for that entry were
* run) - they are run in the natural order.
*/
/* number of random variables in a batch */
#define RAND_BLOCK_SIZE 64
/* type aliases for the hierarchy of structures for managing memprof status */
typedef struct entry_s entry_s, *entry_t;
typedef struct entries_s entries_s, *entries_t;
typedef struct memprof_domain_s memprof_domain_s, *memprof_domain_t;
typedef struct memprof_thread_s memprof_thread_s, *memprof_thread_t;
typedef struct memprof_orphan_table_s memprof_orphan_table_s,
*memprof_orphan_table_t;
/* A memprof configuration is held in an object on the Caml heap, of
* type Gc.Memprof.t. Here we define getter macros for each field, and
* a setter macro for the status field (which is updated). */
#define CONFIG_FIELDS 9
#define CONFIG_FIELD_STATUS 0
#define CONFIG_FIELD_LAMBDA 1
#define CONFIG_FIELD_1LOG1ML 2
#define CONFIG_FIELD_STACK_FRAMES 3
#define CONFIG_FIELD_ALLOC_MINOR 4
#define CONFIG_FIELD_ALLOC_MAJOR 5
#define CONFIG_FIELD_PROMOTE 6
#define CONFIG_FIELD_DEALLOC_MINOR 7
#define CONFIG_FIELD_DEALLOC_MAJOR 8
#define CONFIG_FIELD_FIRST_CALLBACK CONFIG_FIELD_ALLOC_MINOR
#define CONFIG_FIELD_LAST_CALLBACK CONFIG_FIELD_DEALLOC_MAJOR
#define CONFIG_STATUS_SAMPLING 0
#define CONFIG_STATUS_STOPPED 1
#define CONFIG_STATUS_DISCARDED 2
#define CONFIG_NONE Val_unit
#define Status(config) Int_val(Field(config, CONFIG_FIELD_STATUS))
#define Sampling(config) ((config != CONFIG_NONE) && \
(Status(config) == CONFIG_STATUS_SAMPLING))
/* The 'status' field is the only one we ever update. */
#define Set_status(config, stat) \
Store_field(config, CONFIG_FIELD_STATUS, Val_int(stat))
/* lambda: the fraction of allocated words to sample. 0 <= lambda <= 1 */
#define Lambda(config) \
Double_val(Field(config, CONFIG_FIELD_LAMBDA))
/* 1/ln(1-lambda), pre-computed for use in the geometric RNG */
#define One_log1m_lambda(config) \
Double_val(Field(config, CONFIG_FIELD_1LOG1ML))
/* If lambda is zero or very small, computing one_log1m_lambda
* underflows. It should always be treated as negative infinity in
* that case, (effectively turning sampling off). */
#define MIN_ONE_LOG1M_LAMBDA (-INFINITY)
#define Min_lambda(config) \
(One_log1m_lambda(config) == MIN_ONE_LOG1M_LAMBDA)
/* The number of stack frames to record for each allocation site */
#define Callstack_size(config) \
Int_val(Field(config, CONFIG_FIELD_STACK_FRAMES))
/* callbacks */
#define Alloc_minor(config) Field(config, CONFIG_FIELD_ALLOC_MINOR)
#define Alloc_major(config) Field(config, CONFIG_FIELD_ALLOC_MAJOR)
#define Promote(config) Field(config, CONFIG_FIELD_PROMOTE)
#define Dealloc_minor(config) Field(config, CONFIG_FIELD_DEALLOC_MINOR)
#define Dealloc_major(config) Field(config, CONFIG_FIELD_DEALLOC_MAJOR)
/* Callback indexes. "Major" and "minor" are not distinguished here. */
#define CB_NONE 0
#define CB_ALLOC 1
#define CB_PROMOTE 2
#define CB_DEALLOC 3
/* Maximum value of a callback index */
#define CB_MAX CB_DEALLOC
/* How many bits required for a callback index */
#define CB_BITS 2
/* the mask for a given callback index */
#define CB_MASK(cb) (1 << ((cb) - 1))
/* Structure for each tracked allocation. Six words (with many spare
* bits in the final word). */
struct entry_s {
/* Memory block being sampled. This is a weak GC root. Note that
* during the allocation callback of a block allocated directly by OCaml,
* this may be a comballoc offset (and the `offset` flag set). */
value block;
/* The value returned by the previous callback for this block, or
* the callstack (as a value-tagged pointer to the C heap) if the
* alloc callback has not been called yet. This is a strong GC
* root. */
value user_data;
/* Number of samples in this block. */
size_t samples;
/* The size of this block, in words (not including the header). */
size_t wosize;
/* The thread currently running a callback for this entry,
* or NULL if there is none */
memprof_thread_t runner;
/* The source of the allocation: normal allocations, interning,
* or custom_mem (CAML_MEMPROF_SRC_*). */
unsigned int source : 2;
/* Is `block` actually an offset? */
bool offset : 1;
/* Was this block initially allocated in the minor heap? */
bool alloc_young : 1;
/* Has this block been promoted? Implies [alloc_young]. */
bool promoted : 1;
/* Has this block been deallocated? */
bool deallocated : 1;
/* Has this entry been marked for deletion. */
bool deleted : 1;
/* Which callback (CB_*) is currently running for this entry.
* Useful when debugging. */
unsigned int callback : CB_BITS;
/* A mask of callbacks (1 << (CB_* - 1)) which have been called (not
* necessarily completed) for this entry. */
unsigned int callbacks : CB_MAX;
/* There are a number of spare bits here for future expansion,
* without increasing the size of an entry */
};
/* A resizable array of entry_s entries. */
struct entries_s {
entry_t t; /* Pointer to array of entry_s structures */
size_t min_capacity, capacity, size; /* array allocation management */
/* Before this position, the [block] and [user_data] fields both
* point to the major heap ([young <= size]). */
size_t young;
/* There are no blocks to be evicted before this position
* ([evict <= size]). */
size_t evict;
/* There are no pending callbacks before this position
* ([active <= size]). */
size_t active;
/* The profiling configuration under which these blocks were
* allocated. A strong GC root. */
value config;
};
/* Per-thread memprof state. */
/* Minimum capacity of a per-thread entries array */
#define MIN_ENTRIES_THREAD_CAPACITY 16
/* Minimum capacity of a per-domain entries array */
#define MIN_ENTRIES_DOMAIN_CAPACITY 128
/* Minimum capacity of an orphaned entries array */
#define MIN_ENTRIES_ORPHAN_CAPACITY 16
struct memprof_thread_s {
/* [suspended] is used for inhibiting memprof callbacks when
a callback is running or when an uncaught exception handler is
called. */
bool suspended;
/* The index of the entry in `running_table` for which this thread is
* currently in a callback */
size_t running_index;
/* Pointer to entries table for the current callback, or NULL if not
* currently running a callback. */
entries_t running_table;
/* Entries for blocks allocated in this thread whose alloc callback
* has not yet been called. */
entries_s entries;
/* Per-domain memprof information */
memprof_domain_t domain;
/* Linked list of thread structures for this domain. Could use a
* doubly-linked list for performance, but I haven't measured it. */
memprof_thread_t next;
};
/* Per-domain memprof state */
struct memprof_domain_s {
/* The owning domain */
caml_domain_state *caml_state;
/* Tracking entries for this domain. In the usual case these are
* entries allocated by a thread in this domain for which the
* allocation callback has returned: the entry is then transferred
* to this per-domain table. However, this table will also include
* entries for threads in this domain which terminated before
* calling the allocation callback. entries.config is the current
* memprof configuration for this domain. */
entries_s entries;
/* Orphaned entries - either from previous profiles run in this
* domain or adopted from terminated domains. */
memprof_orphan_table_t orphans;
/* true if there may be callbacks to be processed on the orphans list. */
bool orphans_pending;
/* true if there may be any callbacks pending for this domain */
bool pending;
/* Linked list of threads in this domain */
memprof_thread_t threads;
/* The current thread's memprof state. */
memprof_thread_t current;
/* Buffer used to compute backtraces */
backtrace_slot *callstack_buffer;
size_t callstack_buffer_len;
/* ---- random number generation state ---- */
/* RAND_BLOCK_SIZE separate xoshiro+128 state vectors, defined in this
* column-major order so that SIMD-aware compilers can parallelize the
* algorithm. */
uint32_t xoshiro_state[4][RAND_BLOCK_SIZE];
/* Array of computed geometric random variables */
uintnat rand_geom_buff[RAND_BLOCK_SIZE];
uint32_t rand_pos;
/* Surplus amount of the current sampling distance, not consumed by
* previous allocations. Still a legitimate sample of a geometric
* random variable. */
uintnat next_rand_geom;
};
struct memprof_orphan_table_s {
/* An orphaned entries table */
entries_s entries;
/* next orphaned table in a linked list. */
memprof_orphan_table_t next;
};
/* List of orphaned entry tables not yet adopted by any domain. */
static memprof_orphan_table_t orphans = NULL;
/* lock controlling access to `orphans` and writes to `orphans_present` */
static caml_plat_mutex orphans_lock = CAML_PLAT_MUTEX_INITIALIZER;
/* Flag indicating non-NULL orphans. Only modified when holding orphans_lock. */
static atomic_uintnat orphans_present;
/**** Initializing and clearing entries tables ****/
static void entries_init(entries_t es, size_t min_capacity, value config)
{
es->t = NULL;
es->min_capacity = min_capacity;
es->capacity = es->size = es->young = es->evict = es->active = 0;
es->config = config;
}
static void entries_clear(entries_t es)
{
if (es->t) {
caml_stat_free(es->t);
es->t = NULL;
}
es->capacity = es->size = es->young = es->evict = es->active = 0;
es->config = CONFIG_NONE;
}
/**** Managing entries. ****/
/* When an entries table needs to grow, grow it by this factor */
#define ENTRIES_GROWTH_FACTOR 2
/* Do not shrink an entries table until it is this much too large */
#define ENTRIES_SHRINK_FACTOR 4
/* Reallocate the [es] entries table if it is either too small or too
* large. [grow] is the number of free cells needed.
* Returns false if reallocation was necessary but failed, and truer
* otherwise. */
static bool entries_ensure(entries_t es, size_t grow)
{
if (es->capacity == 0 && grow == 0) {
/* Don't want min_capacity for an unused table. */
return true;
}
size_t new_size = es->size + grow;
if (new_size <= es->capacity &&
(ENTRIES_SHRINK_FACTOR * new_size >= es->capacity ||
es->capacity == es->min_capacity)) {
/* No need to grow or shrink */
return true;
}
size_t new_capacity = new_size * ENTRIES_GROWTH_FACTOR;
if (new_capacity < es->min_capacity)
new_capacity = es->min_capacity;
entry_t new_t = caml_stat_resize_noexc(es->t, new_capacity * sizeof(entry_s));
if (new_t == NULL) return false;
es->t = new_t;
es->capacity = new_capacity;
return true;
}
#define Invalid_index (~(size_t)0)
/* Create and initialize a new entry in an entries table, and return
* its index (or Invalid_index if allocation fails). */
Caml_inline size_t new_entry(entries_t es,
value block, value user_data,
size_t wosize, size_t samples,
int source, bool is_young,
bool offset)
{
if (!entries_ensure(es, 1))
return Invalid_index;
size_t i = es->size ++;
entry_t e = es->t + i;
e->block = block;
e->user_data = user_data;
e->samples = samples;
e->wosize = wosize;
e->runner = NULL;
e->source = source;
e->offset = offset;
e->alloc_young = is_young;
e->promoted = false;
e->deallocated = false;
e->deleted = false;
e->callback = CB_NONE;
e->callbacks = 0;
return i;
}
/* Mark a given entry in an entries table as "deleted". Do not call on
* an entry with a currently-running callback. */
static void entry_delete(entries_t es, size_t i)
{
entry_t e = &es->t[i];
CAMLassert(!e->runner);
e->deleted = true;
e->offset = false;
e->user_data = Val_unit;
e->block = Val_unit;
if (i < es->evict) es->evict = i;
}
/* Remove any deleted entries from [es], updating [es->young] and
* [es->active] if necessary. */
static void entries_evict(entries_t es)
{
size_t i, j;
/* The obvious linear compaction algorithm */
j = i = es->evict;
while (i < es->size) {
if (!es->t[i].deleted) { /* keep this entry */
if (i != j) {
es->t[j] = es->t[i];
if (es->t[i].runner) {
memprof_thread_t runner = es->t[i].runner;
CAMLassert(runner->running_table == es);
CAMLassert(runner->running_index == i);
runner->running_index = j;
}
}
++ j;
}
++ i;
if (es->young == i) es->young = j;
if (es->active == i) es->active = j;
}
es->evict = es->size = j;
CAMLassert(es->active <= es->size);
CAMLassert(es->young <= es->size);
entries_ensure(es, 0);
}
/* Remove any offset entries from [es]. Ones which have completed an
* allocation callback but not a deallocation callback are marked as
* deallocated. Others are marked as deleted.
*
* This is called before moving entries from a thread's entries table
* to that of the domain, when we're about to orphan all the domain's
* entries. This can occur if we stop a profile and start another one
* during an allocation callback (either directly in the callback or
* on another thread while the callback is running). We'll never be
* able to connect an offset entry to its allocated block (the block
* will not be actually allocated until the callback completes, if at
* all), but some callbacks may already have been run for it. If no
* callbacks have been run, we simply mark the entry as deleted. If
* the allocation callback has been run, the best we can do is
* probably to fake deallocating the block, so that alloc/dealloc
* callback counts correspond.
*
* Note: no callbacks apart from the allocation callback can run on an
* offset entry (as the block has not yet been allocated, it cannot be
* promoted or deallocated). */
static void entries_clear_offsets(entries_t es)
{
for (size_t i = 0; i < es->size; ++i) {
entry_t e = &es->t[i];
if (e->offset) {
if (e->callbacks & CB_MASK(CB_ALLOC)) {
/* Have called just the allocation callback */
CAMLassert(e->callbacks == CB_MASK(CB_ALLOC));
e->block = Val_unit;
e->offset = false;
e->deallocated = true;
if (i < es->active) es->active = i;
} else {
/* Haven't yet called any callbacks */
CAMLassert(e->runner == NULL);
CAMLassert(e->callbacks == 0);
entry_delete(es, i);
}
}
}
entries_evict(es);
}
/* Remove any entries from [es] which are not currently running a
* callback. */
static void entries_clear_inactive(entries_t es)
{
CAMLassert (es->config == CONFIG_NONE);
for (size_t i = 0; i < es->size; ++i) {
if (es->t[i].runner == NULL) {
entry_delete(es, i);
}
}
entries_evict(es);
}
static value validated_config(entries_t es);
/* Transfer all entries from one entries table to another, excluding
* ones which have not run any callbacks (these are deleted).
* Return `false` if allocation fails. */
static bool entries_transfer(entries_t from, entries_t to)
{
if (from->size == 0)
return true;
(void)validated_config(from); /* For side-effect, so we can check ... */
(void)validated_config(to); /* ... that the configs are equal. */
CAMLassert(from->config == to->config);
if (!entries_ensure(to, from->size))
return false;
size_t delta = to->size;
to->size += from->size;
for (size_t i = 0; i < from->size; ++i) {
if (from->t[i].callbacks == 0) {
/* Very rare: transferring an entry which hasn't called its
* allocation callback. We just delete it. */
entry_delete(from, i);
}
to->t[i + delta] = from->t[i];
memprof_thread_t runner = from->t[i].runner;
if (runner) { /* unusual */
CAMLassert(runner->running_table == from);
CAMLassert(runner->running_index == i);
runner->running_table = to;
runner->running_index = i + delta;
}
}
if (to->young == delta) {
to->young = from->young + delta;
}
if (to->evict == delta) {
to->evict = from->evict + delta;
}
if (to->active == delta) {
to->active = from->active + delta;
}
/* Reset `from` to empty, and allow it to shrink */
from->young = from->evict = from->active = from->size = 0;
entries_ensure(from, 0);
return true;
}
/* If es->config points to a DISCARDED configuration, update
* es->config to CONFIG_NONE. Return es->config. */
static value validated_config(entries_t es)
{
if ((es->config != CONFIG_NONE) &&
(Status(es->config) == CONFIG_STATUS_DISCARDED)) {
es->config = CONFIG_NONE;
entries_clear_inactive(es);
}
return es->config;
}
/* Return current sampling configuration for a thread. If it's been
* discarded, then reset it to CONFIG_NONE and return that. */
static value thread_config(memprof_thread_t thread)
{
return validated_config(&thread->entries);
}
/*** Create and destroy orphan tables ***/
/* Orphan any surviving entries from a domain or its threads (after
* first discarding any deleted and offset entries), onto the domain's
* orphans list. This copies the domain's table itself, to avoid
* copying the potentially live array.
*
* Returns false if allocation fails, true otherwise. */
static bool orphans_create(memprof_domain_t domain)
{
/* Clear offset entries and count survivors in threads tables. */
size_t total_size = 0;
memprof_thread_t thread = domain->threads;
while (thread) {
entries_clear_offsets(&thread->entries);
total_size += thread->entries.size;
thread = thread->next;
}
entries_t es = &domain->entries;
entries_evict(es); /* remove deleted entries */
total_size += es->size;
if (!total_size) /* No entries to orphan */
return true;
memprof_orphan_table_t ot = caml_stat_alloc(sizeof(memprof_orphan_table_s));
if (!ot)
return false;
entries_init(&ot->entries, MIN_ENTRIES_ORPHAN_CAPACITY,
domain->entries.config);
if (!entries_ensure(&ot->entries, total_size)) {
/* Couldn't allocate entries table - failure */
caml_stat_free(ot);
return false;
}
/* Orphan surviving entries; these transfers will succeed
* because we pre-sized the table. */
(void)entries_transfer(&domain->entries, &ot->entries);
thread = domain->threads;
while(thread) {
/* May discard entries which haven't run allocation callbacks */
(void)entries_transfer(&thread->entries, &ot->entries);
thread = thread->next;
}
ot->next = domain->orphans;
domain->orphans = ot;
return true;
}
/* Abandon all a domain's orphans to the global list. */
static void orphans_abandon(memprof_domain_t domain)
{
/* Find the end of the domain's orphans list */
memprof_orphan_table_t ot = domain->orphans;
if (!ot)
return;
while(ot->next) {
ot = ot->next;
}
caml_plat_lock_blocking(&orphans_lock);
ot->next = orphans;
orphans = domain->orphans;
atomic_store_release(&orphans_present, 1);
caml_plat_unlock(&orphans_lock);
domain->orphans = NULL;
}
/* Adopt all global orphans to the given domain. */
static void orphans_adopt(memprof_domain_t domain)
{
if (!atomic_load_acquire(&orphans_present))
return; /* No orphans to adopt */
/* Find the end of the domain's orphans list */
memprof_orphan_table_t *p = &domain->orphans;
while(*p) {
p = &(*p)->next;
}
caml_plat_lock_blocking(&orphans_lock);
if (orphans) {
*p = orphans;
orphans = NULL;
atomic_store_release(&orphans_present, 0);
}
caml_plat_unlock(&orphans_lock);
}
/* Destroy an orphan table. */
static void orphans_destroy(memprof_orphan_table_t ot)
{
entries_clear(&ot->entries);
caml_stat_free(ot);
}
/* Traverse a domain's orphans list, clearing inactive entries from
* discarded tables and removing any table which is empty, and update
* the orphans_pending flag. */
static void orphans_update_pending(memprof_domain_t domain)
{
memprof_orphan_table_t *p = &domain->orphans;
bool pending = false;
while(*p) {
memprof_orphan_table_t ot = *p;
memprof_orphan_table_t next = ot->next;
value config = validated_config(&ot->entries);
if (config == CONFIG_NONE) { /* remove inactive entries */
entries_clear_inactive(&ot->entries);
}
if (ot->entries.size == 0) {
orphans_destroy(ot);
*p = next;
} else { /* any pending entries in this table? */
pending |= (ot->entries.active < ot->entries.size);
p = &ot->next;
}
}
domain->orphans_pending = pending;
}
/**** Statistical sampling ****/
/* We use a low-quality SplitMix64 PRNG to initialize state vectors
* for a high-quality high-performance 32-bit PRNG (xoshiro128+). That
* PRNG generates uniform random 32-bit numbers, which we use in turn
* to generate geometric random numbers parameterized by [lambda].
* This is all coded in such a way that compilers can readily use SIMD
* optimisations. */
/* splitmix64 PRNG, used to initialize the xoshiro+128 state
* vectors. Closely based on the public-domain implementation
* by Sebastiano Vigna https://xorshift.di.unimi.it/splitmix64.c */
Caml_inline uint64_t splitmix64_next(uint64_t* x)
{
uint64_t z = (*x += 0x9E3779B97F4A7C15ull);
z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ull;
z = (z ^ (z >> 27)) * 0x94D049BB133111EBull;
return z ^ (z >> 31);
}
/* Initialize all the xoshiro+128 state vectors. */
static void xoshiro_init(memprof_domain_t domain, uint64_t seed)
{
uint64_t splitmix64_state = seed;
for (int i = 0; i < RAND_BLOCK_SIZE; i++) {
uint64_t t = splitmix64_next(&splitmix64_state);
domain->xoshiro_state[0][i] = t & 0xFFFFFFFF;
domain->xoshiro_state[1][i] = t >> 32;
t = splitmix64_next(&splitmix64_state);
domain->xoshiro_state[2][i] = t & 0xFFFFFFFF;
domain->xoshiro_state[3][i] = t >> 32;
}
}
/* xoshiro128+ PRNG. See Blackman & Vigna; "Scrambled linear
* pseudorandom number generators"; ACM Trans. Math. Softw., 47:1-32,
* 2021:
* "xoshiro128+ is our choice for 32-bit floating-point generation." */
Caml_inline uint32_t xoshiro_next(memprof_domain_t domain, int i)
{
uint32_t res = domain->xoshiro_state[0][i] + domain->xoshiro_state[3][i];
uint32_t t = domain->xoshiro_state[1][i] << 9;
domain->xoshiro_state[2][i] ^= domain->xoshiro_state[0][i];
domain->xoshiro_state[3][i] ^= domain->xoshiro_state[1][i];
domain->xoshiro_state[1][i] ^= domain->xoshiro_state[2][i];
domain->xoshiro_state[0][i] ^= domain->xoshiro_state[3][i];
domain->xoshiro_state[2][i] ^= t;
t = domain->xoshiro_state[3][i];
domain->xoshiro_state[3][i] = (t << 11) | (t >> 21);
return res;
}
/* Computes [log((y+0.5)/2^32)], up to a relatively good precision,
* and guarantee that the result is negative, in such a way that SIMD
* can parallelize it. The average absolute error is very close to
* 0.
*
* Uses a type pun to break y+0.5 into biased exponent `exp` (an
* integer-valued float in the range [126, 159]) and mantissa `x` (a
* float in [1,2)). This may discard up to eight low bits of y.
*
* Then y+0.5 = x * 2^(exp-127), so if f(x) ~= log(x) - 159*log(2),
* log((y+0.5)/2^32) ~= f(x) + exp * log(2).
*
* We use sollya to find the unique degree-3 polynomial f such that :
*
* - Its average value is that of log(x) - 159*log(2) for x in [1, 2)
* (so the sampling has the right mean when lambda is small).
* - f(1) = f(2) - log(2), so the approximation is continuous.
* - The error at x=1 is -1e-5, so the approximation is always negative.
* - The maximum absolute error is minimized in [1, 2) (the actual
* maximum absolute error is around 7e-4). */
Caml_inline float log_approx(uint32_t y)
{
union { float f; int32_t i; } u;
u.f = y + 0.5f;
float exp = (float)(u.i >> 23);
u.i = (u.i & 0x7FFFFF) | 0x3F800000;
float x = u.f;
return (-111.70172433407f +
x * (2.104659476859f +
x * (-0.720478916626f +
x * 0.107132064797f)) +
0.6931471805f * exp);
}
/* This function regenerates [RAND_BLOCK_SIZE] geometric random
* variables at once. Doing this by batches help us gain performances:
* many compilers (e.g., GCC, CLang, ICC) will be able to use SIMD
* instructions to get a performance boost. */
#ifdef SUPPORTS_TREE_VECTORIZE
__attribute__((optimize("tree-vectorize")))
#endif
static void rand_batch(memprof_domain_t domain)
{
float one_log1m_lambda = One_log1m_lambda(domain->entries.config);
/* Instead of using temporary buffers, we could use one big loop,
but it turns out SIMD optimizations of compilers are more fragile
when using larger loops. */
uint32_t A[RAND_BLOCK_SIZE];
float B[RAND_BLOCK_SIZE];
/* Generate uniform variables in A using the xoshiro128+ PRNG. */
for (int i = 0; i < RAND_BLOCK_SIZE; i++)
A[i] = xoshiro_next(domain, i);
/* Generate exponential random variables by computing logarithms. */
for (int i = 0; i < RAND_BLOCK_SIZE; i++)
B[i] = 1 + log_approx(A[i]) * one_log1m_lambda;
/* We do the final flooring for generating geometric
variables. Compilers are unlikely to use SIMD instructions for
this loop, because it involves a conditional and variables of
different sizes (32 and 64 bits). */
for (int i = 0; i < RAND_BLOCK_SIZE; i++) {
double f = B[i];
CAMLassert (f >= 1);
/* [Max_long+1] is a power of two => no rounding in the test. */
if (f >= Max_long+1)
domain->rand_geom_buff[i] = Max_long;
else domain->rand_geom_buff[i] = (uintnat)f;
}
domain->rand_pos = 0;
}
/* Simulate a geometric random variable of parameter [lambda].
* The result is clipped in [1..Max_long] */
static uintnat rand_geom(memprof_domain_t domain)
{
uintnat res;
CAMLassert(One_log1m_lambda(domain->entries.config) <= 0.);
if (domain->rand_pos == RAND_BLOCK_SIZE)
rand_batch(domain);
res = domain->rand_geom_buff[domain->rand_pos++];
CAMLassert(1 <= res);
CAMLassert(res <= Max_long);
return res;
}
/* Initialize per-domain PRNG, so we're ready to sample. */
static void rand_init(memprof_domain_t domain)
{
domain->rand_pos = RAND_BLOCK_SIZE;
if (domain->entries.config != CONFIG_NONE
&& !Min_lambda(domain->entries.config)) {
/* next_rand_geom can be zero if the next word is to be sampled,
* but rand_geom always returns a value >= 1. Subtract 1 to correct. */
domain->next_rand_geom = rand_geom(domain) - 1;
}
}
/* Simulate a binomial random variable of parameters [len] and
* [lambda]. This tells us how many times a single block allocation is
* sampled. This sampling algorithm has running time linear with [len
* * lambda]. We could use a more involved algorithm, but this should
* be good enough since, in the typical use case, [lambda] << 0.01 and
* therefore the generation of the binomial variable is amortized by
* the initialialization of the corresponding block.
*
* If needed, we could use algorithm BTRS from the paper:
* Hormann, Wolfgang. "The generation of binomial random variates."
* Journal of statistical computation and simulation 46.1-2 (1993), pp101-110.
*/
static uintnat rand_binom(memprof_domain_t domain, uintnat len)
{
uintnat res;
CAMLassert(len < Max_long);
for (res = 0; domain->next_rand_geom < len; res++)
domain->next_rand_geom += rand_geom(domain);
domain->next_rand_geom -= len;
return res;
}
/**** Create and destroy thread state structures ****/
/* Create a thread state structure attached to `domain`. */
static memprof_thread_t thread_create(memprof_domain_t domain)
{
memprof_thread_t thread = caml_stat_alloc(sizeof(memprof_thread_s));
if (!thread) {
return NULL;
}
thread->suspended = false;
thread->running_index = 0;
thread->running_table = NULL;
entries_init(&thread->entries, MIN_ENTRIES_THREAD_CAPACITY,
domain->entries.config);
/* attach to domain record */
thread->domain = domain;
thread->next = domain->threads;
domain->threads = thread;
return thread;
}
/* Destroy a thread state structure. If the thread's entries table is
* not empty (because allocation failed when transferring it to the
* domain) then its entries will be lost. */
static void thread_destroy(memprof_thread_t thread)
{
memprof_domain_t domain = thread->domain;
/* A thread cannot be destroyed while inside a callback, as
* Thread.exit works by raising an exception, taking us out of the
* callback, and a domain won't terminate while any thread is
* alive. */
CAMLassert (!thread->running_table);
/* We would like to assert (thread->entries.size == 0), but this may
* not be true if allocation failed when transferring the thread's
* entries to its domain (in which case we are about to lose those
* entries. */
entries_clear(&thread->entries);
if (domain->current == thread) {
domain->current = NULL;
}
/* remove thread from the per-domain list. Could go faster if we
* used a doubly-linked list, but that's premature optimisation
* at this point. */
memprof_thread_t *p = &domain->threads;
while (*p != thread) {
CAMLassert(*p); /* checks that thread is on the list */
p = &(*p)->next;
}
*p = thread->next;
caml_stat_free(thread);
}
/**** Create and destroy domain state structures ****/
/* Destroy a domain state structure. In the usual case, this will
* orphan any entries belonging to the domain or its threads onto the
* global orphans list. However, if there is an allocation failure,
* some or all of those entries may be lost. */
static void domain_destroy(memprof_domain_t domain)
{
/* Orphan any entries from the domain or its threads, then abandon
* all orphans to the global table. If creating the orphans table
* fails due to allocation failure, we lose the entries. */
(void)orphans_create(domain);
orphans_abandon(domain);
/* Destroy thread structures */
memprof_thread_t thread = domain->threads;
while (thread) {
memprof_thread_t next = thread->next;
thread_destroy(thread);
thread = next;
}
entries_clear(&domain->entries); /* In case allocation failed */
caml_stat_free(domain->callstack_buffer);
caml_stat_free(domain);
}
/* Create a domain state structure */
static memprof_domain_t domain_create(caml_domain_state *caml_state)
{
memprof_domain_t domain = caml_stat_alloc(sizeof(memprof_domain_s));
if (!domain) {
return NULL;
}
domain->caml_state = caml_state;
entries_init(&domain->entries, MIN_ENTRIES_DOMAIN_CAPACITY, CONFIG_NONE);
domain->orphans = NULL;
domain->orphans_pending = false;
domain->pending = false;
domain->threads = NULL;
domain->current = NULL;
domain->callstack_buffer = NULL;
domain->callstack_buffer_len = 0;
/* create initial thread for domain */
memprof_thread_t thread = thread_create(domain);
if (thread) {
domain->current = thread;
} else {
domain_destroy(domain);
domain = NULL;
}
return domain;
}
/**** Interface with domain action-pending flag ****/
/* If a domain has some callbacks pending, and isn't currently
* suspended, set the action pending flag. */
static void set_action_pending_as_needed(memprof_domain_t domain)
{
CAMLassert(domain->current);
if (domain->current->suspended) return;
domain->pending = (domain->entries.active < domain->entries.size ||
domain->current->entries.size > 0 ||
domain->orphans_pending);
if (domain->pending) {
caml_set_action_pending(domain->caml_state);
}
}
/* Set the suspended flag on `domain` to `s`. Has the side-effect of
* setting the trigger. */
static void update_suspended(memprof_domain_t domain, bool s)
{
CAMLassert(domain->current);
domain->current->suspended = s;
/* If we are unsuspending, set the action-pending flag if
* we have callbacks to run. */
if (!s) set_action_pending_as_needed(domain);
caml_memprof_set_trigger(domain->caml_state);
caml_reset_young_limit(domain->caml_state);
}
/* Set the suspended flag on the current domain to `s`.
* Has the side-effect of setting the trigger. */
void caml_memprof_update_suspended(bool s) {
CAMLassert(Caml_state->memprof);
update_suspended(Caml_state->memprof, s);
}
/**** Iterating over entries ****/
/* Type of a function to apply to a single entry. Returns true if,
* following the call, the entry may have a newly-applicable
* callback. */
typedef bool (*entry_action)(entry_t, void *);
/* Type of a function to apply to an entries array after iterating
* over the entries. */
typedef void (*entries_action)(entries_t, void *);
/* Iterate an entry_action over entries in a single entries table,
* followed by an (optional) entries_action on the whole table. If
* `young` is true, only apply to possibly-young entries (usually a
* small number of entries, often zero).
*
* This function validates the entries table configuration (which
* changes it to NONE if DISCARDED). If then it is NONE, this function
* does nothing else.
*
* Assumes that calling `f` does not change entry table indexes. */
static void entries_apply_actions(entries_t entries, bool young,
entry_action f, void *data,
entries_action after)
{
value config = validated_config(entries);
if (config == CONFIG_NONE) {
return;
}
for (size_t i = young ? entries->young : 0; i < entries->size; ++i) {
if (f(&entries->t[i], data) && entries->active > i) {
entries->active = i;
}
}
if (after) {
after(entries, data);
}
}
/* Iterate entry_action/entries_action over all entries managed by a
* single domain (including those managed by its threads).
*
* Assumes that calling `f` does not modify entry table indexes. */
static void domain_apply_actions(memprof_domain_t domain, bool young,
entry_action f, void *data,
entries_action after)
{
entries_apply_actions(&domain->entries, young, f, data, after);
memprof_thread_t thread = domain->threads;
while (thread) {
entries_apply_actions(&thread->entries, young, f, data, after);
thread = thread->next;
}
memprof_orphan_table_t ot = domain->orphans;
while (ot) {
entries_apply_actions(&ot->entries, young, f, data, after);
ot = ot->next;
}
}
/**** GC interface ****/
/* Root scanning */
struct scan_closure {
scanning_action f;
scanning_action_flags fflags;
void *fdata;
bool weak;
};
/* An entry_action to scan roots */
static bool entry_scan(entry_t e, void *data)
{
struct scan_closure *closure = data;
closure->f(closure->fdata, e->user_data, &e->user_data);
if (closure->weak && !e->offset && (e->block != Val_unit)) {
closure->f(closure->fdata, e->block, &e->block);
}
return false;
}
/* An entries_action to scan the config root */
static void entries_finish_scan(entries_t es, void *data)
{
struct scan_closure *closure = data;
closure->f(closure->fdata, es->config, &es->config);
}
/* Function called by either major or minor GC to scan all the memprof roots */
void caml_memprof_scan_roots(scanning_action f,
scanning_action_flags fflags,
void* fdata,
caml_domain_state *state,
bool weak)
{
memprof_domain_t domain = state->memprof;
CAMLassert(domain);
/* Adopt all global orphans into this domain. */
orphans_adopt(domain);
bool young = (fflags & SCANNING_ONLY_YOUNG_VALUES);
struct scan_closure closure = {f, fflags, fdata, weak};
domain_apply_actions(domain, young,
entry_scan, &closure, entries_finish_scan);
}
/* Post-GC actions: we have to notice when tracked blocks die or get promoted */
/* An entry_action to update a single entry after a minor GC. Notices
* when a young tracked block has died or been promoted. */
static bool entry_update_after_minor_gc(entry_t e, void *data)
{
(void)data;
CAMLassert(Is_block(e->block)
|| e->deleted || e->deallocated || e->offset);
if (!e->offset && Is_block(e->block) && Is_young(e->block)) {
if (Hd_val(e->block) == 0) {
/* Block has been promoted */
e->block = Field(e->block, 0);
e->promoted = true;
} else {
/* Block is dead */
e->block = Val_unit;
e->deallocated = true;
}
return true; /* either promotion or deallocation callback */
}
return false; /* no callback triggered */
}
/* An entries_action for use after a minor GC. */
static void entries_update_after_minor_gc(entries_t entries,
void *data)
{
(void)data;
/* There are no 'young' entries left */
entries->young = entries->size;
}
/* Update all memprof structures for a given domain, at the end of a
* minor GC. */
void caml_memprof_after_minor_gc(caml_domain_state *state)
{
memprof_domain_t domain = state->memprof;
CAMLassert(domain);
/* Adopt all global orphans into this domain. */
orphans_adopt(domain);
domain_apply_actions(domain, true, entry_update_after_minor_gc,
NULL, entries_update_after_minor_gc);
orphans_update_pending(domain);
set_action_pending_as_needed(domain);
}
/* An entry_action to update a single entry after a major GC. Notices
* when a tracked block has died. */
static bool entry_update_after_major_gc(entry_t e, void *data)
{
(void)data;
CAMLassert(Is_block(e->block)
|| e->deleted || e->deallocated || e->offset);
if (!e->offset && Is_block(e->block) && !Is_young(e->block)) {
/* Either born in the major heap or promoted */
CAMLassert(!e->alloc_young || e->promoted);
if (is_unmarked(e->block)) { /* died */
e->block = Val_unit;
e->deallocated = true;
return true; /* trigger deallocation callback */
}
}
return false; /* no callback triggered */
}
/* Note: there's nothing to be done at the table level after a major
* GC (unlike a minor GC, when we reset the 'young' index), so there
* is no "entries_update_after_major_gc" function. */
/* Update all memprof structures for a given domain, at the end of a
* major GC. */
void caml_memprof_after_major_gc(caml_domain_state *state)
{
memprof_domain_t domain = state->memprof;
CAMLassert(domain);
/* Adopt all global orphans into this domain. */
orphans_adopt(domain);
domain_apply_actions(domain, false, entry_update_after_major_gc,
NULL, NULL);
orphans_update_pending(domain);
set_action_pending_as_needed(domain);
}
/**** Interface to domain module ***/
void caml_memprof_new_domain(caml_domain_state *parent,
caml_domain_state *child)
{
memprof_domain_t domain = domain_create(child);
child->memprof = domain;
if (domain == NULL) /* failure - domain creation will fail */
return;
/* domain inherits configuration from parent */
if (parent) {
CAMLassert(parent->memprof);
CAMLassert(domain->current);
domain->current->entries.config =
domain->entries.config =
parent->memprof->entries.config;
}
/* Initialize RNG */
xoshiro_init(domain, (uint64_t)child->id);
/* If already profiling, set up RNG */
rand_init(domain);
}
void caml_memprof_delete_domain(caml_domain_state *state)
{
CAMLassert(state->memprof);
domain_destroy(state->memprof);
state->memprof = NULL;
}
/**** Capturing the call stack *****/
/* A "stashed" callstack, allocated on the C heap. */
typedef struct {
size_t frames;
backtrace_slot stack[];
} callstack_stash_s, *callstack_stash_t;
/* How large a callstack buffer must be to be considered "large" */
#define CALLSTACK_BUFFER_LARGE 256
/* How much larger a callstack buffer must be, compared to the most
* recent callstack, to be considered large. */
#define CALLSTACK_BUFFER_FACTOR 8
/* If the per-domain callstack buffer is "large" and we've only used a
* small part of it, free it. This saves us from C heap bloat due to
* unbounded lifetime of the callstack buffers (as callstacks may
* sometimes be huge). */
static void shrink_callstack_buffer(memprof_domain_t domain, size_t frames)
{
if (domain->callstack_buffer_len > CALLSTACK_BUFFER_LARGE &&
domain->callstack_buffer_len > frames * CALLSTACK_BUFFER_FACTOR) {
caml_stat_free(domain->callstack_buffer);
domain->callstack_buffer = NULL;
domain->callstack_buffer_len = 0;
}
}
/* Capture the call stack when sampling an allocation from the
* runtime. We don't have to account for combined allocations
* (Comballocs) but we can't allocate the resulting stack on the Caml
* heap, because the heap may be in an invalid state so we can't cause
* a GC. Therefore, we capture the callstack onto the C heap, and will
* copy it onto the Caml heap later, when we're ready to call the
* allocation callback. The callstack is returned as a Val_ptr value
* (or an empty array, if allocation fails). */
static value capture_callstack_no_GC(memprof_domain_t domain)
{
value res = Atom(0); /* empty array. */
size_t frames =
caml_get_callstack(Callstack_size(domain->entries.config),
&domain->callstack_buffer,
&domain->callstack_buffer_len, -1);
if (frames) {
callstack_stash_t stash = caml_stat_alloc_noexc(sizeof(callstack_stash_s)
+ frames * sizeof(value));
if (stash) {
stash->frames = frames;
memcpy(stash->stack, domain->callstack_buffer,
sizeof(backtrace_slot) * frames);
res = Val_ptr(stash);
}
}
shrink_callstack_buffer(domain, frames);
return res;
}
/* Capture the call stack when sampling an allocation from Caml. We
* have to deal with combined allocations (Comballocs), but can
* allocate the resulting call stack directly on the Caml heap. Should
* be called with [domain->current->suspended] set, as it allocates.
* May cause a GC. */
static value capture_callstack_GC(memprof_domain_t domain, int alloc_idx)
{
CAMLassert(domain->current->suspended);
size_t frames =
caml_get_callstack(Callstack_size(domain->entries.config),
&domain->callstack_buffer,
&domain->callstack_buffer_len,
alloc_idx);
value res = caml_alloc(frames, 0);
for (size_t i = 0; i < frames; ++i) {
Field(res, i) = Val_backtrace_slot(domain->callstack_buffer[i]);
}
shrink_callstack_buffer(domain, frames);
return res;
}
/* Given a stashed callstack, copy it to the Caml heap and free the
* stash. Given a non-stashed callstack, simply return it. */
static value unstash_callstack(value callstack)
{
CAMLparam1(callstack);
if (Is_long(callstack)) { /* stashed on C heap */
callstack_stash_t stash = Ptr_val(callstack);
callstack = caml_alloc(stash->frames, 0);
for (size_t i = 0; i < stash->frames; ++i) {
Field(callstack, i) = Val_backtrace_slot(stash->stack[i]);
}
caml_stat_free(stash);
}
CAMLreturn(callstack);
}
/**** Running callbacks ****/
/* Runs a single callback, in thread `thread`, for entry number `i` in
* table `es`. The callback closure is `cb`, the parameter is `param`,
* and the "callback index" is `cb_index`.
* Returns unit or an exception result. */
static caml_result run_callback_res(
memprof_thread_t thread,
entries_t es, size_t i,
value cb, value param,
uintnat cb_index)
{
entry_t e = &es->t[i];
if (e->runner) { /* some other thread has got to this callback first */
return Result_unit;
}
thread->running_table = es;
thread->running_index = i;
e->runner = thread;
e->callback = cb_index;
e->callbacks |= CB_MASK(cb_index);
e->user_data = Val_unit; /* Release root. */
caml_result res = caml_callback_res(cb, param);
/* The entry may have been moved to another table under our feet,
* due to the callback or to other threads from this domain. For
* example, if a new profile is started. */
es = thread->running_table;
thread->running_table = NULL;
i = thread->running_index;
CAMLassert(es != NULL);
CAMLassert(i < es->size);
e = &es->t[i];
CAMLassert(e->runner == thread);
e->runner = NULL;
e->callback = CB_NONE;
if (validated_config(es) == CONFIG_NONE) {
/* The profile was discarded during the callback.
* no entries to update etc. */
if (!caml_result_is_exception(res))
return Result_unit;
}
if (caml_result_is_exception(res) || res.data == Val_unit) {
/* Callback raised an exception or returned None or (), discard
this entry. */
entry_delete(es, i);
return res;
} else {
value v = res.data;
/* Callback returned [Some _]. Store the value in [user_data]. */
CAMLassert(Is_block(v));
CAMLassert(Tag_val(v) == 0);
CAMLassert(Wosize_val(v) == 1);
e->user_data = Some_val(v);
if (Is_block(e->user_data) && Is_young(e->user_data) &&
i < es->young)
es->young = i;
/* The callback we just ran was not a dealloc (they return unit)
* so there may be more callbacks to run on this entry. If the
* block has been deallocated, or promoted and we were not running
* a promotion callback, mark this entry as ready to run. */
if (i < es->active &&
(e->deallocated ||
(e->promoted && (cb_index != CB_PROMOTE))))
es->active = i;
return Result_unit;
}
}
/* Run the allocation callback for a given entry of an entries array.
* Returns Val_unit or an exception result. */
static caml_result run_alloc_callback_res(
memprof_thread_t thread, entries_t es, size_t i)
{
entry_t e = &es->t[i];
CAMLassert(e->deallocated || e->offset || Is_block(e->block));
e->user_data = unstash_callstack(e->user_data);
value sample_info = caml_alloc_small(4, 0);
Field(sample_info, 0) = Val_long(e->samples);
Field(sample_info, 1) = Val_long(e->wosize);
Field(sample_info, 2) = Val_long(e->source);
Field(sample_info, 3) = e->user_data;
value callback =
e->alloc_young ? Alloc_minor(es->config) : Alloc_major(es->config);
return run_callback_res(thread, es, i, callback, sample_info, CB_ALLOC);
}
/* Run any pending callbacks from entries table `es` in thread
* `thread`. Returns either (a) when a callback raises an exception,
* or (b) when all pending callbacks have been run. */
static caml_result entries_run_callbacks_res(
memprof_thread_t thread, entries_t es)
{
caml_result res = Result_unit;
/* Note: several callbacks may be called for a single entry. */
while (es->active < es->size) {
/* Examine and possibly run a callback on the entry at es->active.
* Running a callback may change many things, including es->active
* and es->config. */
value config = validated_config(es);
if (config == CONFIG_NONE) break;
size_t i = es->active;
entry_t e = &es->t[i];
if (e->deleted || e->runner) {
/* This entry is already deleted, or is running a callback. Ignore it. */
++ es->active;
} else if (!(e->callbacks & CB_MASK(CB_ALLOC))) {
/* allocation callback hasn't been run */
if (Status(config) == CONFIG_STATUS_SAMPLING) {
res = run_alloc_callback_res(thread, es, i);
if (caml_result_is_exception(res)) break;
} else {
/* sampling stopped, e.g. by a previous callback; drop this entry */
entry_delete(es, i);
}
} else if (e->promoted && !(e->callbacks & CB_MASK(CB_PROMOTE))) {
/* promoted entry; call promote callback */
res = run_callback_res(thread, es, i,
Promote(config), e->user_data,
CB_PROMOTE);
if (caml_result_is_exception(res)) break;
} else if (e->deallocated && !(e->callbacks & CB_MASK(CB_DEALLOC))) {
/* deallocated entry; call dealloc callback */
value cb = (e->promoted || !e->alloc_young) ?
Dealloc_major(config) : Dealloc_minor(config);
res = run_callback_res(thread, es, i,
cb, e->user_data,
CB_DEALLOC);
if (caml_result_is_exception(res)) break;
} else {
/* There is nothing to do with this entry. */
++ es->active;
}
}
entries_evict(es);
return res;
}
/* Run any pending callbacks for the current thread and domain, and
* any orphaned callbacks.
*
* Does not use domain_apply_actions() because this can dynamically
* change the various indexes into an entries table while iterating
* over it, whereas domain_apply_actions assumes that can't happen. */
caml_result caml_memprof_run_callbacks_res(void)
{
memprof_domain_t domain = Caml_state->memprof;
CAMLassert(domain);
memprof_thread_t thread = domain->current;
CAMLassert(thread);
caml_result res = Result_unit;
if (thread->suspended || !domain->pending) return res;
orphans_adopt(domain);
update_suspended(domain, true);
/* run per-domain callbacks first */
res = entries_run_callbacks_res(thread, &domain->entries);
if (caml_result_is_exception(res)) goto end;
/* run per-thread callbacks for current thread */
res = entries_run_callbacks_res(thread, &thread->entries);
if (caml_result_is_exception(res)) goto end;
/* Move any surviving entries from allocating thread to owning
* domain, so their subsequent callbacks may be run by any thread in
* the domain. entries_run_callbacks_res didn't return an exception,
* so all these entries have had their allocation callbacks run. If
* this fails due to allocation failure, the entries remain with the
* thread, which is OK. */
(void)entries_transfer(&thread->entries, &domain->entries);
/* now run per-domain orphaned callbacks. */
memprof_orphan_table_t ot = domain->orphans;
while (ot) {
entries_t es = &ot->entries;
if ((validated_config(es) != CONFIG_NONE) && (es->active < es->size)) {
/* An orphan table with something to run. */
res = entries_run_callbacks_res(thread, es);
if (caml_result_is_exception(res)) goto end;
/* Orphan tables may be deallocated during callbacks (if a
* callback discards the profile and then orphans_update_pending
* runs due to a GC) but a callback from an orphan table can
* never deallocate _that_ orphan table, so we can continue down
* the list. */
}
ot = ot->next;
}
end:
orphans_update_pending(domain);
update_suspended(domain, false);
return res;
}
/**** Sampling ****/
/* Is the current thread currently sampling? */
Caml_inline bool sampling(memprof_domain_t domain)
{
memprof_thread_t thread = domain->current;
if (thread && !thread->suspended) {
value config = thread_config(thread);
return Sampling(config) && !Min_lambda(config);
}
return false;
}
/* Respond to the allocation of a block [block], size [wosize], with
* [samples] samples. [src] is one of the [CAML_MEMPROF_SRC_] enum values
* ([Gc.Memprof.allocation_source]). */
static void maybe_track_block(memprof_domain_t domain,
value block, size_t samples,
size_t wosize, int src)
{
if (samples == 0) return;
value callstack = capture_callstack_no_GC(domain);
(void)new_entry(&domain->current->entries, block, callstack,
wosize, samples, src, Is_young(block), false);
set_action_pending_as_needed(domain);
}
/* Sets the trigger for the next sample in a domain's minor
* heap. Could race with sampling and profile-stopping code, so do not
* call from another domain unless the world is stopped (at the time
* of writing, this is only actually called from this domain). Must be
* called after each minor sample and after each minor collection. In
* practice, this is called at each minor sample, at each minor
* collection, and when sampling is suspended and unsuspended. Extra
* calls do not change the statistical properties of the sampling
* because of the memorylessness of the geometric distribution. */
void caml_memprof_set_trigger(caml_domain_state *state)
{
memprof_domain_t domain = state->memprof;
CAMLassert(domain);
value *trigger = state->young_start;
if (sampling(domain)) {
uintnat geom = rand_geom(domain);
if (state->young_ptr - state->young_start > geom) {
trigger = state->young_ptr - (geom - 1);
}
}
CAMLassert(trigger >= state->young_start);
CAMLassert(trigger <= state->young_ptr);
state->memprof_young_trigger = trigger;
}
/* Respond to the allocation of any block. Does not call callbacks. */
void caml_memprof_sample_block(value block,
size_t allocated_words,
size_t sampled_words,
int source)
{
memprof_domain_t domain = Caml_state->memprof;
CAMLassert(domain);
CAMLassert(sampled_words >= allocated_words);
if (sampling(domain)) {
maybe_track_block(domain, block, rand_binom(domain, sampled_words),
allocated_words, source);
}
}
/* Respond to hitting the memprof trigger on the minor heap. May
* sample several distinct blocks in the combined allocation. Runs
* allocation callbacks. */
void caml_memprof_sample_young(uintnat wosize, int from_caml,
int allocs, unsigned char* encoded_lens)
{
CAMLparam0();
memprof_domain_t domain = Caml_state->memprof;
CAMLassert(domain);
memprof_thread_t thread = domain->current;
CAMLassert(thread);
entries_t entries = &thread->entries;
uintnat whsize = Whsize_wosize(wosize);
CAMLlocalresult(res);
CAMLlocal1(config);
config = entries->config;
/* When a domain is not sampling, the memprof trigger is not
* set, so we should not come into this function. */
CAMLassert(sampling(domain));
if (!from_caml) {
/* Not coming from Caml, so this isn't a comballoc. We know we're
* sampling at least once, but maybe more than once. */
size_t samples = 1 +
rand_binom(domain,
Caml_state->memprof_young_trigger - 1 - Caml_state->young_ptr);
CAMLassert(encoded_lens == NULL);
maybe_track_block(domain, Val_hp(Caml_state->young_ptr),
samples, wosize, CAML_MEMPROF_SRC_NORMAL);
caml_memprof_set_trigger(Caml_state);
caml_reset_young_limit(Caml_state);
CAMLreturn0;
}
/* The memprof trigger lies in (young_ptr, young_ptr + whsize] */
CAMLassert(Caml_state->young_ptr < Caml_state->memprof_young_trigger);
CAMLassert(Caml_state->memprof_young_trigger <=
Caml_state->young_ptr + whsize);
/* Trigger offset from the base of the combined allocation. We
* reduce this for each sample in this comballoc. Signed so it can
* go negative. */
intnat trigger_ofs =
Caml_state->memprof_young_trigger - Caml_state->young_ptr;
/* Sub-allocation offset from the base of the combined
* allocation. Signed so we can compare correctly against
* trigger_ofs. */
intnat alloc_ofs = whsize;
/* Undo the combined allocation, so that we can allocate callstacks
* and in callbacks. */
Caml_state->young_ptr += whsize;
/* Suspend profiling, so we don't profile allocations of callstacks
* or in callbacks. Resets trigger. */
update_suspended(domain, true);
/* Work through the sub-allocations, high address to low address,
* identifying which ones are sampled and how many times. For each
* sampled sub-allocation, create an entry in the thread's table. */
size_t new_entries = 0; /* useful for debugging */
size_t sub_alloc = allocs;
do {
-- sub_alloc;
size_t alloc_wosz =
encoded_lens == NULL ? wosize :
Wosize_encoded_alloc_len(encoded_lens[sub_alloc]);
alloc_ofs -= Whsize_wosize(alloc_wosz); /* base of this sub-alloc */
/* count samples for this sub-alloc? */
size_t samples = 0;
while (alloc_ofs < trigger_ofs) {
++ samples;
trigger_ofs -= rand_geom(domain);
}
if (samples) {
value callstack = capture_callstack_GC(domain, sub_alloc);
size_t entry =
new_entry(entries, (value)alloc_ofs, callstack,
alloc_wosz, samples, CAML_MEMPROF_SRC_NORMAL,
true, true);
if (entry != Invalid_index) {
++ new_entries;
}
}
} while (sub_alloc);
(void)new_entries; /* this variable is useful to assert */
CAMLassert(alloc_ofs == 0);
CAMLassert(trigger_ofs <= 0);
CAMLassert(new_entries <= allocs);
/* Run all outstanding callbacks in this thread's table, which
* includes these recent allocation callbacks. If one of the
* callbacks stops the profile, the other callbacks will still
* run. */
res = entries_run_callbacks_res(thread, entries);
/* A callback, or another thread of this domain, may have stopped
* the profile and then started another one. This will result in the
* entries being transferred to the domain's table which is then
* orphaned, deleting all offset entries. In this case,
* thread->config will have changed. We will have run the allocation
* callbacks up to the one which stopped the old profile. */
bool restarted = (config != entries->config);
/* A callback may have raised an exception. In this case, we are
* going to cancel this whole combined allocation and should delete
* the newly-created entries (if they are still in our table). */
bool cancelled = caml_result_is_exception(res);
if (!cancelled) {
/* No exceptions were raised, so the allocations will
* proceed. Make room in the minor heap for the blocks to be
* allocated. We must not trigger a GC after this point. */
while (Caml_state->young_ptr - whsize < Caml_state->young_trigger) {
CAML_EV_COUNTER(EV_C_FORCE_MINOR_MEMPROF, 1);
caml_poll_gc_work();
}
Caml_state->young_ptr -= whsize;
}
/* If profiling has been stopped and restarted by these callbacks,
* the thread's entries table has been transferred to the domain and
* orphaned, so must be empty. */
if (restarted) {
CAMLassert(entries->size == 0);
}
/* All deleted entries will have been evicted from the thread's
* table. This may (often) include the offset entries we've just
* created (if an allocation callback returns None, for
* example). Any surviving offset entries will still be at the end
* of this thread's table. If one of the callbacks has raised an
* exception, we will not be allocating the blocks, so these entries
* should be deleted (or marked as deallocated if the allocation
* callback ran). Otherwise, they must be updated to point to the
* blocks which will now be allocated. */
if (cancelled) {
entries_clear_offsets(entries);
} else {
for (size_t i = 0; i < entries->size; ++i) {
entry_t e = &entries->t[i];
if (e->offset) { /* an entry we just created */
e->block = Val_hp(Caml_state->young_ptr + e->block);
e->offset = false;
if (i < entries->young) entries->young = i;
}
}
/* There are now no outstanding allocation callbacks in the thread's
* entries table. Transfer the whole thing to the domain. If this
* fails due to allocation failure, the entries stay with the thread,
* which is OK. */
(void)entries_transfer(entries, &domain->entries);
}
/* Unsuspend profiling. Resets trigger. */
update_suspended(domain, false);
(void) caml_get_value_or_raise(res);
CAMLreturn0;
}
/**** Interface with systhread. ****/
CAMLexport memprof_thread_t caml_memprof_new_thread(caml_domain_state *state)
{
CAMLassert(state->memprof);
return thread_create(state->memprof);
}
CAMLexport memprof_thread_t caml_memprof_main_thread(caml_domain_state *state)
{
memprof_domain_t domain = state->memprof;
CAMLassert(domain);
memprof_thread_t thread = domain->threads;
CAMLassert(thread);
/* There should currently be just one thread in this domain */
CAMLassert(thread->next == NULL);
return thread;
}
CAMLexport void caml_memprof_delete_thread(memprof_thread_t thread)
{
/* Transfer entries to the domain. If this fails due to allocation
* failure, we will lose the entries. May discard entries which
* haven't run allocation callbacks. */
(void)entries_transfer(&thread->entries, &thread->domain->entries);
thread_destroy(thread);
}
CAMLexport void caml_memprof_enter_thread(memprof_thread_t thread)
{
CAMLassert(thread);
thread->domain->current = thread;
update_suspended(thread->domain, thread->suspended);
}
/**** Interface to OCaml ****/
CAMLprim value caml_memprof_start(value lv, value szv, value tracker)
{
CAMLparam3(lv, szv, tracker);
CAMLlocal1(one_log1m_lambda_v);
double lambda = Double_val(lv);
intnat sz = Long_val(szv);
/* Checks that [lambda] is within range (and not NaN). */
if (sz < 0 || !(lambda >= 0.0 && lambda <= 1.0))
caml_invalid_argument("Gc.Memprof.start");
memprof_domain_t domain = Caml_state->memprof;
CAMLassert(domain);
CAMLassert(domain->current);
if (Sampling(thread_config(domain->current))) {
caml_failwith("Gc.Memprof.start: already started.");
}
/* Orphan any surviving tracking entries from a previous profile. */
if (!orphans_create(domain)) {
caml_raise_out_of_memory();
}
double one_log1m_lambda = lambda == 1.0 ? 0.0 : 1.0/caml_log1p(-lambda);
/* Buggy implementations of caml_log1p could produce a
* one_log1m_lambda which is positive infinity or NaN, which would
* cause chaos in the RNG, so we check against this and set
* one_log1m_lambda to negative infinity (which we can test for). We
* preserve the user's value of Lambda for inspection or
* debugging. */
if (!(one_log1m_lambda <= 0.0)) { /* catches NaN, +Inf, +ve */
one_log1m_lambda = MIN_ONE_LOG1M_LAMBDA; /* negative infinity */
}
one_log1m_lambda_v = caml_copy_double(one_log1m_lambda);
value config = caml_alloc_shr(CONFIG_FIELDS, 0);
caml_initialize(&Field(config, CONFIG_FIELD_STATUS),
Val_int(CONFIG_STATUS_SAMPLING));
caml_initialize(&Field(config, CONFIG_FIELD_LAMBDA), lv);
caml_initialize(&Field(config, CONFIG_FIELD_1LOG1ML), one_log1m_lambda_v);
caml_initialize(&Field(config, CONFIG_FIELD_STACK_FRAMES), szv);
for (int i = CONFIG_FIELD_FIRST_CALLBACK;
i <= CONFIG_FIELD_LAST_CALLBACK; ++i) {
caml_initialize(&Field(config, i), Field(tracker,
i - CONFIG_FIELD_FIRST_CALLBACK));
}
CAMLassert(domain->entries.size == 0);
/* Set config pointers of the domain and all its threads */
domain->entries.config = config;
memprof_thread_t thread = domain->threads;
while (thread) {
CAMLassert(thread->entries.size == 0);
thread->entries.config = config;
thread = thread->next;
}
/* reset PRNG, generate first batch of random numbers. */
rand_init(domain);
caml_memprof_set_trigger(Caml_state);
caml_reset_young_limit(Caml_state);
orphans_update_pending(domain);
set_action_pending_as_needed(domain);
CAMLreturn(config);
}
CAMLprim value caml_memprof_stop(value unit)
{
memprof_domain_t domain = Caml_state->memprof;
CAMLassert(domain);
memprof_thread_t thread = domain->current;
CAMLassert(thread);
/* Final attempt to run allocation callbacks; don't use
* caml_memprof_run_callbacks_res as we only really need allocation
* callbacks now. */
if (!thread->suspended) {
update_suspended(domain, true);
caml_result res = entries_run_callbacks_res(thread, &thread->entries);
update_suspended(domain, false);
(void) caml_get_value_or_raise(res);
}
value config = thread_config(thread);
if (config == CONFIG_NONE || Status(config) != CONFIG_STATUS_SAMPLING) {
caml_failwith("Gc.Memprof.stop: no profile running.");
}
Set_status(config, CONFIG_STATUS_STOPPED);
caml_memprof_set_trigger(Caml_state);
caml_reset_young_limit(Caml_state);
return Val_unit;
}
CAMLprim value caml_memprof_discard(value config)
{
uintnat status = Status(config);
CAMLassert((status == CONFIG_STATUS_STOPPED) ||
(status == CONFIG_STATUS_SAMPLING) ||
(status == CONFIG_STATUS_DISCARDED));
switch (status) {
case CONFIG_STATUS_STOPPED: /* correct case */
break;
case CONFIG_STATUS_SAMPLING:
caml_failwith("Gc.Memprof.discard: profile not stopped.");
case CONFIG_STATUS_DISCARDED:
caml_failwith("Gc.Memprof.discard: profile already discarded.");
}
Set_status(config, CONFIG_STATUS_DISCARDED);
return Val_unit;
}
|