1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is arrayLabels.mli, run tools/sync_stdlib_docs after editing it
to generate array.mli.
If this file is array.mli, do not edit it directly -- edit
arrayLabels.mli instead.
*)
(** Array operations.
The labeled version of this module can be used as described in the
{!StdLabels} module.
*)
type 'a t = 'a array
(** An alias for the type of arrays. *)
external length : 'a array -> int = "%array_length"
(** Return the length (number of elements) of the given array. *)
external get : 'a array -> int -> 'a = "%array_safe_get"
(** [get a n] returns the element number [n] of array [a].
The first element has number 0.
The last element has number [length a - 1].
You can also write [a.(n)] instead of [get a n].
@raise Invalid_argument
if [n] is outside the range 0 to [(length a - 1)]. *)
external set : 'a array -> int -> 'a -> unit = "%array_safe_set"
(** [set a n x] modifies array [a] in place, replacing
element number [n] with [x].
You can also write [a.(n) <- x] instead of [set a n x].
@raise Invalid_argument
if [n] is outside the range 0 to [length a - 1]. *)
external make : int -> 'a -> 'a array = "caml_array_make"
(** [make n x] returns a fresh array of length [n],
initialized with [x].
All the elements of this new array are initially
physically equal to [x] (in the sense of the [==] predicate).
Consequently, if [x] is mutable, it is shared among all elements
of the array, and modifying [x] through one of the array entries
will modify all other entries at the same time.
@raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
If the value of [x] is a floating-point number, then the maximum
size is only [Sys.max_array_length / 2].*)
external create_float: int -> float array = "caml_array_create_float"
(** [create_float n] returns a fresh float array of length [n],
with uninitialized data.
@since 4.03 *)
val init : int -> (int -> 'a) -> 'a array
(** [init n f] returns a fresh array of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n f] tabulates the results of [f]
applied in order to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
If the return type of [f] is [float], then the maximum
size is only [Sys.max_array_length / 2].*)
val make_matrix : int -> int -> 'a -> 'a array array
(** [make_matrix dimx dimy e] returns a two-dimensional array
(an array of arrays) with first dimension [dimx] and
second dimension [dimy]. All the elements of this new matrix
are initially physically equal to [e].
The element ([x,y]) of a matrix [m] is accessed
with the notation [m.(x).(y)].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_array_length}.
If the value of [e] is a floating-point number, then the maximum
size is only [Sys.max_array_length / 2]. *)
val init_matrix : int -> int -> (int -> int -> 'a) -> 'a array array
(** [init_matrix dimx dimy f] returns a two-dimensional array
(an array of arrays)
with first dimension [dimx] and second dimension [dimy],
where the element at index ([x,y]) is initialized with [f x y].
The element ([x,y]) of a matrix [m] is accessed
with the notation [m.(x).(y)].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_array_length}.
If the return type of [f] is [float],
then the maximum size is only [Sys.max_array_length / 2].
@since 5.2 *)
val append : 'a array -> 'a array -> 'a array
(** [append v1 v2] returns a fresh array containing the
concatenation of the arrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_array_length]. *)
val concat : 'a array list -> 'a array
(** Same as {!append}, but concatenates a list of arrays. *)
val sub : 'a array -> int -> int -> 'a array
(** [sub a pos len] returns a fresh array of length [len],
containing the elements number [pos] to [pos + len - 1]
of array [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : 'a array -> 'a array
(** [copy a] returns a copy of [a], that is, a fresh array
containing the same elements as [a]. *)
val fill : 'a array -> int -> int -> 'a -> unit
(** [fill a pos len x] modifies the array [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit :
'a array -> int -> 'a array -> int -> int ->
unit
(** [blit src src_pos dst dst_pos len] copies [len] elements
from array [src], starting at element number [src_pos], to array [dst],
starting at element number [dst_pos]. It works correctly even if
[src] and [dst] are the same array, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : 'a array -> 'a list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : 'a list -> 'a array
(** [of_list l] returns a fresh array containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_array_length]. *)
(** {1 Iterators} *)
val iter : ('a -> unit) -> 'a array -> unit
(** [iter f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : (int -> 'a -> unit) -> 'a array -> unit
(** Same as {!iter}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val map : ('a -> 'b) -> 'a array -> 'b array
(** [map f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_inplace : ('a -> 'a) -> 'a array -> unit
(** [map_inplace f a] applies function [f] to all elements of [a],
and updates their values in place.
@since 5.1 *)
val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi_inplace : (int -> 'a -> 'a) -> 'a array -> unit
(** Same as {!map_inplace}, but the function is applied to the index of the
element as first argument, and the element itself as second argument.
@since 5.1 *)
val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a array -> 'acc
(** [fold_left f init a] computes
[f (... (f (f init a.(0)) a.(1)) ...) a.(n-1)],
where [n] is the length of the array [a]. *)
val fold_left_map :
('acc -> 'a -> 'acc * 'b) -> 'acc -> 'a array -> 'acc * 'b array
(** [fold_left_map] is a combination of {!fold_left} and {!map} that threads an
accumulator through calls to [f].
@since 4.13 *)
val fold_right : ('a -> 'acc -> 'acc) -> 'a array -> 'acc -> 'acc
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the array [a]. *)
(** {1 Iterators on two arrays} *)
val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit
(** [iter2 f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the arrays are not the same size.
@since 4.03 (4.05 in ArrayLabels)
*)
val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array
(** [map2 f a b] applies function [f] to all the elements of [a]
and [b], and builds an array with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the arrays are not the same size.
@since 4.03 (4.05 in ArrayLabels) *)
(** {1 Array scanning} *)
val for_all : ('a -> bool) -> 'a array -> bool
(** [for_all f [|a1; ...; an|]] checks if all elements
of the array satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)].
@since 4.03 *)
val exists : ('a -> bool) -> 'a array -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the array satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)].
@since 4.03 *)
val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** Same as {!for_all}, but for a two-argument predicate.
@raise Invalid_argument if the two arrays have different lengths.
@since 4.11 *)
val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** Same as {!exists}, but for a two-argument predicate.
@raise Invalid_argument if the two arrays have different lengths.
@since 4.11 *)
val mem : 'a -> 'a array -> bool
(** [mem a set] is true if and only if [a] is structurally equal
to an element of [set] (i.e. there is an [x] in [set] such that
[compare a x = 0]).
@since 4.03 *)
val memq : 'a -> 'a array -> bool
(** Same as {!mem}, but uses physical equality
instead of structural equality to compare array elements.
@since 4.03 *)
val find_opt : ('a -> bool) -> 'a array -> 'a option
(** [find_opt f a] returns the first element of the array [a] that satisfies
the predicate [f], or [None] if there is no value that satisfies [f] in the
array [a].
@since 4.13 *)
val find_index : ('a -> bool) -> 'a array -> int option
(** [find_index f a] returns [Some i], where [i] is the index of the first
element of the array [a] that satisfies [f x], if there is such an
element.
It returns [None] if there is no such element.
@since 5.1 *)
val find_map : ('a -> 'b option) -> 'a array -> 'b option
(** [find_map f a] applies [f] to the elements of [a] in order, and returns the
first result of the form [Some v], or [None] if none exist.
@since 4.13 *)
val find_mapi : (int -> 'a -> 'b option) -> 'a array -> 'b option
(** Same as [find_map], but the predicate is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.
@since 5.1 *)
(** {1 Arrays of pairs} *)
val split : ('a * 'b) array -> 'a array * 'b array
(** [split [|(a1,b1); ...; (an,bn)|]] is [([|a1; ...; an|], [|b1; ...; bn|])].
@since 4.13 *)
val combine : 'a array -> 'b array -> ('a * 'b) array
(** [combine [|a1; ...; an|] [|b1; ...; bn|]] is [[|(a1,b1); ...; (an,bn)|]].
Raise [Invalid_argument] if the two arrays have different lengths.
@since 4.13 *)
(** {1:sorting_and_shuffling Sorting and shuffling} *)
val sort : ('a -> 'a -> int) -> 'a array -> unit
(** Sort an array in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the array and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if i >= j
*)
val stable_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary array of
length [n/2], where [n] is the length of the array. It is usually faster
than the current implementation of {!sort}.
*)
val fast_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!sort} or {!stable_sort}, whichever is
faster on typical input. *)
val shuffle :
rand: (* thwart tools/sync_stdlib_docs *) (int -> int) -> 'a array -> unit
(** [shuffle rand a] randomly permutes [a]'s element using [rand] for
randomness. The distribution of permutations is uniform.
[rand] must be such that a call to [rand n] returns a uniformly
distributed random number in the range \[[0];[n-1]\].
{!Random.int} can be used for this (do not forget to
{{!Random.self_init}initialize} the generator).
@since 5.2 *)
(** {1 Arrays and Sequences} *)
val to_seq : 'a array -> 'a Seq.t
(** Iterate on the array, in increasing order. Modifications of the
array during iteration will be reflected in the sequence.
@since 4.07 *)
val to_seqi : 'a array -> (int * 'a) Seq.t
(** Iterate on the array, in increasing order, yielding indices along elements.
Modifications of the array during iteration will be reflected in the
sequence.
@since 4.07 *)
val of_seq : 'a Seq.t -> 'a array
(** Create an array from the generator
@since 4.07 *)
(** {1:array_concurrency Arrays and concurrency safety}
Care must be taken when concurrently accessing arrays from multiple
domains: accessing an array will never crash a program, but unsynchronized
accesses might yield surprising (non-sequentially-consistent) results.
{2:array_atomicity Atomicity}
Every array operation that accesses more than one array element is not
atomic. This includes iteration, scanning, sorting, splitting and
combining arrays.
For example, consider the following program:
{[let size = 100_000_000
let a = Array.make size 1
let d1 = Domain.spawn (fun () ->
Array.iteri (fun i x -> a.(i) <- x + 1) a
)
let d2 = Domain.spawn (fun () ->
Array.iteri (fun i x -> a.(i) <- 2 * x + 1) a
)
let () = Domain.join d1; Domain.join d2
]}
After executing this code, each field of the array [a] is either [2], [3],
[4] or [5]. If atomicity is required, then the user must implement their own
synchronization (for example, using {!Mutex.t}).
{2:array_data_race Data races}
If two domains only access disjoint parts of the array, then the
observed behaviour is the equivalent to some sequential interleaving of the
operations from the two domains.
A data race is said to occur when two domains access the same array element
without synchronization and at least one of the accesses is a write.
In the absence of data races, the observed behaviour is equivalent to some
sequential interleaving of the operations from different domains.
Whenever possible, data races should be avoided by using synchronization to
mediate the accesses to the array elements.
Indeed, in the presence of data races, programs will not crash but the
observed behaviour may not be equivalent to any sequential interleaving of
operations from different domains. Nevertheless, even in the presence of
data races, a read operation will return the value of some prior write to
that location (with a few exceptions for float arrays).
{2:array_data_race_exceptions Float arrays}
Float arrays have two supplementary caveats in the presence of data races.
First, the blit operation might copy an array byte-by-byte. Data races
between such a blit operation and another operation might produce surprising
values due to tearing: partial writes interleaved with other operations can
create float values that would not exist with a sequential execution.
For instance, at the end of
{[let zeros = Array.make size 0.
let max_floats = Array.make size Float.max_float
let res = Array.copy zeros
let d1 = Domain.spawn (fun () -> Array.blit zeros 0 res 0 size)
let d2 = Domain.spawn (fun () -> Array.blit max_floats 0 res 0 size)
let () = Domain.join d1; Domain.join d2
]}
the [res] array might contain values that are neither [0.] nor [max_float].
Second, on 32-bit architectures, getting or setting a field involves two
separate memory accesses. In the presence of data races, the user may
observe tearing on any operation.
*)
(**/**)
(** {1 Undocumented functions} *)
(* The following is for system use only. Do not call directly. *)
external unsafe_get : 'a array -> int -> 'a = "%array_unsafe_get"
external unsafe_set : 'a array -> int -> 'a -> unit = "%array_unsafe_set"
module Floatarray : sig
external create : int -> floatarray = "caml_floatarray_create"
external length : floatarray -> int = "%floatarray_length"
external get : floatarray -> int -> float = "%floatarray_safe_get"
external set : floatarray -> int -> float -> unit = "%floatarray_safe_set"
external unsafe_get : floatarray -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : floatarray -> int -> float -> unit
= "%floatarray_unsafe_set"
end
|