1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE: If this file is map.mli, do not edit it directly! Instead,
edit templates/map.template.mli and run tools/sync_stdlib_docs *)
(** Association tables over ordered types.
This module implements applicative association tables, also known as
finite maps or dictionaries, given a total ordering function
over the keys.
All operations over maps are purely applicative (no side-effects).
The implementation uses balanced binary trees, and therefore searching
and insertion take time logarithmic in the size of the map.
For instance:
{[
module IntPairs =
struct
type t = int * int
let compare (x0,y0) (x1,y1) =
match Stdlib.compare x0 x1 with
0 -> Stdlib.compare y0 y1
| c -> c
end
module PairsMap = Map.Make(IntPairs)
let m = PairsMap.(empty |> add (0,1) "hello" |> add (1,0) "world")
]}
This creates a new module [PairsMap], with a new type ['a PairsMap.t]
of maps from [int * int] to ['a]. In this example, [m] contains [string]
values so its type is [string PairsMap.t].
*)
module type OrderedType =
sig
type t
(** The type of the map keys. *)
val compare : t -> t -> int
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Stdlib.compare}. *)
end
(** Input signature of the functor {!Make}. *)
module type S =
sig
(** {1:maps Maps} *)
type key
(** The type of the map keys. *)
type !+'a t
(** The type of maps from type [key] to type ['a]. *)
val empty: 'a t
(** The empty map. *)
val add: key -> 'a -> 'a t -> 'a t
(** [add key data m] returns a map containing the same bindings as
[m], plus a binding of [key] to [data]. If [key] was already bound
in [m] to a value that is physically equal to [data],
[m] is returned unchanged (the result of the function is
then physically equal to [m]). Otherwise, the previous binding
of [key] in [m] disappears.
@before 4.03 Physical equality was not ensured. *)
val add_to_list: key -> 'a -> 'a list t -> 'a list t
(** [add_to_list key data m] is [m] with [key] mapped to [l] such
that [l] is [data :: Map.find key m] if [key] was bound in
[m] and [[v]] otherwise.
@since 5.1 *)
val update: key -> ('a option -> 'a option) -> 'a t -> 'a t
(** [update key f m] returns a map containing the same bindings as
[m], except for the binding of [key]. Depending on the value of
[y] where [y] is [f (find_opt key m)], the binding of [key] is
added, removed or updated. If [y] is [None], the binding is
removed if it exists; otherwise, if [y] is [Some z] then [key]
is associated to [z] in the resulting map. If [key] was already
bound in [m] to a value that is physically equal to [z], [m]
is returned unchanged (the result of the function is then
physically equal to [m]).
@since 4.06 *)
val singleton: key -> 'a -> 'a t
(** [singleton x y] returns the one-element map that contains a binding
[y] for [x].
@since 3.12 *)
val remove: key -> 'a t -> 'a t
(** [remove x m] returns a map containing the same bindings as
[m], except for [x] which is unbound in the returned map.
If [x] was not in [m], [m] is returned unchanged
(the result of the function is then physically equal to [m]).
@before 4.03 Physical equality was not ensured. *)
val merge:
(key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t
(** [merge f m1 m2] computes a map whose keys are a subset of the keys of
[m1] and of [m2]. The presence of each such binding, and the
corresponding value, is determined with the function [f].
In terms of the [find_opt] operation, we have
[find_opt x (merge f m1 m2) = f x (find_opt x m1) (find_opt x m2)]
for any key [x], provided that [f x None None = None].
@since 3.12 *)
val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
(** [union f m1 m2] computes a map whose keys are a subset of the keys
of [m1] and of [m2]. When the same binding is defined in both
arguments, the function [f] is used to combine them.
This is a special case of [merge]: [union f m1 m2] is equivalent
to [merge f' m1 m2], where
- [f' _key None None = None]
- [f' _key (Some v) None = Some v]
- [f' _key None (Some v) = Some v]
- [f' key (Some v1) (Some v2) = f key v1 v2]
@since 4.03 *)
val cardinal: 'a t -> int
(** Return the number of bindings of a map.
@since 3.12 *)
(** {1:bindings Bindings} *)
val bindings: 'a t -> (key * 'a) list
(** Return the list of all bindings of the given map.
The returned list is sorted in increasing order of keys with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Map.Make}.
@since 3.12 *)
val min_binding: 'a t -> (key * 'a)
(** Return the binding with the smallest key in a given map
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the map is empty.
@since 3.12 *)
val min_binding_opt: 'a t -> (key * 'a) option
(** Return the binding with the smallest key in the given map
(with respect to the [Ord.compare] ordering), or [None]
if the map is empty.
@since 4.05 *)
val max_binding: 'a t -> (key * 'a)
(** Same as {!min_binding}, but returns the binding with
the largest key in the given map.
@since 3.12 *)
val max_binding_opt: 'a t -> (key * 'a) option
(** Same as {!min_binding_opt}, but returns the binding with
the largest key in the given map.
@since 4.05 *)
val choose: 'a t -> (key * 'a)
(** Return one binding of the given map, or raise [Not_found] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 3.12 *)
val choose_opt: 'a t -> (key * 'a) option
(** Return one binding of the given map, or [None] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 4.05 *)
(** {1:searching Searching} *)
val find: key -> 'a t -> 'a
(** [find x m] returns the current value of [x] in [m],
or raises [Not_found] if no binding for [x] exists. *)
val find_opt: key -> 'a t -> 'a option
(** [find_opt x m] returns [Some v] if the current value of [x]
in [m] is [v], or [None] if no binding for [x] exists.
@since 4.05 *)
val find_first: (key -> bool) -> 'a t -> key * 'a
(** [find_first f m], where [f] is a monotonically increasing function,
returns the binding of [m] with the lowest key [k] such that [f k],
or raises [Not_found] if no such key exists.
For example, [find_first (fun k -> Ord.compare k x >= 0) m] will
return the first binding [k, v] of [m] where [Ord.compare k x >= 0]
(intuitively: [k >= x]), or raise [Not_found] if [x] is greater than
any element of [m].
@since 4.05 *)
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
(** [find_first_opt f m], where [f] is a monotonically increasing
function, returns an option containing the binding of [m] with the
lowest key [k] such that [f k], or [None] if no such key exists.
@since 4.05 *)
val find_last: (key -> bool) -> 'a t -> key * 'a
(** [find_last f m], where [f] is a monotonically decreasing function,
returns the binding of [m] with the highest key [k] such that [f k],
or raises [Not_found] if no such key exists.
@since 4.05 *)
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
(** [find_last_opt f m], where [f] is a monotonically decreasing
function, returns an option containing the binding of [m] with
the highest key [k] such that [f k], or [None] if no such key
exists.
@since 4.05 *)
(** {1:traversing Traversing} *)
val iter: (key -> 'a -> unit) -> 'a t -> unit
(** [iter f m] applies [f] to all bindings in map [m].
[f] receives the key as first argument, and the associated value
as second argument. The bindings are passed to [f] in increasing
order with respect to the ordering over the type of the keys. *)
val fold:
(key -> 'a -> 'acc -> 'acc) -> 'a t -> 'acc -> 'acc
(** [fold f m init] computes [(f kN dN ... (f k1 d1 init)...)],
where [k1 ... kN] are the keys of all bindings in [m]
(in increasing order), and [d1 ... dN] are the associated data. *)
(** {1:transforming Transforming} *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f m] returns a map with same domain as [m], where the
associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
(** Same as {!map}, but the function receives as arguments both the
key and the associated value for each binding of the map. *)
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
(** [filter f m] returns the map with all the bindings in [m]
that satisfy predicate [p]. If every binding in [m] satisfies [f],
[m] is returned unchanged (the result of the function is then
physically equal to [m])
@since 3.12
@before 4.03 Physical equality was not ensured. *)
val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t
(** [filter_map f m] applies the function [f] to every binding of
[m], and builds a map from the results. For each binding
[(k, v)] in the input map:
- if [f k v] is [None] then [k] is not in the result,
- if [f k v] is [Some v'] then the binding [(k, v')]
is in the output map.
For example, the following function on maps whose values are lists
{[
filter_map
(fun _k li -> match li with [] -> None | _::tl -> Some tl)
m
]}
drops all bindings of [m] whose value is an empty list, and pops
the first element of each value that is non-empty.
@since 4.11 *)
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
(** [partition f m] returns a pair of maps [(m1, m2)], where
[m1] contains all the bindings of [m] that satisfy the
predicate [f], and [m2] is the map with all the bindings of
[m] that do not satisfy [f].
@since 3.12 *)
val split: key -> 'a t -> 'a t * 'a option * 'a t
(** [split x m] returns a triple [(l, data, r)], where
[l] is the map with all the bindings of [m] whose key
is strictly less than [x];
[r] is the map with all the bindings of [m] whose key
is strictly greater than [x];
[data] is [None] if [m] contains no binding for [x],
or [Some v] if [m] binds [v] to [x].
@since 3.12 *)
(** {1:predicates Predicates and comparisons} *)
val is_empty: 'a t -> bool
(** Test whether a map is empty or not. *)
val mem: key -> 'a t -> bool
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
(** Total ordering between maps. The first argument is a total ordering
used to compare data associated with equal keys in the two maps. *)
val for_all: (key -> 'a -> bool) -> 'a t -> bool
(** [for_all f m] checks if all the bindings of the map
satisfy the predicate [f].
@since 3.12 *)
val exists: (key -> 'a -> bool) -> 'a t -> bool
(** [exists f m] checks if at least one binding of the map
satisfies the predicate [f].
@since 3.12 *)
(** {1:converting Converting} *)
val to_list : 'a t -> (key * 'a) list
(** [to_list m] is {!bindings}[ m].
@since 5.1 *)
val of_list : (key * 'a) list -> 'a t
(** [of_list bs] adds the bindings of [bs] to the empty map,
in list order (if a key is bound twice in [bs] the last one
takes over).
@since 5.1 *)
val to_seq : 'a t -> (key * 'a) Seq.t
(** Iterate on the whole map, in ascending order of keys
@since 4.07 *)
val to_rev_seq : 'a t -> (key * 'a) Seq.t
(** Iterate on the whole map, in descending order of keys
@since 4.12 *)
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
(** [to_seq_from k m] iterates on a subset of the bindings of [m],
in ascending order of keys, from key [k] or above.
@since 4.07 *)
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
(** Add the given bindings to the map, in order.
@since 4.07 *)
val of_seq : (key * 'a) Seq.t -> 'a t
(** Build a map from the given bindings
@since 4.07 *)
end
(** Output signature of the functor {!Make}. *)
module Make (Ord : OrderedType) : S with type key = Ord.t
(** Functor building an implementation of the map structure
given a totally ordered type. *)
|