1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* Nicolas Ojeda Bar, LexiFi *)
(* *)
(* Copyright 2018 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is float.template.mli, run tools/sync_stdlib_docs after editing
it to generate float.mli.
If this file is float.mli, do not edit it directly -- edit
templates/float.template.mli instead.
*)
(** Floating-point arithmetic.
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
[neg_infinity] for [-1.0 /. 0.0], and [nan] ('not a number')
for [0.0 /. 0.0]. These special numbers then propagate through
floating-point computations as expected: for instance,
[1.0 /. infinity] is [0.0], basic arithmetic operations
([+.], [-.], [*.], [/.]) with [nan] as an argument return [nan], ...
@since 4.07
*)
val zero : float
(** The floating point 0.
@since 4.08 *)
val one : float
(** The floating-point 1.
@since 4.08 *)
val minus_one : float
(** The floating-point -1.
@since 4.08 *)
external neg : float -> float = "%negfloat"
(** Unary negation. *)
external add : float -> float -> float = "%addfloat"
(** Floating-point addition. *)
external sub : float -> float -> float = "%subfloat"
(** Floating-point subtraction. *)
external mul : float -> float -> float = "%mulfloat"
(** Floating-point multiplication. *)
external div : float -> float -> float = "%divfloat"
(** Floating-point division. *)
external fma : float -> float -> float -> float =
"caml_fma_float" "caml_fma" [@@unboxed] [@@noalloc]
(** [fma x y z] returns [x * y + z], with a best effort for computing
this expression with a single rounding, using either hardware
instructions (providing full IEEE compliance) or a software
emulation.
On 64-bit Cygwin, 64-bit mingw-w64 and MSVC 2017 and earlier, this function
may be emulated owing to known bugs on limitations on these platforms.
Note: since software emulation of the fma is costly, make sure that you are
using hardware fma support if performance matters.
@since 4.08 *)
external rem : float -> float -> float = "caml_fmod_float" "fmod"
[@@unboxed] [@@noalloc]
(** [rem a b] returns the remainder of [a] with respect to [b]. The returned
value is [a -. n *. b], where [n] is the quotient [a /. b] rounded towards
zero to an integer. *)
val succ : float -> float
(** [succ x] returns the floating point number right after [x] i.e.,
the smallest floating-point number greater than [x]. See also
{!next_after}.
@since 4.08 *)
val pred : float -> float
(** [pred x] returns the floating-point number right before [x] i.e.,
the greatest floating-point number smaller than [x]. See also
{!next_after}.
@since 4.08 *)
external abs : float -> float = "%absfloat"
(** [abs f] returns the absolute value of [f]. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
'not a number'. Any floating-point operation with [nan] as
argument returns [nan] as result, unless otherwise specified in
IEEE 754 standard. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan].
[nan] is [quiet_nan] since 5.1; it was a signaling NaN before. *)
val signaling_nan : float
(** Signaling NaN. The corresponding signals do not raise OCaml exception,
but the value can be useful for interoperability with C libraries.
@since 5.1 *)
val quiet_nan : float
(** Quiet NaN.
@since 5.1 *)
val pi : float
(** The constant pi. *)
val max_float : float
(** The largest positive finite value of type [float]. *)
val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)
val epsilon : float
(** The difference between [1.0] and the smallest exactly representable
floating-point number greater than [1.0]. *)
val is_finite : float -> bool
(** [is_finite x] is [true] if and only if [x] is finite i.e., not infinite and
not {!nan}.
@since 4.08 *)
val is_infinite : float -> bool
(** [is_infinite x] is [true] if and only if [x] is {!infinity} or
{!neg_infinity}.
@since 4.08 *)
val is_nan : float -> bool
(** [is_nan x] is [true] if and only if [x] is not a number (see {!nan}).
@since 4.08 *)
val is_integer : float -> bool
(** [is_integer x] is [true] if and only if [x] is an integer.
@since 4.08 *)
external of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)
external to_int : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
The result is unspecified if the argument is [nan] or falls outside the
range of representable integers. *)
external of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float. The string is read in decimal
(by default) or in hexadecimal (marked by [0x] or [0X]).
The format of decimal floating-point numbers is
[ [-] dd.ddd (e|E) [+|-] dd ], where [d] stands for a decimal digit.
The format of hexadecimal floating-point numbers is
[ [-] 0(x|X) hh.hhh (p|P) [+|-] dd ], where [h] stands for an
hexadecimal digit and [d] for a decimal digit.
In both cases, at least one of the integer and fractional parts must be
given; the exponent part is optional.
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Depending on the execution platforms, other representations of
floating-point numbers can be accepted, but should not be relied upon.
@raise Failure if the given string is not a valid
representation of a float. *)
val of_string_opt: string -> float option
(** Same as [of_string], but returns [None] instead of raising. *)
val to_string : float -> string
(** Return a string representation of a floating-point number.
This conversion can involve a loss of precision. For greater control over
the manner in which the number is printed, see {!Printf}.
This function is an alias for {!Stdlib.string_of_float}. *)
type fpclass = Stdlib.fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify_float} function. *)
external classify_float : (float [@unboxed]) -> fpclass =
"caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
external pow : float -> float -> float = "caml_power_float" "pow"
[@@unboxed] [@@noalloc]
(** Exponentiation. *)
external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@@noalloc]
(** Square root. *)
external cbrt : float -> float = "caml_cbrt_float" "caml_cbrt"
[@@unboxed] [@@noalloc]
(** Cube root.
@since 4.13
*)
external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)
external exp2 : float -> float = "caml_exp2_float" "caml_exp2"
[@@unboxed] [@@noalloc]
(** Base 2 exponential function.
@since 4.13
*)
external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10"
[@@unboxed] [@@noalloc]
(** Base 10 logarithm. *)
external log2 : float -> float = "caml_log2_float" "caml_log2"
[@@unboxed] [@@noalloc]
(** Base 2 logarithm.
@since 4.13
*)
external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
[@@unboxed] [@@noalloc]
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
even if [x] is close to [0.0]. *)
external log1p : float -> float = "caml_log1p_float" "caml_log1p"
[@@unboxed] [@@noalloc]
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
giving numerically-accurate results even if [x] is close to [0.0]. *)
external cos : float -> float = "caml_cos_float" "cos" [@@unboxed] [@@noalloc]
(** Cosine. Argument is in radians. *)
external sin : float -> float = "caml_sin_float" "sin" [@@unboxed] [@@noalloc]
(** Sine. Argument is in radians. *)
external tan : float -> float = "caml_tan_float" "tan" [@@unboxed] [@@noalloc]
(** Tangent. Argument is in radians. *)
external acos : float -> float = "caml_acos_float" "acos"
[@@unboxed] [@@noalloc]
(** Arc cosine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [0.0] and [pi]. *)
external asin : float -> float = "caml_asin_float" "asin"
[@@unboxed] [@@noalloc]
(** Arc sine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan : float -> float = "caml_atan_float" "atan"
[@@unboxed] [@@noalloc]
(** Arc tangent.
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
[@@unboxed] [@@noalloc]
(** [atan2 y x] returns the arc tangent of [y /. x]. The signs of [x]
and [y] are used to determine the quadrant of the result.
Result is in radians and is between [-pi] and [pi]. *)
external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
[@@unboxed] [@@noalloc]
(** [hypot x y] returns [sqrt(x *. x +. y *. y)], that is, the length
of the hypotenuse of a right-angled triangle with sides of length
[x] and [y], or, equivalently, the distance of the point [(x,y)]
to origin. If one of [x] or [y] is infinite, returns [infinity]
even if the other is [nan]. *)
external cosh : float -> float = "caml_cosh_float" "cosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic cosine. Argument is in radians. *)
external sinh : float -> float = "caml_sinh_float" "sinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic sine. Argument is in radians. *)
external tanh : float -> float = "caml_tanh_float" "tanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic tangent. Argument is in radians. *)
external acosh : float -> float = "caml_acosh_float" "caml_acosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc cosine. The argument must fall within the range
[[1.0, inf]].
Result is in radians and is between [0.0] and [inf].
@since 4.13
*)
external asinh : float -> float = "caml_asinh_float" "caml_asinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc sine. The argument and result range over the entire
real line.
Result is in radians.
@since 4.13
*)
external atanh : float -> float = "caml_atanh_float" "caml_atanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc tangent. The argument must fall within the range
[[-1.0, 1.0]].
Result is in radians and ranges over the entire real line.
@since 4.13
*)
external erf : float -> float = "caml_erf_float" "caml_erf"
[@@unboxed] [@@noalloc]
(** Error function. The argument ranges over the entire real line.
The result is always within [[-1.0, 1.0]].
@since 4.13
*)
external erfc : float -> float = "caml_erfc_float" "caml_erfc"
[@@unboxed] [@@noalloc]
(** Complementary error function ([erfc x = 1 - erf x]).
The argument ranges over the entire real line.
The result is always within [[0.0, 2.0]].
@since 4.13
*)
external trunc : float -> float = "caml_trunc_float" "caml_trunc"
[@@unboxed] [@@noalloc]
(** [trunc x] rounds [x] to the nearest integer whose absolute value is
less than or equal to [x].
@since 4.08 *)
external round : float -> float = "caml_round_float" "caml_round"
[@@unboxed] [@@noalloc]
(** [round x] rounds [x] to the nearest integer with ties (fractional
values of 0.5) rounded away from zero, regardless of the current
rounding direction. If [x] is an integer, [+0.], [-0.], [nan], or
infinite, [x] itself is returned.
On 64-bit mingw-w64, this function may be emulated owing to a bug in the
C runtime library (CRT) on this platform.
@since 4.08 *)
external ceil : float -> float = "caml_ceil_float" "ceil"
[@@unboxed] [@@noalloc]
(** Round above to an integer value.
[ceil f] returns the least integer value greater than or equal to [f].
The result is returned as a float. *)
external floor : float -> float = "caml_floor_float" "floor"
[@@unboxed] [@@noalloc]
(** Round below to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
The result is returned as a float. *)
external next_after : float -> float -> float
= "caml_nextafter_float" "caml_nextafter" [@@unboxed] [@@noalloc]
(** [next_after x y] returns the next representable floating-point
value following [x] in the direction of [y]. More precisely, if
[y] is greater (resp. less) than [x], it returns the smallest
(resp. largest) representable number greater (resp. less) than [x].
If [x] equals [y], the function returns [y]. If [x] or [y] is
[nan], a [nan] is returned.
Note that [next_after max_float infinity = infinity] and that
[next_after 0. infinity] is the smallest denormalized positive number.
If [x] is the smallest denormalized positive number,
[next_after x 0. = 0.]
@since 4.08 *)
external copy_sign : float -> float -> float
= "caml_copysign_float" "caml_copysign"
[@@unboxed] [@@noalloc]
(** [copy_sign x y] returns a float whose absolute value is that of [x]
and whose sign is that of [y]. If [x] is [nan], returns [nan].
If [y] is [nan], returns either [x] or [-. x], but it is not
specified which. *)
external sign_bit : (float [@unboxed]) -> bool
= "caml_signbit_float" "caml_signbit" [@@noalloc]
(** [sign_bit x] is [true] if and only if the sign bit of [x] is set.
For example [sign_bit 1.] and [signbit 0.] are [false] while
[sign_bit (-1.)] and [sign_bit (-0.)] are [true].
@since 4.08 *)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed]) =
"caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
type t = float
(** An alias for the type of floating-point numbers. *)
val compare: t -> t -> int
(** [compare x y] returns [0] if [x] is equal to [y], a negative integer if [x]
is less than [y], and a positive integer if [x] is greater than
[y]. [compare] treats [nan] as equal to itself and less than any other float
value. This treatment of [nan] ensures that [compare] defines a total
ordering relation. *)
val equal: t -> t -> bool
(** The equal function for floating-point numbers, compared using {!compare}. *)
val min : t -> t -> t
(** [min x y] returns the minimum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [min (-0.) (+0.) = -0.]
@since 4.08 *)
val max : float -> float -> float
(** [max x y] returns the maximum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [max (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max : float -> float -> float * float
(** [min_max x y] is [(min x y, max x y)], just more efficient.
@since 4.08 *)
val min_num : t -> t -> t
(** [min_num x y] returns the minimum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan], [nan] is returned.
Moreover [min_num (-0.) (+0.) = -0.]
@since 4.08 *)
val max_num : t -> t -> t
(** [max_num x y] returns the maximum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan] [nan] is returned.
Moreover [max_num (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max_num : float -> float -> float * float
(** [min_max_num x y] is [(min_num x y, max_num x y)], just more
efficient. Note that in particular [min_max_num x nan = (x, x)]
and [min_max_num nan y = (y, y)].
@since 4.08 *)
val seeded_hash : int -> t -> int
(** A seeded hash function for floats, with the same output value as
{!Hashtbl.seeded_hash}. This function allows this module to be passed as
argument to the functor {!Hashtbl.MakeSeeded}.
@since 5.1 *)
val hash : t -> int
(** An unseeded hash function for floats, with the same output value as
{!Hashtbl.hash}. This function allows this module to be passed as argument
to the functor {!Hashtbl.Make}. *)
module Array : sig
FLOATARRAY
end
(** Float arrays with packed representation. *)
module ArrayLabels : sig
FLOATARRAYLAB
end
(** Float arrays with packed representation (labeled functions). *)
|