1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is bytesLabels.mli, run tools/sync_stdlib_docs after editing it
to generate bytes.mli.
If this file is bytes.mli, do not edit it directly -- edit
bytesLabels.mli instead.
*)
(** Byte sequence operations.
A byte sequence is a mutable data structure that contains a
fixed-length sequence of bytes. Each byte can be indexed in
constant time for reading or writing.
Given a byte sequence [s] of length [l], we can access each of the
[l] bytes of [s] via its index in the sequence. Indexes start at
[0], and we will call an index valid in [s] if it falls within the
range [[0...l-1]] (inclusive). A position is the point between two
bytes or at the beginning or end of the sequence. We call a
position valid in [s] if it falls within the range [[0...l]]
(inclusive). Note that the byte at index [n] is between positions
[n] and [n+1].
Two parameters [start] and [len] are said to designate a valid
range of [s] if [len >= 0] and [start] and [start+len] are valid
positions in [s].
Byte sequences can be modified in place, for instance via the [set]
and [blit] functions described below. See also strings (module
{!String}), which are almost the same data structure, but cannot be
modified in place.
Bytes are represented by the OCaml type [char].
The labeled version of this module can be used as described in the
{!StdLabels} module.
@since 4.02
*)
external length : bytes -> int = "%bytes_length"
(** Return the length (number of bytes) of the argument. *)
external get : bytes -> int -> char = "%bytes_safe_get"
(** [get s n] returns the byte at index [n] in argument [s].
@raise Invalid_argument if [n] is not a valid index in [s]. *)
external set : bytes -> int -> char -> unit = "%bytes_safe_set"
(** [set s n c] modifies [s] in place, replacing the byte at index [n]
with [c].
@raise Invalid_argument if [n] is not a valid index in [s]. *)
external create : int -> bytes = "caml_create_bytes"
(** [create n] returns a new byte sequence of length [n]. The
sequence is uninitialized and contains arbitrary bytes.
@raise Invalid_argument if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val make : int -> char -> bytes
(** [make n c] returns a new byte sequence of length [n], filled with
the byte [c].
@raise Invalid_argument if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val init : int -> (int -> char) -> bytes
(** [init n f] returns a fresh byte sequence of length [n],
with character [i] initialized to the result of [f i] (in increasing
index order).
@raise Invalid_argument if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val empty : bytes
(** A byte sequence of size 0. *)
val copy : bytes -> bytes
(** Return a new byte sequence that contains the same bytes as the
argument. *)
val of_string : string -> bytes
(** Return a new byte sequence that contains the same bytes as the
given string. *)
val to_string : bytes -> string
(** Return a new string that contains the same bytes as the given byte
sequence. *)
val sub : bytes -> int -> int -> bytes
(** [sub s pos len] returns a new byte sequence of length [len],
containing the subsequence of [s] that starts at position [pos]
and has length [len].
@raise Invalid_argument if [pos] and [len] do not designate a
valid range of [s]. *)
val sub_string : bytes -> int -> int -> string
(** Same as {!sub} but return a string instead of a byte sequence. *)
val extend : bytes -> int -> int -> bytes
(** [extend s left right] returns a new byte sequence that contains
the bytes of [s], with [left] uninitialized bytes prepended and
[right] uninitialized bytes appended to it. If [left] or [right]
is negative, then bytes are removed (instead of appended) from
the corresponding side of [s].
@raise Invalid_argument if the result length is negative or
longer than {!Sys.max_string_length} bytes.
@since 4.05 in BytesLabels *)
val fill : bytes -> int -> int -> char -> unit
(** [fill s pos len c] modifies [s] in place, replacing [len]
characters with [c], starting at [pos].
@raise Invalid_argument if [pos] and [len] do not designate a
valid range of [s]. *)
val blit :
bytes -> int -> bytes -> int -> int
-> unit
(** [blit src src_pos dst dst_pos len] copies [len] bytes from byte
sequence [src], starting at index [src_pos], to byte sequence [dst],
starting at index [dst_pos]. It works correctly even if [src] and [dst] are
the same byte sequence, and the source and destination intervals
overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid range of [src], or if [dst_pos] and [len]
do not designate a valid range of [dst]. *)
val blit_string :
string -> int -> bytes -> int -> int
-> unit
(** [blit_string src src_pos dst dst_pos len] copies [len] bytes from
string [src], starting at index [src_pos], to byte sequence [dst],
starting at index [dst_pos].
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid range of [src], or if [dst_pos] and [len]
do not designate a valid range of [dst].
@since 4.05 in BytesLabels *)
val concat : bytes -> bytes list -> bytes
(** [concat sep sl] concatenates the list of byte sequences [sl],
inserting the separator byte sequence [sep] between each, and
returns the result as a new byte sequence.
@raise Invalid_argument if the result is longer than
{!Sys.max_string_length} bytes.
*)
val cat : bytes -> bytes -> bytes
(** [cat s1 s2] concatenates [s1] and [s2] and returns the result
as a new byte sequence.
@raise Invalid_argument if the result is longer than
{!Sys.max_string_length} bytes.
@since 4.05 in BytesLabels *)
val iter : (char -> unit) -> bytes -> unit
(** [iter f s] applies function [f] in turn to all the bytes of [s].
It is equivalent to [f (get s 0); f (get s 1); ...; f (get s
(length s - 1)); ()]. *)
val iteri : (int -> char -> unit) -> bytes -> unit
(** Same as {!iter}, but the function is applied to the index of
the byte as first argument and the byte itself as second
argument. *)
val map : (char -> char) -> bytes -> bytes
(** [map f s] applies function [f] in turn to all the bytes of [s] (in
increasing index order) and stores the resulting bytes in a new sequence
that is returned as the result. *)
val mapi : (int -> char -> char) -> bytes -> bytes
(** [mapi f s] calls [f] with each character of [s] and its
index (in increasing index order) and stores the resulting bytes
in a new sequence that is returned as the result. *)
val fold_left : ('acc -> char -> 'acc) -> 'acc -> bytes -> 'acc
(** [fold_left f x s] computes
[f (... (f (f x (get s 0)) (get s 1)) ...) (get s (n-1))],
where [n] is the length of [s].
@since 4.13 *)
val fold_right : (char -> 'acc -> 'acc) -> bytes -> 'acc -> 'acc
(** [fold_right f s x] computes
[f (get s 0) (f (get s 1) ( ... (f (get s (n-1)) x) ...))],
where [n] is the length of [s].
@since 4.13 *)
val for_all : (char -> bool) -> bytes -> bool
(** [for_all p s] checks if all characters in [s] satisfy the predicate [p].
@since 4.13 *)
val exists : (char -> bool) -> bytes -> bool
(** [exists p s] checks if at least one character of [s] satisfies the predicate
[p].
@since 4.13 *)
val trim : bytes -> bytes
(** Return a copy of the argument, without leading and trailing
whitespace. The bytes regarded as whitespace are the ASCII
characters [' '], ['\012'], ['\n'], ['\r'], and ['\t']. *)
val escaped : bytes -> bytes
(** Return a copy of the argument, with special characters represented
by escape sequences, following the lexical conventions of OCaml.
All characters outside the ASCII printable range (32..126) are
escaped, as well as backslash and double-quote.
@raise Invalid_argument if the result is longer than
{!Sys.max_string_length} bytes. *)
val index : bytes -> char -> int
(** [index s c] returns the index of the first occurrence of byte [c]
in [s].
@raise Not_found if [c] does not occur in [s]. *)
val index_opt: bytes -> char -> int option
(** [index_opt s c] returns the index of the first occurrence of byte [c]
in [s] or [None] if [c] does not occur in [s].
@since 4.05 *)
val rindex : bytes -> char -> int
(** [rindex s c] returns the index of the last occurrence of byte [c]
in [s].
@raise Not_found if [c] does not occur in [s]. *)
val rindex_opt: bytes -> char -> int option
(** [rindex_opt s c] returns the index of the last occurrence of byte [c]
in [s] or [None] if [c] does not occur in [s].
@since 4.05 *)
val index_from : bytes -> int -> char -> int
(** [index_from s i c] returns the index of the first occurrence of
byte [c] in [s] after position [i]. [index s c] is
equivalent to [index_from s 0 c].
@raise Invalid_argument if [i] is not a valid position in [s].
@raise Not_found if [c] does not occur in [s] after position [i]. *)
val index_from_opt: bytes -> int -> char -> int option
(** [index_from_opt s i c] returns the index of the first occurrence of
byte [c] in [s] after position [i] or [None] if [c] does not occur in [s]
after position [i].
[index_opt s c] is equivalent to [index_from_opt s 0 c].
@raise Invalid_argument if [i] is not a valid position in [s].
@since 4.05 *)
val rindex_from : bytes -> int -> char -> int
(** [rindex_from s i c] returns the index of the last occurrence of
byte [c] in [s] before position [i+1]. [rindex s c] is equivalent
to [rindex_from s (length s - 1) c].
@raise Invalid_argument if [i+1] is not a valid position in [s].
@raise Not_found if [c] does not occur in [s] before position [i+1]. *)
val rindex_from_opt: bytes -> int -> char -> int option
(** [rindex_from_opt s i c] returns the index of the last occurrence
of byte [c] in [s] before position [i+1] or [None] if [c] does not
occur in [s] before position [i+1]. [rindex_opt s c] is equivalent to
[rindex_from s (length s - 1) c].
@raise Invalid_argument if [i+1] is not a valid position in [s].
@since 4.05 *)
val contains : bytes -> char -> bool
(** [contains s c] tests if byte [c] appears in [s]. *)
val contains_from : bytes -> int -> char -> bool
(** [contains_from s start c] tests if byte [c] appears in [s] after
position [start]. [contains s c] is equivalent to [contains_from
s 0 c].
@raise Invalid_argument if [start] is not a valid position in [s]. *)
val rcontains_from : bytes -> int -> char -> bool
(** [rcontains_from s stop c] tests if byte [c] appears in [s] before
position [stop+1].
@raise Invalid_argument if [stop < 0] or [stop+1] is not a valid
position in [s]. *)
val uppercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all lowercase letters
translated to uppercase, using the US-ASCII character set.
@since 4.03 (4.05 in BytesLabels) *)
val lowercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all uppercase letters
translated to lowercase, using the US-ASCII character set.
@since 4.03 (4.05 in BytesLabels) *)
val capitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to uppercase,
using the US-ASCII character set.
@since 4.03 (4.05 in BytesLabels) *)
val uncapitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to lowercase,
using the US-ASCII character set.
@since 4.03 (4.05 in BytesLabels) *)
type t = bytes
(** An alias for the type of byte sequences. *)
val compare: t -> t -> int
(** The comparison function for byte sequences, with the same
specification as {!Stdlib.compare}. Along with the type [t],
this function [compare] allows the module [Bytes] to be passed as
argument to the functors {!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equality function for byte sequences.
@since 4.03 (4.05 in BytesLabels) *)
val starts_with :
prefix (* comment thwarts tools/sync_stdlib_docs *) :bytes -> bytes -> bool
(** [starts_with ][~prefix s] is [true] if and only if [s] starts with
[prefix].
@since 4.13 *)
val ends_with :
suffix (* comment thwarts tools/sync_stdlib_docs *) :bytes -> bytes -> bool
(** [ends_with ][~suffix s] is [true] if and only if [s] ends with [suffix].
@since 4.13 *)
(** {1:unsafe Unsafe conversions (for advanced users)}
This section describes unsafe, low-level conversion functions
between [bytes] and [string]. They do not copy the internal data;
used improperly, they can break the immutability invariant on
strings. They are available for expert library authors, but for
most purposes you should use the always-correct {!to_string} and
{!of_string} instead.
*)
val unsafe_to_string : bytes -> string
(** Unsafely convert a byte sequence into a string.
To reason about the use of [unsafe_to_string], it is convenient to
consider an "ownership" discipline. A piece of code that
manipulates some data "owns" it; there are several disjoint ownership
modes, including:
- Unique ownership: the data may be accessed and mutated
- Shared ownership: the data has several owners, that may only
access it, not mutate it.
Unique ownership is linear: passing the data to another piece of
code means giving up ownership (we cannot write the
data again). A unique owner may decide to make the data shared
(giving up mutation rights on it), but shared data may not become
uniquely-owned again.
[unsafe_to_string s] can only be used when the caller owns the byte
sequence [s] -- either uniquely or as shared immutable data. The
caller gives up ownership of [s], and gains ownership of the
returned string.
There are two valid use-cases that respect this ownership
discipline:
1. Creating a string by initializing and mutating a byte sequence
that is never changed after initialization is performed.
{[
let string_init len f : string =
let s = Bytes.create len in
for i = 0 to len - 1 do Bytes.set s i (f i) done;
Bytes.unsafe_to_string s
]}
This function is safe because the byte sequence [s] will never be
accessed or mutated after [unsafe_to_string] is called. The
[string_init] code gives up ownership of [s], and returns the
ownership of the resulting string to its caller.
Note that it would be unsafe if [s] was passed as an additional
parameter to the function [f] as it could escape this way and be
mutated in the future -- [string_init] would give up ownership of
[s] to pass it to [f], and could not call [unsafe_to_string]
safely.
We have provided the {!String.init}, {!String.map} and
{!String.mapi} functions to cover most cases of building
new strings. You should prefer those over [to_string] or
[unsafe_to_string] whenever applicable.
2. Temporarily giving ownership of a byte sequence to a function
that expects a uniquely owned string and returns ownership back, so
that we can mutate the sequence again after the call ended.
{[
let bytes_length (s : bytes) =
String.length (Bytes.unsafe_to_string s)
]}
In this use-case, we do not promise that [s] will never be mutated
after the call to [bytes_length s]. The {!String.length} function
temporarily borrows unique ownership of the byte sequence
(and sees it as a [string]), but returns this ownership back to
the caller, which may assume that [s] is still a valid byte
sequence after the call. Note that this is only correct because we
know that {!String.length} does not capture its argument -- it could
escape by a side-channel such as a memoization combinator.
The caller may not mutate [s] while the string is borrowed (it has
temporarily given up ownership). This affects concurrent programs,
but also higher-order functions: if {!String.length} returned
a closure to be called later, [s] should not be mutated until this
closure is fully applied and returns ownership.
*)
val unsafe_of_string : string -> bytes
(** Unsafely convert a shared string to a byte sequence that should
not be mutated.
The same ownership discipline that makes [unsafe_to_string]
correct applies to [unsafe_of_string]: you may use it if you were
the owner of the [string] value, and you will own the return
[bytes] in the same mode.
In practice, unique ownership of string values is extremely
difficult to reason about correctly. You should always assume
strings are shared, never uniquely owned.
For example, string literals are implicitly shared by the
compiler, so you never uniquely own them.
{[
let incorrect = Bytes.unsafe_of_string "hello"
let s = Bytes.of_string "hello"
]}
The first declaration is incorrect, because the string literal
["hello"] could be shared by the compiler with other parts of the
program, and mutating [incorrect] is a bug. You must always use
the second version, which performs a copy and is thus correct.
Assuming unique ownership of strings that are not string
literals, but are (partly) built from string literals, is also
incorrect. For example, mutating [unsafe_of_string ("foo" ^ s)]
could mutate the shared string ["foo"] -- assuming a rope-like
representation of strings. More generally, functions operating on
strings will assume shared ownership, they do not preserve unique
ownership. It is thus incorrect to assume unique ownership of the
result of [unsafe_of_string].
The only case we have reasonable confidence is safe is if the
produced [bytes] is shared -- used as an immutable byte
sequence. This is possibly useful for incremental migration of
low-level programs that manipulate immutable sequences of bytes
(for example {!Marshal.from_bytes}) and previously used the
[string] type for this purpose.
*)
val split_on_char: char -> bytes -> bytes list
(** [split_on_char sep s] returns the list of all (possibly empty)
subsequences of [s] that are delimited by the [sep] character.
If [s] is empty, the result is the singleton list [[empty]].
The function's output is specified by the following invariants:
- The list is not empty.
- Concatenating its elements using [sep] as a separator returns a
byte sequence equal to the input ([Bytes.concat (Bytes.make 1 sep)
(Bytes.split_on_char sep s) = s]).
- No byte sequence in the result contains the [sep] character.
@since 4.13
*)
(** {1 Iterators} *)
val to_seq : t -> char Seq.t
(** Iterate on the string, in increasing index order. Modifications of the
string during iteration will be reflected in the sequence.
@since 4.07 *)
val to_seqi : t -> (int * char) Seq.t
(** Iterate on the string, in increasing order, yielding indices along chars
@since 4.07 *)
val of_seq : char Seq.t -> t
(** Create a string from the generator
@since 4.07 *)
(** {1:utf UTF codecs and validations}
@since 4.14 *)
(** {2:utf_8 UTF-8} *)
val get_utf_8_uchar : t -> int -> Uchar.utf_decode
(** [get_utf_8_uchar b i] decodes an UTF-8 character at index [i] in
[b]. *)
val set_utf_8_uchar : t -> int -> Uchar.t -> int
(** [set_utf_8_uchar b i u] UTF-8 encodes [u] at index [i] in [b]
and returns the number of bytes [n] that were written starting
at [i]. If [n] is [0] there was not enough space to encode [u]
at [i] and [b] was left untouched. Otherwise a new character can
be encoded at [i + n]. *)
val is_valid_utf_8 : t -> bool
(** [is_valid_utf_8 b] is [true] if and only if [b] contains valid
UTF-8 data. *)
(** {2:utf_16be UTF-16BE} *)
val get_utf_16be_uchar : t -> int -> Uchar.utf_decode
(** [get_utf_16be_uchar b i] decodes an UTF-16BE character at index
[i] in [b]. *)
val set_utf_16be_uchar : t -> int -> Uchar.t -> int
(** [set_utf_16be_uchar b i u] UTF-16BE encodes [u] at index [i] in [b]
and returns the number of bytes [n] that were written starting
at [i]. If [n] is [0] there was not enough space to encode [u]
at [i] and [b] was left untouched. Otherwise a new character can
be encoded at [i + n]. *)
val is_valid_utf_16be : t -> bool
(** [is_valid_utf_16be b] is [true] if and only if [b] contains valid
UTF-16BE data. *)
(** {2:utf_16le UTF-16LE} *)
val get_utf_16le_uchar : t -> int -> Uchar.utf_decode
(** [get_utf_16le_uchar b i] decodes an UTF-16LE character at index
[i] in [b]. *)
val set_utf_16le_uchar : t -> int -> Uchar.t -> int
(** [set_utf_16le_uchar b i u] UTF-16LE encodes [u] at index [i] in [b]
and returns the number of bytes [n] that were written starting
at [i]. If [n] is [0] there was not enough space to encode [u]
at [i] and [b] was left untouched. Otherwise a new character can
be encoded at [i + n]. *)
val is_valid_utf_16le : t -> bool
(** [is_valid_utf_16le b] is [true] if and only if [b] contains valid
UTF-16LE data. *)
(** {1 Binary encoding/decoding of integers} *)
(** The functions in this section binary encode and decode integers to
and from byte sequences.
All following functions raise [Invalid_argument] if the space
needed at index [i] to decode or encode the integer is not
available.
Little-endian (resp. big-endian) encoding means that least
(resp. most) significant bytes are stored first. Big-endian is
also known as network byte order. Native-endian encoding is
either little-endian or big-endian depending on {!Sys.big_endian}.
32-bit and 64-bit integers are represented by the [int32] and
[int64] types, which can be interpreted either as signed or
unsigned numbers.
8-bit and 16-bit integers are represented by the [int] type,
which has more bits than the binary encoding. These extra bits
are handled as follows:
{ul
{- Functions that decode signed (resp. unsigned) 8-bit or 16-bit
integers represented by [int] values sign-extend
(resp. zero-extend) their result.}
{- Functions that encode 8-bit or 16-bit integers represented by
[int] values truncate their input to their least significant
bytes.}}
*)
val get_uint8 : bytes -> int -> int
(** [get_uint8 b i] is [b]'s unsigned 8-bit integer starting at byte index [i].
@since 4.08
*)
val get_int8 : bytes -> int -> int
(** [get_int8 b i] is [b]'s signed 8-bit integer starting at byte index [i].
@since 4.08
*)
val get_uint16_ne : bytes -> int -> int
(** [get_uint16_ne b i] is [b]'s native-endian unsigned 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_uint16_be : bytes -> int -> int
(** [get_uint16_be b i] is [b]'s big-endian unsigned 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_uint16_le : bytes -> int -> int
(** [get_uint16_le b i] is [b]'s little-endian unsigned 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int16_ne : bytes -> int -> int
(** [get_int16_ne b i] is [b]'s native-endian signed 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int16_be : bytes -> int -> int
(** [get_int16_be b i] is [b]'s big-endian signed 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int16_le : bytes -> int -> int
(** [get_int16_le b i] is [b]'s little-endian signed 16-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int32_ne : bytes -> int -> int32
(** [get_int32_ne b i] is [b]'s native-endian 32-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int32_be : bytes -> int -> int32
(** [get_int32_be b i] is [b]'s big-endian 32-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int32_le : bytes -> int -> int32
(** [get_int32_le b i] is [b]'s little-endian 32-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int64_ne : bytes -> int -> int64
(** [get_int64_ne b i] is [b]'s native-endian 64-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int64_be : bytes -> int -> int64
(** [get_int64_be b i] is [b]'s big-endian 64-bit integer
starting at byte index [i].
@since 4.08
*)
val get_int64_le : bytes -> int -> int64
(** [get_int64_le b i] is [b]'s little-endian 64-bit integer
starting at byte index [i].
@since 4.08
*)
val set_uint8 : bytes -> int -> int -> unit
(** [set_uint8 b i v] sets [b]'s unsigned 8-bit integer starting at byte index
[i] to [v].
@since 4.08
*)
val set_int8 : bytes -> int -> int -> unit
(** [set_int8 b i v] sets [b]'s signed 8-bit integer starting at byte index
[i] to [v].
@since 4.08
*)
val set_uint16_ne : bytes -> int -> int -> unit
(** [set_uint16_ne b i v] sets [b]'s native-endian unsigned 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_uint16_be : bytes -> int -> int -> unit
(** [set_uint16_be b i v] sets [b]'s big-endian unsigned 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_uint16_le : bytes -> int -> int -> unit
(** [set_uint16_le b i v] sets [b]'s little-endian unsigned 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int16_ne : bytes -> int -> int -> unit
(** [set_int16_ne b i v] sets [b]'s native-endian signed 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int16_be : bytes -> int -> int -> unit
(** [set_int16_be b i v] sets [b]'s big-endian signed 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int16_le : bytes -> int -> int -> unit
(** [set_int16_le b i v] sets [b]'s little-endian signed 16-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int32_ne : bytes -> int -> int32 -> unit
(** [set_int32_ne b i v] sets [b]'s native-endian 32-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int32_be : bytes -> int -> int32 -> unit
(** [set_int32_be b i v] sets [b]'s big-endian 32-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int32_le : bytes -> int -> int32 -> unit
(** [set_int32_le b i v] sets [b]'s little-endian 32-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int64_ne : bytes -> int -> int64 -> unit
(** [set_int64_ne b i v] sets [b]'s native-endian 64-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int64_be : bytes -> int -> int64 -> unit
(** [set_int64_be b i v] sets [b]'s big-endian 64-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
val set_int64_le : bytes -> int -> int64 -> unit
(** [set_int64_le b i v] sets [b]'s little-endian 64-bit integer
starting at byte index [i] to [v].
@since 4.08
*)
(** {1:bytes_concurrency Byte sequences and concurrency safety}
Care must be taken when concurrently accessing byte sequences from
multiple domains: accessing a byte sequence will never crash a program,
but unsynchronized accesses might yield surprising
(non-sequentially-consistent) results.
{2:byte_atomicity Atomicity}
Every byte sequence operation that accesses more than one byte is not
atomic. This includes iteration and scanning.
For example, consider the following program:
{[let size = 100_000_000
let b = Bytes.make size ' '
let update b f () =
Bytes.iteri (fun i x -> Bytes.set b i (Char.chr (f (Char.code x)))) b
let d1 = Domain.spawn (update b (fun x -> x + 1))
let d2 = Domain.spawn (update b (fun x -> 2 * x + 1))
let () = Domain.join d1; Domain.join d2
]}
the bytes sequence [b] may contain a non-deterministic mixture
of ['!'], ['A'], ['B'], and ['C'] values.
After executing this code, each byte of the sequence [b] is either ['!'],
['A'], ['B'], or ['C']. If atomicity is required, then the user must
implement their own synchronization (for example, using {!Mutex.t}).
{2:bytes_data_race Data races}
If two domains only access disjoint parts of a byte sequence, then the
observed behaviour is the equivalent to some sequential interleaving of the
operations from the two domains.
A data race is said to occur when two domains access the same byte
without synchronization and at least one of the accesses is a write.
In the absence of data races, the observed behaviour is equivalent to some
sequential interleaving of the operations from different domains.
Whenever possible, data races should be avoided by using synchronization
to mediate the accesses to the elements of the sequence.
Indeed, in the presence of data races, programs will not crash but the
observed behaviour may not be equivalent to any sequential interleaving of
operations from different domains. Nevertheless, even in the presence of
data races, a read operation will return the value of some prior write to
that location.
{2:bytes_mixed_access Mixed-size accesses }
Another subtle point is that if a data race involves mixed-size writes and
reads to the same location, the order in which those writes and reads
are observed by domains is not specified.
For instance, the following code write sequentially a 32-bit integer and a
[char] to the same index
{[
let b = Bytes.make 10 '\000'
let d1 = Domain.spawn (fun () -> Bytes.set_int32_ne b 0 100; b.[0] <- 'd' )
]}
In this situation, a domain that observes the write of 'd' to b.[0] is not
guaranteed to also observe the write to indices [1], [2], or [3].
*)
(**/**)
(* The following is for system use only. Do not call directly. *)
external unsafe_get : bytes -> int -> char = "%bytes_unsafe_get"
external unsafe_set : bytes -> int -> char -> unit = "%bytes_unsafe_set"
external unsafe_blit :
bytes -> int -> bytes -> int -> int ->
unit = "caml_blit_bytes" [@@noalloc]
external unsafe_blit_string :
string -> int -> bytes -> int -> int -> unit
= "caml_blit_string" [@@noalloc]
external unsafe_fill :
bytes -> int -> int -> char -> unit = "caml_fill_bytes" [@@noalloc]
val unsafe_escape : bytes -> bytes
|