1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cambium, INRIA Paris */
/* */
/* Copyright 2020 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* A dictionary data structure implemented as skip lists
(see William Pugh, "Skip lists: a probabilistic alternative to
balanced binary trees", Comm. ACM 33(6), 1990). */
#include <stddef.h>
#include "caml/config.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/skiplist.h"
/* Size of struct skipcell, in bytes, without the forward array */
#define SIZEOF_SKIPCELL sizeof(struct skipcell)
/* Generate a random level for a new node: 0 with probability 3/4,
1 with probability 3/16, 2 with probability 3/64, etc.
We use a simple linear congruential PRNG (see Knuth vol 2) instead
of random(), because we need exactly 32 bits of pseudo-random data
(i.e. 2 * (NUM_LEVELS - 1)). Moreover, the congruential PRNG
is faster and guaranteed to be deterministic (to reproduce bugs). */
static uint32_t random_seed = 0;
static int random_level(void)
{
uint32_t r;
int level = 0;
/* Linear congruence with modulus = 2^32, multiplier = 69069
(Knuth vol 2 p. 106, line 15 of table 1), additive = 25173. */
r = random_seed = random_seed * 69069 + 25173;
/* Knuth (vol 2 p. 13) shows that the least significant bits are
"less random" than the most significant bits with a modulus of 2^m,
so consume most significant bits first */
while ((r & 0xC0000000U) == 0xC0000000U) { level++; r = r << 2; }
CAMLassert(level < NUM_LEVELS);
return level;
}
/* Initialize a skip list */
void caml_skiplist_init(struct skiplist * sk)
{
for (int i = 0; i < NUM_LEVELS; i++) sk->forward[i] = NULL;
sk->level = 0;
}
/* Search a skip list */
int caml_skiplist_find(struct skiplist * sk, uintnat key, uintnat * data)
{
struct skipcell ** e, * f;
e = sk->forward;
for (int i = sk->level; i >= 0; i--) {
while (1) {
f = e[i];
if (f == NULL || f->key > key) break;
if (f->key == key) {
*data = f->data;
return 1;
}
e = f->forward;
}
}
return 0;
}
int caml_skiplist_find_below(struct skiplist * sk, uintnat k,
uintnat * key, uintnat * data)
{
struct skipcell ** e, * f, * last = NULL;
e = sk->forward;
for (int i = sk->level; i >= 0; i--) {
while (1) {
f = e[i];
if (f == NULL || f->key > k) break;
last = f;
e = f->forward;
}
}
if (!last) {
return 0;
} else {
*key = last-> key; *data = last->data; return 1;
}
}
/* Insertion in a skip list */
int caml_skiplist_insert(struct skiplist * sk,
uintnat key, uintnat data)
{
struct skipcell ** update[NUM_LEVELS];
struct skipcell ** e, * f;
int new_level;
/* Init "cursor" to list head */
e = sk->forward;
/* Find place to insert new node */
for (int i = sk->level; i >= 0; i--) {
while (1) {
f = e[i];
if (f == NULL || f->key >= key) break;
e = f->forward;
}
update[i] = &e[i];
}
f = e[0];
/* If already present, update data */
if (f != NULL && f->key == key) {
f->data = data;
return 1;
}
/* Insert additional element, updating list level if necessary */
new_level = random_level();
if (new_level > sk->level) {
for (int i = sk->level + 1; i <= new_level; i++)
update[i] = &sk->forward[i];
sk->level = new_level;
}
f = caml_stat_alloc(SIZEOF_SKIPCELL +
(new_level + 1) * sizeof(struct skipcell *));
f->key = key;
f->data = data;
for (int i = 0; i <= new_level; i++) {
f->forward[i] = *update[i];
*update[i] = f;
}
return 0;
}
/* Deletion in a skip list */
int caml_skiplist_remove(struct skiplist * sk, uintnat key)
{
struct skipcell ** update[NUM_LEVELS];
struct skipcell ** e, * f;
/* Init "cursor" to list head */
e = sk->forward;
/* Find element in list */
for (int i = sk->level; i >= 0; i--) {
while (1) {
f = e[i];
if (f == NULL || f->key >= key) break;
e = f->forward;
}
update[i] = &e[i];
}
f = e[0];
/* If not found, nothing to do */
if (f == NULL || f->key != key) return 0;
/* Rebuild list without node */
for (int i = 0; i <= sk->level; i++) {
if (*update[i] == f)
*update[i] = f->forward[i];
}
/* Reclaim list element */
caml_stat_free(f);
/* Down-correct list level */
while (sk->level > 0 &&
sk->forward[sk->level] == NULL)
sk->level--;
return 1;
}
/* Empty a skip list */
void caml_skiplist_empty(struct skiplist * sk)
{
for (struct skipcell *e = sk->forward[0], *next; e != NULL; e = next) {
next = e->forward[0];
caml_stat_free(e);
}
for (int i = 0; i <= sk->level; i++) sk->forward[i] = NULL;
sk->level = 0;
}
|