File: float.template.mli

package info (click to toggle)
ocaml 5.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 43,124 kB
  • sloc: ml: 355,439; ansic: 51,636; sh: 25,098; asm: 5,413; makefile: 3,673; python: 919; javascript: 273; awk: 253; perl: 59; fortran: 21; cs: 9
file content (508 lines) | stat: -rw-r--r-- 18,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                        Nicolas Ojeda Bar, LexiFi                       *)
(*                                                                        *)
(*   Copyright 2018 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* NOTE:
   If this file is float.template.mli, run tools/sync_stdlib_docs after editing
   it to generate float.mli.

   If this file is float.mli, do not edit it directly -- edit
   templates/float.template.mli instead.
 *)

(** Floating-point arithmetic.

    OCaml's floating-point numbers follow the
    IEEE 754 standard, using double precision (64 bits) numbers.
    Floating-point operations never raise an exception on overflow,
    underflow, division by zero, etc.  Instead, special IEEE numbers
    are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
    [neg_infinity] for [-1.0 /. 0.0], and [nan] ('not a number')
    for [0.0 /. 0.0].  These special numbers then propagate through
    floating-point computations as expected: for instance,
    [1.0 /. infinity] is [0.0], basic arithmetic operations
    ([+.], [-.], [*.], [/.]) with [nan] as an argument return [nan], ...

    @since 4.07
*)

val zero : float
(** The floating point 0.
   @since 4.08 *)

val one : float
(** The floating-point 1.
   @since 4.08 *)

val minus_one : float
(** The floating-point -1.
   @since 4.08 *)

external neg : float -> float = "%negfloat"
(** Unary negation. *)

external add : float -> float -> float = "%addfloat"
(** Floating-point addition. *)

external sub : float -> float -> float = "%subfloat"
(** Floating-point subtraction. *)

external mul : float -> float -> float = "%mulfloat"
(** Floating-point multiplication. *)

external div : float -> float -> float = "%divfloat"
(** Floating-point division. *)

external fma : float -> float -> float -> float =
  "caml_fma_float" "caml_fma" [@@unboxed] [@@noalloc]
(** [fma x y z] returns [x * y + z], with a best effort for computing
   this expression with a single rounding, using either hardware
   instructions (providing full IEEE compliance) or a software
   emulation.

   On 64-bit Cygwin, 64-bit mingw-w64 and MSVC 2017 and earlier, this function
   may be emulated owing to known bugs on limitations on these platforms.
   Note: since software emulation of the fma is costly, make sure that you are
   using hardware fma support if performance matters.

   @since 4.08 *)

external rem : float -> float -> float = "caml_fmod_float" "fmod"
[@@unboxed] [@@noalloc]
(** [rem a b] returns the remainder of [a] with respect to [b].  The returned
    value is [a -. n *. b], where [n] is the quotient [a /. b] rounded towards
    zero to an integer. *)

val succ : float -> float
(** [succ x] returns the floating point number right after [x] i.e.,
   the smallest floating-point number greater than [x].  See also
   {!next_after}.
   @since 4.08 *)

val pred : float -> float
(** [pred x] returns the floating-point number right before [x] i.e.,
   the greatest floating-point number smaller than [x].  See also
   {!next_after}.
   @since 4.08 *)

external abs : float -> float = "%absfloat"
(** [abs f] returns the absolute value of [f]. *)

val infinity : float
(** Positive infinity. *)

val neg_infinity : float
(** Negative infinity. *)

val nan : float
(** A special floating-point value denoting the result of an
    undefined operation such as [0.0 /. 0.0].  Stands for
    'not a number'.  Any floating-point operation with [nan] as
    argument returns [nan] as result, unless otherwise specified in
    IEEE 754 standard.  As for floating-point comparisons,
    [=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
    if one or both of their arguments is [nan].

    [nan] is [quiet_nan] since 5.1; it was a signaling NaN before. *)

val signaling_nan : float
(** Signaling NaN. The corresponding signals do not raise OCaml exception,
    but the value can be useful for interoperability with C libraries.

    @since 5.1 *)

val quiet_nan : float
(** Quiet NaN.

    @since 5.1 *)

val pi : float
(** The constant pi. *)

val max_float : float
(** The largest positive finite value of type [float]. *)

val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)

val epsilon : float
(** The difference between [1.0] and the smallest exactly representable
    floating-point number greater than [1.0]. *)

val is_finite : float -> bool
(** [is_finite x] is [true] if and only if [x] is finite i.e., not infinite and
   not {!nan}.

   @since 4.08 *)

val is_infinite : float -> bool
(** [is_infinite x] is [true] if and only if [x] is {!infinity} or
    {!neg_infinity}.

   @since 4.08 *)

val is_nan : float -> bool
(** [is_nan x] is [true] if and only if [x] is not a number (see {!nan}).

   @since 4.08 *)

val is_integer : float -> bool
(** [is_integer x] is [true] if and only if [x] is an integer.

   @since 4.08 *)

external of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)

external to_int : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
    The result is unspecified if the argument is [nan] or falls outside the
    range of representable integers. *)

external of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float.  The string is read in decimal
    (by default) or in hexadecimal (marked by [0x] or [0X]).
    The format of decimal floating-point numbers is
    [ [-] dd.ddd (e|E) [+|-] dd ], where [d] stands for a decimal digit.
    The format of hexadecimal floating-point numbers is
    [ [-] 0(x|X) hh.hhh (p|P) [+|-] dd ], where [h] stands for an
    hexadecimal digit and [d] for a decimal digit.
    In both cases, at least one of the integer and fractional parts must be
    given; the exponent part is optional.
    The [_] (underscore) character can appear anywhere in the string
    and is ignored.
    Depending on the execution platforms, other representations of
    floating-point numbers can be accepted, but should not be relied upon.
    @raise Failure if the given string is not a valid
    representation of a float. *)

val of_string_opt: string -> float option
(** Same as [of_string], but returns [None] instead of raising. *)

val to_string : float -> string
(** Return a string representation of a floating-point number.

    This conversion can involve a loss of precision. For greater control over
    the manner in which the number is printed, see {!Printf}.

    This function is an alias for {!Stdlib.string_of_float}. *)

type fpclass = Stdlib.fpclass =
    FP_normal           (** Normal number, none of the below *)
  | FP_subnormal        (** Number very close to 0.0, has reduced precision *)
  | FP_zero             (** Number is 0.0 or -0.0 *)
  | FP_infinite         (** Number is positive or negative infinity *)
  | FP_nan              (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
    the {!classify_float} function. *)

external classify_float : (float [@unboxed]) -> fpclass =
  "caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
(** Return the class of the given floating-point number:
    normal, subnormal, zero, infinite, or not a number. *)

external pow : float -> float -> float = "caml_power_float" "pow"
[@@unboxed] [@@noalloc]
(** Exponentiation. *)

external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@@noalloc]
(** Square root. *)

external cbrt : float -> float = "caml_cbrt_float" "caml_cbrt"
  [@@unboxed] [@@noalloc]
(** Cube root.

    @since 4.13
*)

external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)

external exp2 : float -> float = "caml_exp2_float" "caml_exp2"
  [@@unboxed] [@@noalloc]
(** Base 2 exponential function.

    @since 4.13
*)

external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)

external log10 : float -> float = "caml_log10_float" "log10"
[@@unboxed] [@@noalloc]
(** Base 10 logarithm. *)

external log2 : float -> float = "caml_log2_float" "caml_log2"
  [@@unboxed] [@@noalloc]
(** Base 2 logarithm.

    @since 4.13
*)

external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
[@@unboxed] [@@noalloc]
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
    even if [x] is close to [0.0]. *)

external log1p : float -> float = "caml_log1p_float" "caml_log1p"
[@@unboxed] [@@noalloc]
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
    giving numerically-accurate results even if [x] is close to [0.0]. *)

external cos : float -> float = "caml_cos_float" "cos" [@@unboxed] [@@noalloc]
(** Cosine.  Argument is in radians. *)

external sin : float -> float = "caml_sin_float" "sin" [@@unboxed] [@@noalloc]
(** Sine.  Argument is in radians. *)

external tan : float -> float = "caml_tan_float" "tan" [@@unboxed] [@@noalloc]
(** Tangent.  Argument is in radians. *)

external acos : float -> float = "caml_acos_float" "acos"
[@@unboxed] [@@noalloc]
(** Arc cosine.  The argument must fall within the range [[-1.0, 1.0]].
    Result is in radians and is between [0.0] and [pi]. *)

external asin : float -> float = "caml_asin_float" "asin"
[@@unboxed] [@@noalloc]
(** Arc sine.  The argument must fall within the range [[-1.0, 1.0]].
    Result is in radians and is between [-pi/2] and [pi/2]. *)

external atan : float -> float = "caml_atan_float" "atan"
[@@unboxed] [@@noalloc]
(** Arc tangent.
    Result is in radians and is between [-pi/2] and [pi/2]. *)

external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
[@@unboxed] [@@noalloc]
(** [atan2 y x] returns the arc tangent of [y /. x].  The signs of [x]
    and [y] are used to determine the quadrant of the result.
    Result is in radians and is between [-pi] and [pi]. *)

external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
[@@unboxed] [@@noalloc]
(** [hypot x y] returns [sqrt(x *. x +. y *. y)], that is, the length
    of the hypotenuse of a right-angled triangle with sides of length
    [x] and [y], or, equivalently, the distance of the point [(x,y)]
    to origin.  If one of [x] or [y] is infinite, returns [infinity]
    even if the other is [nan]. *)

external cosh : float -> float = "caml_cosh_float" "cosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic cosine.  Argument is in radians. *)

external sinh : float -> float = "caml_sinh_float" "sinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic sine.  Argument is in radians. *)

external tanh : float -> float = "caml_tanh_float" "tanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic tangent.  Argument is in radians. *)

external acosh : float -> float = "caml_acosh_float" "caml_acosh"
  [@@unboxed] [@@noalloc]
(** Hyperbolic arc cosine.  The argument must fall within the range
    [[1.0, inf]].
    Result is in radians and is between [0.0] and [inf].

    @since 4.13
*)

external asinh : float -> float = "caml_asinh_float" "caml_asinh"
  [@@unboxed] [@@noalloc]
(** Hyperbolic arc sine.  The argument and result range over the entire
    real line.
    Result is in radians.

    @since 4.13
*)

external atanh : float -> float = "caml_atanh_float" "caml_atanh"
  [@@unboxed] [@@noalloc]
(** Hyperbolic arc tangent.  The argument must fall within the range
    [[-1.0, 1.0]].
    Result is in radians and ranges over the entire real line.

    @since 4.13
*)

external erf : float -> float = "caml_erf_float" "caml_erf"
  [@@unboxed] [@@noalloc]
(** Error function.  The argument ranges over the entire real line.
    The result is always within [[-1.0, 1.0]].

    @since 4.13
*)

external erfc : float -> float = "caml_erfc_float" "caml_erfc"
  [@@unboxed] [@@noalloc]
(** Complementary error function ([erfc x = 1 - erf x]).
    The argument ranges over the entire real line.
    The result is always within [[0.0, 2.0]].

    @since 4.13
*)

external trunc : float -> float = "caml_trunc_float" "caml_trunc"
                                    [@@unboxed] [@@noalloc]
(** [trunc x] rounds [x] to the nearest integer whose absolute value is
   less than or equal to [x].

   @since 4.08 *)

external round : float -> float = "caml_round_float" "caml_round"
                                    [@@unboxed] [@@noalloc]
(** [round x] rounds [x] to the nearest integer with ties (fractional
   values of 0.5) rounded away from zero, regardless of the current
   rounding direction.  If [x] is an integer, [+0.], [-0.], [nan], or
   infinite, [x] itself is returned.

   On 64-bit mingw-w64, this function may be emulated owing to a bug in the
   C runtime library (CRT) on this platform.

   @since 4.08 *)

external ceil : float -> float = "caml_ceil_float" "ceil"
[@@unboxed] [@@noalloc]
(** Round above to an integer value.
    [ceil f] returns the least integer value greater than or equal to [f].
    The result is returned as a float. *)

external floor : float -> float = "caml_floor_float" "floor"
[@@unboxed] [@@noalloc]
(** Round below to an integer value.
    [floor f] returns the greatest integer value less than or
    equal to [f].
    The result is returned as a float. *)

external next_after : float -> float -> float
  = "caml_nextafter_float" "caml_nextafter" [@@unboxed] [@@noalloc]
(** [next_after x y] returns the next representable floating-point
   value following [x] in the direction of [y].  More precisely, if
   [y] is greater (resp. less) than [x], it returns the smallest
   (resp. largest) representable number greater (resp. less) than [x].
   If [x] equals [y], the function returns [y].  If [x] or [y] is
   [nan], a [nan] is returned.
   Note that [next_after max_float infinity = infinity] and that
   [next_after 0. infinity] is the smallest denormalized positive number.
   If [x] is the smallest denormalized positive number,
   [next_after x 0. = 0.]

   @since 4.08 *)

external copy_sign : float -> float -> float
  = "caml_copysign_float" "caml_copysign"
[@@unboxed] [@@noalloc]
(** [copy_sign x y] returns a float whose absolute value is that of [x]
    and whose sign is that of [y].  If [x] is [nan], returns [nan].
    If [y] is [nan], returns either [x] or [-. x], but it is not
    specified which. *)

external sign_bit : (float [@unboxed]) -> bool
  = "caml_signbit_float" "caml_signbit" [@@noalloc]
(** [sign_bit x] is [true] if and only if the sign bit of [x] is set.
    For example [sign_bit 1.] and [signbit 0.] are [false] while
    [sign_bit (-1.)] and [sign_bit (-0.)] are [true].

    @since 4.08 *)

external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
    and the exponent of [f].  When [f] is zero, the
    significant [x] and the exponent [n] of [f] are equal to
    zero.  When [f] is non-zero, they are defined by
    [f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)

external ldexp : (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed]) =
  "caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
(** [ldexp x n] returns [x *. 2 ** n]. *)

external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
    part of [f]. *)

type t = float
(** An alias for the type of floating-point numbers. *)

val compare: t -> t -> int
(** [compare x y] returns [0] if [x] is equal to [y], a negative integer if [x]
    is less than [y], and a positive integer if [x] is greater than
    [y]. [compare] treats [nan] as equal to itself and less than any other float
    value.  This treatment of [nan] ensures that [compare] defines a total
    ordering relation.  *)

val equal: t -> t -> bool
(** The equal function for floating-point numbers, compared using {!compare}. *)

val min : t -> t -> t
(** [min x y] returns the minimum of [x] and [y].  It returns [nan]
   when [x] or [y] is [nan].  Moreover [min (-0.) (+0.) = -0.]

   @since 4.08 *)

val max : float -> float -> float
(** [max x y] returns the maximum of [x] and [y].  It returns [nan]
   when [x] or [y] is [nan].  Moreover [max (-0.) (+0.) = +0.]

   @since 4.08 *)

val min_max : float -> float -> float * float
(** [min_max x y] is [(min x y, max x y)], just more efficient.

   @since 4.08 *)

val min_num : t -> t -> t
(** [min_num x y] returns the minimum of [x] and [y] treating [nan] as
   missing values.  If both [x] and [y] are [nan], [nan] is returned.
   Moreover [min_num (-0.) (+0.) = -0.]

   @since 4.08 *)

val max_num : t -> t -> t
(** [max_num x y] returns the maximum of [x] and [y] treating [nan] as
   missing values.  If both [x] and [y] are [nan] [nan] is returned.
   Moreover [max_num (-0.) (+0.) = +0.]

   @since 4.08 *)

val min_max_num : float -> float -> float * float
(** [min_max_num x y] is [(min_num x y, max_num x y)], just more
   efficient.  Note that in particular [min_max_num x nan = (x, x)]
   and [min_max_num nan y = (y, y)].

   @since 4.08 *)

val seeded_hash : int -> t -> int
(** A seeded hash function for floats, with the same output value as
    {!Hashtbl.seeded_hash}. This function allows this module to be passed as
    argument to the functor {!Hashtbl.MakeSeeded}.

    @since 5.1 *)

val hash : t -> int
(** An unseeded hash function for floats, with the same output value as
    {!Hashtbl.hash}. This function allows this module to be passed as argument
    to the functor {!Hashtbl.Make}. *)

module Array : sig
FLOATARRAY
end
(** Float arrays with packed representation. *)

module ArrayLabels : sig
FLOATARRAYLAB
end
(** Float arrays with packed representation (labeled functions). *)