1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy and Damien Doligez, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* Signal handling, code common to the bytecode and native systems */
#include <signal.h>
#include <errno.h>
#include <stdbool.h>
#include "caml/config.h"
#ifdef USE_MMAP_MAP_STACK
#include <sys/mman.h>
#endif
#include "caml/alloc.h"
#include "caml/callback.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/platform.h"
#include "caml/roots.h"
#include "caml/signals.h"
#include "caml/sys.h"
#include "caml/memprof.h"
#include "caml/finalise.h"
/* The set of pending signals (received but not yet processed).
It is represented as a bit vector.
Valid signal numbers range from 1 to NSIG - 1 included.
(This is checked when we install a signal handler.)
Signal 1 is the least significant bit of caml_pending_signals[0]. */
CAMLexport atomic_uintnat caml_pending_signals[NSIG_WORDS];
static caml_plat_mutex signal_install_mutex = CAML_PLAT_MUTEX_INITIALIZER;
CAMLexport int caml_check_pending_signals(void)
{
for (int i = 0; i < NSIG_WORDS; i++) {
if (atomic_load_relaxed(&caml_pending_signals[i]))
return 1;
}
return 0;
}
/* Execute all pending signals */
CAMLexport caml_result caml_process_pending_signals_res(void)
{
int signo;
uintnat curr, mask ;
#ifdef POSIX_SIGNALS
sigset_t set;
#endif
/* Check that there is indeed a pending signal before issuing the
syscall in [pthread_sigmask]. */
if (!caml_check_pending_signals())
return Result_unit;
#ifdef POSIX_SIGNALS
pthread_sigmask(/* dummy */ SIG_BLOCK, NULL, &set);
#endif
for (int i = 0; i < NSIG_WORDS; i++) {
curr = atomic_load_relaxed(&caml_pending_signals[i]);
if (curr == 0) goto next_word;
/* Scan curr for bits set */
for (int j = 0; j < BITS_PER_WORD; j++) {
mask = (uintnat)1 << j;
if ((curr & mask) == 0) goto next_bit;
signo = i * BITS_PER_WORD + j + 1;
#ifdef POSIX_SIGNALS
if (sigismember(&set, signo)) goto next_bit;
#endif
while (! atomic_compare_exchange_strong(&caml_pending_signals[i],
&curr, curr & ~mask)) {
/* curr was refreshed, test it again */
if (curr == 0) goto next_word;
if ((curr & mask) == 0) goto next_bit;
}
caml_result result = caml_execute_signal_res(signo);
if (caml_result_is_exception(result)) return result;
/* curr probably changed during the evaluation of the signal handler;
refresh it from memory */
curr = atomic_load_relaxed(&caml_pending_signals[i]);
if (curr == 0) goto next_word;
next_bit: /* skip */;
}
next_word: /* skip */;
}
return Result_unit;
}
/* Record the delivery of a signal, and arrange for it to be processed
as soon as possible, by playing with the allocation limit,
processed in caml_alloc_small_dispatch. */
CAMLexport void caml_record_signal(int signal_number)
{
unsigned int i;
if (signal_number <= 0 || signal_number >= NSIG) return;
i = signal_number - 1;
atomic_fetch_or(&caml_pending_signals[i / BITS_PER_WORD],
(uintnat)1 << (i % BITS_PER_WORD));
/* We interrupt all domains when a signal arrives. Signals (SIGINT,
SIGALRM...) arrive infrequently-enough that this is affordable.
This is a strategy that makes as little assumptions as possible
about signal-safety, threads, and domains.
* In mixed C/OCaml applications there is no guarantee that the
POSIX signal handler runs in an OCaml thread, so Caml_state might
be unavailable.
* While C11 mandates that atomic thread-local variables are
async-signal-safe for reading, gcc does not conform and can
allocate in corner cases involving dynamic linking. It is also
unclear whether the OSX implementation conforms, but this might
be a theoretical concern only.
* The thread executing a POSIX signal handler is not necessarily
the most ready to execute the corresponding OCaml signal handler.
Examples:
- Ctrl-C in the toplevel when domain 0 is stuck inside [Domain.join].
- a thread that has just spawned, before the appropriate mask is set.
*/
caml_interrupt_all_signal_safe();
}
/* Management of blocking sections. */
static void caml_enter_blocking_section_default(void)
{
caml_bt_exit_ocaml();
caml_release_domain_lock();
}
static void caml_leave_blocking_section_default(void)
{
caml_bt_enter_ocaml();
caml_acquire_domain_lock();
}
CAMLexport void (*caml_enter_blocking_section_hook)(void) =
caml_enter_blocking_section_default;
CAMLexport void (*caml_leave_blocking_section_hook)(void) =
caml_leave_blocking_section_default;
static int check_pending_actions(caml_domain_state * dom_st);
CAMLexport void caml_enter_blocking_section(void)
{
caml_domain_state * domain = Caml_state;
while (1) {
/* Process all pending signals now */
if (check_pending_actions(domain)) {
/* First reset young_limit, and set action_pending in case there
are further async callbacks pending beyond OCaml signal
handlers. */
caml_handle_gc_interrupt();
caml_get_value_or_raise(caml_process_pending_signals_res());
}
caml_enter_blocking_section_hook ();
/* Check again if a signal arrived in the meanwhile. If none,
done; otherwise, try again. Since we do not hold the domain
lock, we cannot read [young_ptr] and we cannot call
[Caml_check_gc_interrupt]. */
if (atomic_load_relaxed(&domain->young_limit) != CAML_UINTNAT_MAX) break;
caml_leave_blocking_section_hook ();
}
}
CAMLexport void caml_enter_blocking_section_no_pending(void)
{
caml_enter_blocking_section_hook ();
}
CAMLexport void caml_leave_blocking_section(void)
{
int saved_errno;
/* Save the value of errno (PR#5982). */
saved_errno = errno;
caml_leave_blocking_section_hook ();
Caml_check_caml_state();
/* Some other thread may have switched [Caml_state->action_pending]
to 0 even though there are still pending actions, e.g. a signal
masked in the other thread.
Another case where this is necessary (even in a single threaded
setting) is when the blocking section unmasks a pending signal:
If the signal is pending and masked but signals have already been
examined by [caml_process_pending_actions], then
[Caml_state->action_pending] is 0 but the signal needs to be
handled at this point.
So we force the examination of signals as soon as possible.
*/
if (caml_check_pending_signals())
caml_set_action_pending(Caml_state);
errno = saved_errno;
}
static value caml_signal_handlers;
void caml_init_signal_handling(void) {
caml_signal_handlers = caml_alloc_shr(NSIG, 0);
for (mlsize_t i = 0; i < NSIG; i++)
Field(caml_signal_handlers, i) = Val_unit;
caml_register_generational_global_root(&caml_signal_handlers);
}
/* Execute a signal handler immediately */
caml_result caml_execute_signal_res(int signal_number)
{
#ifdef POSIX_SIGNALS
sigset_t nsigs, sigs;
/* Block the signal before executing the handler, and record in sigs
the original signal mask */
sigemptyset(&nsigs);
sigaddset(&nsigs, signal_number);
pthread_sigmask(SIG_BLOCK, &nsigs, &sigs);
#endif
value handler = Field(caml_signal_handlers, signal_number);
value signum = Val_int(caml_rev_convert_signal_number(signal_number));
caml_result res = caml_callback_res(handler, signum);
#ifdef POSIX_SIGNALS
/* Restore the original signal mask */
pthread_sigmask(SIG_SETMASK, &sigs, NULL);
#endif
return res;
}
/* Arrange for a garbage collection to be performed as soon as possible */
void caml_request_major_slice (int global)
{
if (global){
Caml_state->requested_global_major_slice = 1;
}else{
Caml_state->requested_major_slice = 1;
}
caml_interrupt_self();
}
void caml_request_minor_gc (void)
{
Caml_state->requested_minor_gc = 1;
caml_interrupt_self();
}
/* Pending asynchronous actions (the flag [Caml_state->action_pending])
===
[Caml_state->action_pending] records that an asynchronous action
might have been delayed.
There are two kinds of asynchronous actions:
- Those that we execute immediately in all circumstances (STW
interrupts, requested minor or major GC); they must never call
OCaml code.
- Those that run OCaml code and may raise OCaml exceptions
(asynchronous callbacks, finalisers, memprof callbacks, forced
systhread yield); those can be delayed, and do not run during
allocations from C.
Queued asynchronous actions are notified to the domain by setting
[young_limit] to a high value, thereby making the next allocation
fail. When this happens, all non-delayable actions are performed
immediately. Then, the delayable actions are either all processed
immediately, if the context is ready to run OCaml code concurrently
and receive an asynchronous exception (in the case of an allocation
from OCaml), or [Caml_state->action_pending] is set in order to
record that an action of the delayable kind might be pending (in
the case of an allocation from C, typically).
[Caml_state->action_pending] remains set until the program calls
[caml_process_pending_actions], [caml_leave_blocking_section], or
it returns to OCaml. When returning to OCaml, we set again
[Caml_state->young_limit] to a high value if
[Caml_state->action_pending] is set, to execute asynchronous
actions as soon as possible when back in OCaml code.
[Caml_state->action_pending] is then reset _at the beginning_ of
processing all actions. Hence, when a delayable action is pending,
either [Caml_state->action_pending] is true, or there is a function
running which is in process of executing all actions.
In case there are two different callbacks (say, a signal and a
finaliser) arriving at the same time, then the processing of one
awaits the return of the other. In case of long-running callbacks,
we may want to run the second one without waiting the end of the
first one. We do this by provoking an additional polling every
minor collection and every major slice. In order to guarantee a low
latency for signals, we avoid delaying signal handlers in that case
by calling them first.
*/
/* We assume that we have unique access to dom_st. */
CAMLexport void caml_set_action_pending(caml_domain_state * dom_st)
{
dom_st->action_pending = 1;
}
static int check_pending_actions(caml_domain_state * dom_st)
{
return Caml_check_gc_interrupt(dom_st) || dom_st->action_pending;
}
CAMLexport int caml_check_pending_actions(void)
{
Caml_check_caml_state();
return check_pending_actions(Caml_state);
}
caml_result caml_do_pending_actions_res(void)
{
/* 1. Non-delayable actions that do not run OCaml code. */
/* Do any pending STW interrupt, minor collection or major slice */
caml_handle_gc_interrupt();
/* [young_limit] has now been reset. */
/* 2. Delayable actions that may run OCaml code and raise OCaml
exceptions.
We can now clear the action_pending flag since we are going to
execute all actions. */
Caml_state->action_pending = 0;
/* Call signal handlers first */
caml_result result = caml_process_pending_signals_res();
if (caml_result_is_exception(result)) goto exception;
/* Call memprof callbacks */
result = caml_memprof_run_callbacks_res();
if (caml_result_is_exception(result)) goto exception;
/* Call finalisers */
result = caml_final_do_calls_res();
if (caml_result_is_exception(result)) goto exception;
/* Process external interrupts (e.g. preemptive systhread switching).
By doing this last, we do not need to set the action pending flag
in case a context switch happens: all actions have been processed
at this point. */
caml_process_external_interrupt();
return Result_unit;
exception:
/* If an exception is raised during an asynchronous callback, then
it might be the case that we did not run all the callbacks we
needed. Therefore, we set [Caml_state->action_pending] again in
order to force reexamination of callbacks. */
caml_set_action_pending(Caml_state);
return result;
}
caml_result caml_process_pending_actions_with_root_res(value root)
{
if (caml_check_pending_actions()) {
CAMLparam1(root);
caml_result result = caml_do_pending_actions_res();
if (caml_result_is_exception(result)) CAMLreturnT(caml_result, result);
CAMLdrop;
}
return Result_value(root);
}
CAMLprim value caml_process_pending_actions_with_root(value root)
{
return caml_get_value_or_raise(
caml_process_pending_actions_with_root_res(root));
}
CAMLexport caml_result caml_process_pending_actions_res(void)
{
if (caml_check_pending_actions()) {
return caml_do_pending_actions_res();
} else {
return Result_unit;
}
}
CAMLexport void caml_process_pending_actions(void)
{
caml_get_value_or_raise(
caml_process_pending_actions_res());
}
/* deprecated, but kept around for backward-compatibility */
CAMLexport value caml_process_pending_actions_exn(void)
{
caml_result res = caml_process_pending_actions_res();
return caml_result_get_encoded_exception(res);
}
/* OS-independent numbering of signals */
#ifndef SIGABRT
#define SIGABRT -1
#endif
#ifndef SIGALRM
#define SIGALRM -1
#endif
#ifndef SIGFPE
#define SIGFPE -1
#endif
#ifndef SIGHUP
#define SIGHUP -1
#endif
#ifndef SIGILL
#define SIGILL -1
#endif
#ifndef SIGINT
#define SIGINT -1
#endif
#ifndef SIGKILL
#define SIGKILL -1
#endif
#ifndef SIGPIPE
#define SIGPIPE -1
#endif
#ifndef SIGQUIT
#define SIGQUIT -1
#endif
#ifndef SIGSEGV
#define SIGSEGV -1
#endif
#ifndef SIGTERM
#define SIGTERM -1
#endif
#ifndef SIGUSR1
#define SIGUSR1 -1
#endif
#ifndef SIGUSR2
#define SIGUSR2 -1
#endif
#ifndef SIGCHLD
#define SIGCHLD -1
#endif
#ifndef SIGCONT
#define SIGCONT -1
#endif
#ifndef SIGSTOP
#define SIGSTOP -1
#endif
#ifndef SIGTSTP
#define SIGTSTP -1
#endif
#ifndef SIGTTIN
#define SIGTTIN -1
#endif
#ifndef SIGTTOU
#define SIGTTOU -1
#endif
#ifndef SIGVTALRM
#define SIGVTALRM -1
#endif
#ifndef SIGPROF
#define SIGPROF -1
#endif
#ifndef SIGBUS
#define SIGBUS -1
#endif
#ifndef SIGPOLL
#define SIGPOLL -1
#endif
#ifndef SIGSYS
#define SIGSYS -1
#endif
#ifndef SIGTRAP
#define SIGTRAP -1
#endif
#ifndef SIGURG
#define SIGURG -1
#endif
#ifndef SIGXCPU
#define SIGXCPU -1
#endif
#ifndef SIGXFSZ
#define SIGXFSZ -1
#endif
static const int posix_signals[] = {
SIGABRT, SIGALRM, SIGFPE, SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE,
SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGCONT,
SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF, SIGBUS,
SIGPOLL, SIGSYS, SIGTRAP, SIGURG, SIGXCPU, SIGXFSZ
};
CAMLexport int caml_convert_signal_number(int signo)
{
if (signo < 0 && signo >= -(int)(sizeof(posix_signals) / sizeof(int)))
return posix_signals[-signo-1];
else
return signo;
}
CAMLexport int caml_rev_convert_signal_number(int signo)
{
for (int i = 0; i < (int)(sizeof(posix_signals) / sizeof(int)); i++)
if (signo == posix_signals[i]) return -i - 1;
return signo;
}
void * caml_init_signal_stack(void)
{
#ifdef POSIX_SIGNALS
stack_t stk;
stk.ss_flags = 0;
stk.ss_size = SIGSTKSZ;
/* The memory used for the alternate signal stack must not free'd before
calling sigaltstack with SS_DISABLE. malloc/mmap is therefore used rather
than caml_stat_alloc_noexc so that if a shutdown path erroneously fails
to call caml_free_signal_stack then we have a memory leak rather than a
nasty piece of undefined behaviour forced on the caller. */
#ifdef USE_MMAP_MAP_STACK
stk.ss_sp =
mmap(NULL, stk.ss_size, PROT_WRITE | PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_STACK, -1, 0);
if (stk.ss_sp == MAP_FAILED)
return NULL;
if (sigaltstack(&stk, NULL) < 0) {
munmap(stk.ss_sp, SIGSTKSZ);
return NULL;
}
#else
stk.ss_sp = malloc(stk.ss_size);
if (stk.ss_sp == NULL)
return NULL;
if (sigaltstack(&stk, NULL) < 0) {
free(stk.ss_sp);
return NULL;
}
#endif /* USE_MMAP_MAP_STACK */
return stk.ss_sp;
#else
return NULL;
#endif /* POSIX_SIGNALS */
}
void caml_free_signal_stack(void * signal_stack)
{
#ifdef POSIX_SIGNALS
stack_t stk, disable;
disable.ss_flags = SS_DISABLE;
disable.ss_sp = NULL; /* not required but avoids a valgrind false alarm */
disable.ss_size = SIGSTKSZ; /* macOS wants a valid size here */
if (sigaltstack(&disable, &stk) < 0) {
caml_fatal_error("Failed to reset signal stack (err %d)", errno);
}
/* Check whether someone else installed their own signal stack */
if (!(stk.ss_flags & SS_DISABLE) && stk.ss_sp != signal_stack) {
/* Re-activate their signal stack. */
sigaltstack(&stk, NULL);
}
/* Memory was allocated with malloc/mmap directly (see
caml_init_signal_stack) */
#ifdef USE_MMAP_MAP_STACK
munmap(signal_stack, SIGSTKSZ);
#else
free(signal_stack);
#endif /* USE_MMAP_MAP_STACK */
#endif /* POSIX_SIGNALS */
}
#ifdef POSIX_SIGNALS
/* This is the alternate signal stack block for domain 0 */
static void * caml_signal_stack_0 = NULL;
#endif
void caml_init_signals(void)
{
/* Set up alternate signal stack for domain 0 */
#ifdef POSIX_SIGNALS
caml_signal_stack_0 = caml_init_signal_stack();
if (caml_signal_stack_0 == NULL) {
caml_fatal_error("Failed to allocate signal stack for domain 0");
}
/* gprof installs a signal handler for SIGPROF.
Make it run on the alternate signal stack, to prevent segfaults. */
{
struct sigaction act;
sigaction(SIGPROF, NULL, &act);
if ((act.sa_flags & SA_SIGINFO) ||
(act.sa_handler != SIG_IGN && act.sa_handler != SIG_DFL)) {
/* found a handler */
if ((act.sa_flags & SA_ONSTACK) == 0) {
act.sa_flags |= SA_ONSTACK;
sigaction(SIGPROF, &act, NULL);
}
}
}
#endif
}
void caml_terminate_signals(void)
{
#ifdef POSIX_SIGNALS
caml_free_signal_stack(caml_signal_stack_0);
caml_signal_stack_0 = NULL;
#endif
}
/* Installation of a signal handler (as per [Sys.signal]) */
static void handle_signal(int signal_number)
{
int saved_errno;
/* Save the value of errno (PR#5982). */
saved_errno = errno;
#if !defined(POSIX_SIGNALS) && !defined(BSD_SIGNALS)
signal(signal_number, handle_signal);
#endif
caml_record_signal(signal_number);
errno = saved_errno;
}
static int caml_set_signal_action(int signo, int action)
{
void (*act)(int signo), (*oldact)(int signo);
#ifdef POSIX_SIGNALS
struct sigaction sigact, oldsigact;
#endif
switch (action) {
case 0: act = SIG_DFL; break;
case 1: act = SIG_IGN; break;
default: act = handle_signal; break;
}
#ifdef POSIX_SIGNALS
sigact.sa_handler = act;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = SA_ONSTACK;
if (sigaction(signo, &sigact, &oldsigact) == -1) return -1;
oldact = oldsigact.sa_handler;
#else
oldact = signal(signo, act);
if (oldact == SIG_ERR) return -1;
#endif
if (oldact == handle_signal)
return 2;
else if (oldact == SIG_IGN)
return 1;
else
return 0;
}
CAMLprim value caml_install_signal_handler(value signal_number, value action)
{
CAMLparam2 (signal_number, action);
CAMLlocal2 (res, tmp_signal_handlers);
int sig, act, oldact;
sig = caml_convert_signal_number(Int_val(signal_number));
if (sig <= 0 || sig >= NSIG)
caml_invalid_argument("Sys.signal: unavailable signal");
switch(action) {
case Val_int(0): /* Signal_default */
act = 0;
break;
case Val_int(1): /* Signal_ignore */
act = 1;
break;
default: /* Signal_handle */
act = 2;
break;
}
oldact = caml_set_signal_action(sig, act);
switch (oldact) {
case 0: /* was Signal_default */
res = Val_int(0);
break;
case 1: /* was Signal_ignore */
res = Val_int(1);
break;
case 2: /* was Signal_handle */
res = caml_alloc_small (1, 0);
Field(res, 0) = Field(caml_signal_handlers, sig);
break;
default: /* error in caml_set_signal_action */
caml_sys_error(NO_ARG);
}
if (Is_block(action)) {
/* Speculatively allocate this so we don't hold the lock for
a GC */
if (caml_signal_handlers == 0) {
tmp_signal_handlers = caml_alloc(NSIG, 0);
}
caml_plat_lock_blocking(&signal_install_mutex);
if (caml_signal_handlers == 0) {
/* caml_alloc cannot raise asynchronous exceptions from signals
so this is safe */
caml_signal_handlers = tmp_signal_handlers;
caml_register_global_root(&caml_signal_handlers);
}
caml_modify(&Field(caml_signal_handlers, sig), Field(action, 0));
caml_plat_unlock(&signal_install_mutex);
}
caml_get_value_or_raise(caml_process_pending_signals_res());
CAMLreturn (res);
}
|