1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* Nicolas Ojeda Bar, LexiFi *)
(* *)
(* Copyright 2018 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is float.template.mli, run tools/sync_stdlib_docs after editing
it to generate float.mli.
If this file is float.mli, do not edit it directly -- edit
templates/float.template.mli instead.
*)
(** Floating-point arithmetic.
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
[neg_infinity] for [-1.0 /. 0.0], and [nan] ('not a number')
for [0.0 /. 0.0]. These special numbers then propagate through
floating-point computations as expected: for instance,
[1.0 /. infinity] is [0.0], basic arithmetic operations
([+.], [-.], [*.], [/.]) with [nan] as an argument return [nan], ...
@since 4.07
*)
val zero : float
(** The floating point 0.
@since 4.08 *)
val one : float
(** The floating-point 1.
@since 4.08 *)
val minus_one : float
(** The floating-point -1.
@since 4.08 *)
external neg : float -> float = "%negfloat"
(** Unary negation. *)
external add : float -> float -> float = "%addfloat"
(** Floating-point addition. *)
external sub : float -> float -> float = "%subfloat"
(** Floating-point subtraction. *)
external mul : float -> float -> float = "%mulfloat"
(** Floating-point multiplication. *)
external div : float -> float -> float = "%divfloat"
(** Floating-point division. *)
external fma : float -> float -> float -> float =
"caml_fma_float" "caml_fma" [@@unboxed] [@@noalloc]
(** [fma x y z] returns [x * y + z], with a best effort for computing
this expression with a single rounding, using either hardware
instructions (providing full IEEE compliance) or a software
emulation.
On 64-bit Cygwin, 64-bit mingw-w64 and MSVC 2017 and earlier, this function
may be emulated owing to known bugs on limitations on these platforms.
Note: since software emulation of the fma is costly, make sure that you are
using hardware fma support if performance matters.
@since 4.08 *)
external rem : float -> float -> float = "caml_fmod_float" "fmod"
[@@unboxed] [@@noalloc]
(** [rem a b] returns the remainder of [a] with respect to [b]. The returned
value is [a -. n *. b], where [n] is the quotient [a /. b] rounded towards
zero to an integer. *)
val succ : float -> float
(** [succ x] returns the floating point number right after [x] i.e.,
the smallest floating-point number greater than [x]. See also
{!next_after}.
@since 4.08 *)
val pred : float -> float
(** [pred x] returns the floating-point number right before [x] i.e.,
the greatest floating-point number smaller than [x]. See also
{!next_after}.
@since 4.08 *)
external abs : float -> float = "%absfloat"
(** [abs f] returns the absolute value of [f]. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
'not a number'. Any floating-point operation with [nan] as
argument returns [nan] as result, unless otherwise specified in
IEEE 754 standard. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan].
[nan] is [quiet_nan] since 5.1; it was a signaling NaN before. *)
val signaling_nan : float
(** Signaling NaN. The corresponding signals do not raise OCaml exception,
but the value can be useful for interoperability with C libraries.
@since 5.1 *)
val quiet_nan : float
(** Quiet NaN.
@since 5.1 *)
val pi : float
(** The constant pi. *)
val max_float : float
(** The largest positive finite value of type [float]. *)
val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)
val epsilon : float
(** The difference between [1.0] and the smallest exactly representable
floating-point number greater than [1.0]. *)
val is_finite : float -> bool
(** [is_finite x] is [true] if and only if [x] is finite i.e., not infinite and
not {!nan}.
@since 4.08 *)
val is_infinite : float -> bool
(** [is_infinite x] is [true] if and only if [x] is {!infinity} or
{!neg_infinity}.
@since 4.08 *)
val is_nan : float -> bool
(** [is_nan x] is [true] if and only if [x] is not a number (see {!nan}).
@since 4.08 *)
val is_integer : float -> bool
(** [is_integer x] is [true] if and only if [x] is an integer.
@since 4.08 *)
external of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)
external to_int : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
The result is unspecified if the argument is [nan] or falls outside the
range of representable integers. *)
external of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float. The string is read in decimal
(by default) or in hexadecimal (marked by [0x] or [0X]).
The format of decimal floating-point numbers is
[ [-] dd.ddd (e|E) [+|-] dd ], where [d] stands for a decimal digit.
The format of hexadecimal floating-point numbers is
[ [-] 0(x|X) hh.hhh (p|P) [+|-] dd ], where [h] stands for an
hexadecimal digit and [d] for a decimal digit.
In both cases, at least one of the integer and fractional parts must be
given; the exponent part is optional.
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Depending on the execution platforms, other representations of
floating-point numbers can be accepted, but should not be relied upon.
@raise Failure if the given string is not a valid
representation of a float. *)
val of_string_opt: string -> float option
(** Same as [of_string], but returns [None] instead of raising. *)
val to_string : float -> string
(** Return a string representation of a floating-point number.
This conversion can involve a loss of precision. For greater control over
the manner in which the number is printed, see {!Printf}.
This function is an alias for {!Stdlib.string_of_float}. *)
type fpclass = Stdlib.fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify_float} function. *)
external classify_float : (float [@unboxed]) -> fpclass =
"caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
external pow : float -> float -> float = "caml_power_float" "pow"
[@@unboxed] [@@noalloc]
(** Exponentiation. *)
external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@@noalloc]
(** Square root. *)
external cbrt : float -> float = "caml_cbrt_float" "caml_cbrt"
[@@unboxed] [@@noalloc]
(** Cube root.
@since 4.13
*)
external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)
external exp2 : float -> float = "caml_exp2_float" "caml_exp2"
[@@unboxed] [@@noalloc]
(** Base 2 exponential function.
@since 4.13
*)
external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10"
[@@unboxed] [@@noalloc]
(** Base 10 logarithm. *)
external log2 : float -> float = "caml_log2_float" "caml_log2"
[@@unboxed] [@@noalloc]
(** Base 2 logarithm.
@since 4.13
*)
external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
[@@unboxed] [@@noalloc]
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
even if [x] is close to [0.0]. *)
external log1p : float -> float = "caml_log1p_float" "caml_log1p"
[@@unboxed] [@@noalloc]
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
giving numerically-accurate results even if [x] is close to [0.0]. *)
external cos : float -> float = "caml_cos_float" "cos" [@@unboxed] [@@noalloc]
(** Cosine. Argument is in radians. *)
external sin : float -> float = "caml_sin_float" "sin" [@@unboxed] [@@noalloc]
(** Sine. Argument is in radians. *)
external tan : float -> float = "caml_tan_float" "tan" [@@unboxed] [@@noalloc]
(** Tangent. Argument is in radians. *)
external acos : float -> float = "caml_acos_float" "acos"
[@@unboxed] [@@noalloc]
(** Arc cosine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [0.0] and [pi]. *)
external asin : float -> float = "caml_asin_float" "asin"
[@@unboxed] [@@noalloc]
(** Arc sine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan : float -> float = "caml_atan_float" "atan"
[@@unboxed] [@@noalloc]
(** Arc tangent.
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
[@@unboxed] [@@noalloc]
(** [atan2 y x] returns the arc tangent of [y /. x]. The signs of [x]
and [y] are used to determine the quadrant of the result.
Result is in radians and is between [-pi] and [pi]. *)
external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
[@@unboxed] [@@noalloc]
(** [hypot x y] returns [sqrt(x *. x +. y *. y)], that is, the length
of the hypotenuse of a right-angled triangle with sides of length
[x] and [y], or, equivalently, the distance of the point [(x,y)]
to origin. If one of [x] or [y] is infinite, returns [infinity]
even if the other is [nan]. *)
external cosh : float -> float = "caml_cosh_float" "cosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic cosine. Argument is in radians. *)
external sinh : float -> float = "caml_sinh_float" "sinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic sine. Argument is in radians. *)
external tanh : float -> float = "caml_tanh_float" "tanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic tangent. Argument is in radians. *)
external acosh : float -> float = "caml_acosh_float" "caml_acosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc cosine. The argument must fall within the range
[[1.0, inf]].
Result is in radians and is between [0.0] and [inf].
@since 4.13
*)
external asinh : float -> float = "caml_asinh_float" "caml_asinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc sine. The argument and result range over the entire
real line.
Result is in radians.
@since 4.13
*)
external atanh : float -> float = "caml_atanh_float" "caml_atanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc tangent. The argument must fall within the range
[[-1.0, 1.0]].
Result is in radians and ranges over the entire real line.
@since 4.13
*)
external erf : float -> float = "caml_erf_float" "caml_erf"
[@@unboxed] [@@noalloc]
(** Error function. The argument ranges over the entire real line.
The result is always within [[-1.0, 1.0]].
@since 4.13
*)
external erfc : float -> float = "caml_erfc_float" "caml_erfc"
[@@unboxed] [@@noalloc]
(** Complementary error function ([erfc x = 1 - erf x]).
The argument ranges over the entire real line.
The result is always within [[0.0, 2.0]].
@since 4.13
*)
external trunc : float -> float = "caml_trunc_float" "caml_trunc"
[@@unboxed] [@@noalloc]
(** [trunc x] rounds [x] to the nearest integer whose absolute value is
less than or equal to [x].
@since 4.08 *)
external round : float -> float = "caml_round_float" "caml_round"
[@@unboxed] [@@noalloc]
(** [round x] rounds [x] to the nearest integer with ties (fractional
values of 0.5) rounded away from zero, regardless of the current
rounding direction. If [x] is an integer, [+0.], [-0.], [nan], or
infinite, [x] itself is returned.
On 64-bit mingw-w64, this function may be emulated owing to a bug in the
C runtime library (CRT) on this platform.
@since 4.08 *)
external ceil : float -> float = "caml_ceil_float" "ceil"
[@@unboxed] [@@noalloc]
(** Round above to an integer value.
[ceil f] returns the least integer value greater than or equal to [f].
The result is returned as a float. *)
external floor : float -> float = "caml_floor_float" "floor"
[@@unboxed] [@@noalloc]
(** Round below to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
The result is returned as a float. *)
external next_after : float -> float -> float
= "caml_nextafter_float" "caml_nextafter" [@@unboxed] [@@noalloc]
(** [next_after x y] returns the next representable floating-point
value following [x] in the direction of [y]. More precisely, if
[y] is greater (resp. less) than [x], it returns the smallest
(resp. largest) representable number greater (resp. less) than [x].
If [x] equals [y], the function returns [y]. If [x] or [y] is
[nan], a [nan] is returned.
Note that [next_after max_float infinity = infinity] and that
[next_after 0. infinity] is the smallest denormalized positive number.
If [x] is the smallest denormalized positive number,
[next_after x 0. = 0.]
@since 4.08 *)
external copy_sign : float -> float -> float
= "caml_copysign_float" "caml_copysign"
[@@unboxed] [@@noalloc]
(** [copy_sign x y] returns a float whose absolute value is that of [x]
and whose sign is that of [y]. If [x] is [nan], returns [nan].
If [y] is [nan], returns either [x] or [-. x], but it is not
specified which. *)
external sign_bit : (float [@unboxed]) -> bool
= "caml_signbit_float" "caml_signbit" [@@noalloc]
(** [sign_bit x] is [true] if and only if the sign bit of [x] is set.
For example [sign_bit 1.] and [signbit 0.] are [false] while
[sign_bit (-1.)] and [sign_bit (-0.)] are [true].
@since 4.08 *)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed]) =
"caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
type t = float
(** An alias for the type of floating-point numbers. *)
val compare: t -> t -> int
(** [compare x y] returns [0] if [x] is equal to [y], a negative integer if [x]
is less than [y], and a positive integer if [x] is greater than
[y]. [compare] treats [nan] as equal to itself and less than any other float
value. This treatment of [nan] ensures that [compare] defines a total
ordering relation. *)
val equal: t -> t -> bool
(** The equal function for floating-point numbers, compared using {!compare}. *)
val min : t -> t -> t
(** [min x y] returns the minimum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [min (-0.) (+0.) = -0.]
@since 4.08 *)
val max : float -> float -> float
(** [max x y] returns the maximum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [max (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max : float -> float -> float * float
(** [min_max x y] is [(min x y, max x y)], just more efficient.
@since 4.08 *)
val min_num : t -> t -> t
(** [min_num x y] returns the minimum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan], [nan] is returned.
Moreover [min_num (-0.) (+0.) = -0.]
@since 4.08 *)
val max_num : t -> t -> t
(** [max_num x y] returns the maximum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan] [nan] is returned.
Moreover [max_num (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max_num : float -> float -> float * float
(** [min_max_num x y] is [(min_num x y, max_num x y)], just more
efficient. Note that in particular [min_max_num x nan = (x, x)]
and [min_max_num nan y = (y, y)].
@since 4.08 *)
val seeded_hash : int -> t -> int
(** A seeded hash function for floats, with the same output value as
{!Hashtbl.seeded_hash}. This function allows this module to be passed as
argument to the functor {!Hashtbl.MakeSeeded}.
@since 5.1 *)
val hash : t -> int
(** An unseeded hash function for floats, with the same output value as
{!Hashtbl.hash}. This function allows this module to be passed as argument
to the functor {!Hashtbl.Make}. *)
module Array : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> (int -> float) -> t
(** [init n f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val make_matrix : int -> int -> float -> t array
(** [make_matrix dimx dimy e] returns a two-dimensional array
(an array of arrays) with first dimension [dimx] and
second dimension [dimy], where all elements are initialized with [e].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_floatarray_length}.
@since 5.2 *)
val init_matrix : int -> int -> (int -> int -> float) -> t array
(** [init_matrix dimx dimy f] returns a two-dimensional array
(an array of arrays)
with first dimension [dimx] and second dimension [dimy],
where the element at index ([x,y]) is initialized with [f x y].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_floatarray_length}.
@since 5.2 *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> int -> int -> t
(** [sub a pos len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> int -> int -> float -> unit
(** [fill a pos len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : t -> int -> t -> int -> int -> unit
(** [blit src src_pos dst dst_pos len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {1 Iterators} *)
val iter : (float -> unit) -> t -> unit
(** [iter f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : (int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : (float -> float) -> t -> t
(** [map f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val map_inplace : (float -> float) -> t -> unit
(** [map_inplace f a] applies function [f] to all elements of [a],
and updates their values in place.
@since 5.1 *)
val mapi : (int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi_inplace : (int -> float -> float) -> t -> unit
(** Same as {!map_inplace}, but the function is applied to the index of the
element as first argument, and the element itself as second argument.
@since 5.1 *)
val fold_left : ('acc -> float -> 'acc) -> 'acc -> t -> 'acc
(** [fold_left f x init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : (float -> 'acc -> 'acc) -> t -> 'acc -> 'acc
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {1 Iterators on two arrays} *)
val iter2 : (float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : (float -> float -> float) -> t -> t -> t
(** [map2 f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {1 Array scanning} *)
val for_all : (float -> bool) -> t -> bool
(** [for_all f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : (float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> t -> bool
(** [mem a set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {1 Array searching} *)
val find_opt : (float -> bool) -> t -> float option
(* [find_opt f a] returns the first element of the array [a] that satisfies
the predicate [f]. Returns [None] if there is no value that satisfies [f]
in the array [a].
@since 5.1 *)
val find_index : (float-> bool) -> t -> int option
(** [find_index f a] returns [Some i], where [i] is the index of the first
element of the array [a] that satisfies [f x], if there is such an
element.
It returns [None] if there is no such element.
@since 5.1 *)
val find_map : (float -> 'a option) -> t -> 'a option
(* [find_map f a] applies [f] to the elements of [a] in order, and returns
the first result of the form [Some v], or [None] if none exist.
@since 5.1 *)
val find_mapi : (int -> float -> 'a option) -> t -> 'a option
(** Same as [find_map], but the predicate is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.
@since 5.1 *)
(** {1:sorting_and_shuffling Sorting and shuffling} *)
val sort : (float -> float -> int) -> t -> unit
(** Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the floatarray and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if i >= j
*)
val stable_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length [n/2], where [n] is the length of the floatarray.
It is usually faster than the current implementation of {!sort}. *)
val fast_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort} or {!stable_sort}, whichever is faster
on typical input. *)
val shuffle :
rand: (* thwart tools/sync_stdlib_docs *) (int -> int) -> t -> unit
(** [shuffle rand a] randomly permutes [a]'s elements using [rand]
for randomness. The distribution of permutations is uniform.
[rand] must be such that a call to [rand n] returns a uniformly
distributed random number in the range \[[0];[n-1]\].
{!Random.int} can be used for this (do not forget to
{{!Random.self_init}initialize} the generator).
@since 5.2 *)
(** {1 Float arrays and Sequences} *)
val to_seq : t -> float Seq.t
(** Iterate on the floatarray, in increasing order. Modifications of the
floatarray during iteration will be reflected in the sequence. *)
val to_seqi : t -> (int * float) Seq.t
(** Iterate on the floatarray, in increasing order, yielding indices along
elements. Modifications of the floatarray during iteration will be
reflected in the sequence. *)
val of_seq : float Seq.t -> t
(** Create an array from the generator. *)
val map_to_array : (float -> 'a) -> t -> 'a array
(** [map_to_array f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_from_array : ('a -> float) -> 'a array -> t
(** [map_from_array f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
(** {1:floatarray_concurrency Arrays and concurrency safety}
Care must be taken when concurrently accessing float arrays from multiple
domains: accessing an array will never crash a program, but unsynchronized
accesses might yield surprising (non-sequentially-consistent) results.
{2:floatarray_atomicity Atomicity}
Every float array operation that accesses more than one array element is
not atomic. This includes iteration, scanning, sorting, splitting and
combining arrays.
For example, consider the following program:
{[let size = 100_000_000
let a = Float.Array.make size 1.
let update a f () =
Float.Array.iteri (fun i x -> Float.Array.set a i (f x)) a
let d1 = Domain.spawn (update a (fun x -> x +. 1.))
let d2 = Domain.spawn (update a (fun x -> 2. *. x +. 1.))
let () = Domain.join d1; Domain.join d2
]}
After executing this code, each field of the float array [a] is either
[2.], [3.], [4.] or [5.]. If atomicity is required, then the user must
implement their own synchronization (for example, using {!Mutex.t}).
{2:floatarray_data_race Data races}
If two domains only access disjoint parts of the array, then the
observed behaviour is the equivalent to some sequential interleaving of
the operations from the two domains.
A data race is said to occur when two domains access the same array
element without synchronization and at least one of the accesses is a
write. In the absence of data races, the observed behaviour is equivalent
to some sequential interleaving of the operations from different domains.
Whenever possible, data races should be avoided by using synchronization
to mediate the accesses to the array elements.
Indeed, in the presence of data races, programs will not crash but the
observed behaviour may not be equivalent to any sequential interleaving of
operations from different domains. Nevertheless, even in the presence of
data races, a read operation will return the value of some prior write to
that location with a few exceptions.
{2:floatarray_datarace_tearing Tearing }
Float arrays have two supplementary caveats in the presence of data races.
First, the blit operation might copy an array byte-by-byte. Data races
between such a blit operation and another operation might produce
surprising values due to tearing: partial writes interleaved with other
operations can create float values that would not exist with a sequential
execution.
For instance, at the end of
{[let zeros = Float.Array.make size 0.
let max_floats = Float.Array.make size Float.max_float
let res = Float.Array.copy zeros
let d1 = Domain.spawn (fun () -> Float.Array.blit zeros 0 res 0 size)
let d2 = Domain.spawn (fun () -> Float.Array.blit max_floats 0 res 0 size)
let () = Domain.join d1; Domain.join d2
]}
the [res] float array might contain values that are neither [0.]
nor [max_float].
Second, on 32-bit architectures, getting or setting a field involves two
separate memory accesses. In the presence of data races, the user may
observe tearing on any operation.
*)
(**/**)
(** {1 Undocumented functions} *)
(* These functions are for system use only. Do not call directly. *)
external unsafe_get : t -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : t -> int -> float -> unit = "%floatarray_unsafe_set"
end
(** Float arrays with packed representation. *)
module ArrayLabels : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> f:(int -> float) -> t
(** [init n ~f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n ~f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val make_matrix : dimx:int -> dimy:int -> float -> t array
(** [make_matrix ~dimx ~dimy e] returns a two-dimensional array
(an array of arrays) with first dimension [dimx] and
second dimension [dimy], where all elements are initialized with [e].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_floatarray_length}.
@since 5.2 *)
val init_matrix : dimx:int -> dimy:int -> f:(int -> int -> float) -> t array
(** [init_matrix ~dimx ~dimy ~f] returns a two-dimensional array
(an array of arrays)
with first dimension [dimx] and second dimension [dimy],
where the element at index ([x,y]) is initialized with [f x y].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than {!Sys.max_floatarray_length}.
@since 5.2 *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> pos:int -> len:int -> t
(** [sub a ~pos ~len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> pos:int -> len:int -> float -> unit
(** [fill a ~pos ~len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : src:t -> src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit
(** [blit ~src ~src_pos ~dst ~dst_pos ~len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {1 Iterators} *)
val iter : f:(float -> unit) -> t -> unit
(** [iter ~f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : f:(int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : f:(float -> float) -> t -> t
(** [map ~f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val map_inplace : f:(float -> float) -> t -> unit
(** [map_inplace f a] applies function [f] to all elements of [a],
and updates their values in place.
@since 5.1 *)
val mapi : f:(int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi_inplace : f:(int -> float -> float) -> t -> unit
(** Same as {!map_inplace}, but the function is applied to the index of the
element as first argument, and the element itself as second argument.
@since 5.1 *)
val fold_left : f:('acc -> float -> 'acc) -> init:'acc -> t -> 'acc
(** [fold_left ~f x ~init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : f:(float -> 'acc -> 'acc) -> t -> init:'acc -> 'acc
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {1 Iterators on two arrays} *)
val iter2 : f:(float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 ~f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : f:(float -> float -> float) -> t -> t -> t
(** [map2 ~f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {1 Array scanning} *)
val for_all : f:(float -> bool) -> t -> bool
(** [for_all ~f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : f:(float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> set:t -> bool
(** [mem a ~set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> set:t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {1 Array searching} *)
val find_opt : f:(float -> bool) -> t -> float option
(* [find_opt ~f a] returns the first element of the array [a] that satisfies
the predicate [f]. Returns [None] if there is no value that satisfies [f]
in the array [a].
@since 5.1 *)
val find_index : f:(float-> bool) -> t -> int option
(** [find_index ~f a] returns [Some i], where [i] is the index of the first
element of the array [a] that satisfies [f x], if there is such an
element.
It returns [None] if there is no such element.
@since 5.1 *)
val find_map : f:(float -> 'a option) -> t -> 'a option
(* [find_map ~f a] applies [f] to the elements of [a] in order, and returns
the first result of the form [Some v], or [None] if none exist.
@since 5.1 *)
val find_mapi : f:(int -> float -> 'a option) -> t -> 'a option
(** Same as [find_map], but the predicate is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.
@since 5.1 *)
(** {1:sorting_and_shuffling Sorting and shuffling} *)
val sort : cmp:(float -> float -> int) -> t -> unit
(** Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the floatarray and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if i >= j
*)
val stable_sort : cmp:(float -> float -> int) -> t -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length [n/2], where [n] is the length of the floatarray.
It is usually faster than the current implementation of {!sort}. *)
val fast_sort : cmp:(float -> float -> int) -> t -> unit
(** Same as {!sort} or {!stable_sort}, whichever is faster
on typical input. *)
val shuffle :
rand: (* thwart tools/sync_stdlib_docs *) (int -> int) -> t -> unit
(** [shuffle ~rand a] randomly permutes [a]'s elements using [rand]
for randomness. The distribution of permutations is uniform.
[rand] must be such that a call to [rand n] returns a uniformly
distributed random number in the range \[[0];[n-1]\].
{!Random.int} can be used for this (do not forget to
{{!Random.self_init}initialize} the generator).
@since 5.2 *)
(** {1 Float arrays and Sequences} *)
val to_seq : t -> float Seq.t
(** Iterate on the floatarray, in increasing order. Modifications of the
floatarray during iteration will be reflected in the sequence. *)
val to_seqi : t -> (int * float) Seq.t
(** Iterate on the floatarray, in increasing order, yielding indices along
elements. Modifications of the floatarray during iteration will be
reflected in the sequence. *)
val of_seq : float Seq.t -> t
(** Create an array from the generator. *)
val map_to_array : f:(float -> 'a) -> t -> 'a array
(** [map_to_array ~f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_from_array : f:('a -> float) -> 'a array -> t
(** [map_from_array ~f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
(** {1:floatarray_concurrency Arrays and concurrency safety}
Care must be taken when concurrently accessing float arrays from multiple
domains: accessing an array will never crash a program, but unsynchronized
accesses might yield surprising (non-sequentially-consistent) results.
{2:floatarray_atomicity Atomicity}
Every float array operation that accesses more than one array element is
not atomic. This includes iteration, scanning, sorting, splitting and
combining arrays.
For example, consider the following program:
{[let size = 100_000_000
let a = Float.ArrayLabels.make size 1.
let update a f () =
Float.ArrayLabels.iteri ~f:(fun i x -> Float.Array.set a i (f x)) a
let d1 = Domain.spawn (update a (fun x -> x +. 1.))
let d2 = Domain.spawn (update a (fun x -> 2. *. x +. 1.))
let () = Domain.join d1; Domain.join d2
]}
After executing this code, each field of the float array [a] is either
[2.], [3.], [4.] or [5.]. If atomicity is required, then the user must
implement their own synchronization (for example, using {!Mutex.t}).
{2:floatarray_data_race Data races}
If two domains only access disjoint parts of the array, then the
observed behaviour is the equivalent to some sequential interleaving of
the operations from the two domains.
A data race is said to occur when two domains access the same array
element without synchronization and at least one of the accesses is a
write. In the absence of data races, the observed behaviour is equivalent
to some sequential interleaving of the operations from different domains.
Whenever possible, data races should be avoided by using synchronization
to mediate the accesses to the array elements.
Indeed, in the presence of data races, programs will not crash but the
observed behaviour may not be equivalent to any sequential interleaving of
operations from different domains. Nevertheless, even in the presence of
data races, a read operation will return the value of some prior write to
that location with a few exceptions.
{2:floatarray_datarace_tearing Tearing }
Float arrays have two supplementary caveats in the presence of data races.
First, the blit operation might copy an array byte-by-byte. Data races
between such a blit operation and another operation might produce
surprising values due to tearing: partial writes interleaved with other
operations can create float values that would not exist with a sequential
execution.
For instance, at the end of
{[let zeros = Float.Array.make size 0.
let max_floats = Float.Array.make size Float.max_float
let res = Float.Array.copy zeros
let d1 = Domain.spawn (fun () -> Float.Array.blit zeros 0 res 0 size)
let d2 = Domain.spawn (fun () -> Float.Array.blit max_floats 0 res 0 size)
let () = Domain.join d1; Domain.join d2
]}
the [res] float array might contain values that are neither [0.]
nor [max_float].
Second, on 32-bit architectures, getting or setting a field involves two
separate memory accesses. In the presence of data races, the user may
observe tearing on any operation.
*)
(**/**)
(** {1 Undocumented functions} *)
(* These functions are for system use only. Do not call directly. *)
external unsafe_get : t -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : t -> int -> float -> unit = "%floatarray_unsafe_set"
end
(** Float arrays with packed representation (labeled functions). *)
|