1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Marcell Fischbach, University of Siegen *)
(* Benedikt Meurer, University of Siegen *)
(* *)
(* Copyright 2011 Lehrstuhl für Compilerbau und Softwareanalyse, *)
(* Universität Siegen. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Linear scan register allocation. *)
open Interval
module IntervalSet = Set.Make (struct
type t = Interval.t
let compare i j =
let c = Int.compare i.iend j.iend in
if c = 0 then Int.compare i.reg.stamp j.reg.stamp else c
end)
module SlotSet = Set.Make(Int)
(* Live intervals per register class *)
type class_intervals =
{
mutable ci_fixed: IntervalSet.t;
mutable ci_active: IntervalSet.t;
mutable ci_inactive: IntervalSet.t;
mutable ci_spilled:
(* spilled stack slots (reg.loc = Stack (Local n)) still in use *)
IntervalSet.t;
mutable ci_free_slots:
(* expired stack slots available for reuse *)
SlotSet.t;
}
let active = Array.init Proc.num_register_classes (fun _ -> {
ci_fixed = IntervalSet.empty;
ci_active = IntervalSet.empty;
ci_inactive = IntervalSet.empty;
ci_spilled = IntervalSet.empty;
ci_free_slots = SlotSet.empty;
})
let slot_of_spilled i =
match i.reg.loc with
| Stack(Local ss) -> ss
| _ -> invalid_arg "Linscan.slot_of_spilled"
let split_by_pos intervals pos =
let divider =
(* this interval is strictly above intervals [i] with [i.iend < pos] and
strictly below [i] with [i.iend >= pos]. We use a dummy register with a
non-existent [stamp] to make sure that it is not "equal" to any of the
intervals in the set (according to the equality function of [IntervalSet]
above). *)
{Interval.reg = {Reg.dummy with stamp = -1};
ibegin = pos;
iend = pos;
ranges = []}
in
let (before, divider_in_set, after) = IntervalSet.split divider intervals in
assert (not divider_in_set);
(before, after)
let remove_expired_ranges intervals pos =
IntervalSet.iter (fun i -> Interval.remove_expired_ranges i pos) intervals
let release_expired_spilled ci pos =
let (expired, rest) = split_by_pos ci.ci_spilled pos in
ci.ci_free_slots <-
IntervalSet.fold (fun i free -> SlotSet.add (slot_of_spilled i) free)
expired ci.ci_free_slots;
ci.ci_spilled <- rest
let release_expired_fixed ci pos =
let (_expired, rest) = split_by_pos ci.ci_fixed pos in
remove_expired_ranges rest pos;
ci.ci_fixed <- rest
let partition_live intervals pos =
IntervalSet.partition (fun i -> Interval.is_live i pos) intervals
let release_expired_active ci pos =
let (_expired, rest) = split_by_pos ci.ci_active pos in
remove_expired_ranges rest pos;
let active, inactive = partition_live rest pos in
ci.ci_active <- active;
ci.ci_inactive <- IntervalSet.union inactive ci.ci_inactive
let release_expired_inactive ci pos =
let (_expired, rest) = split_by_pos ci.ci_inactive pos in
remove_expired_ranges rest pos;
let active, inactive = partition_live rest pos in
ci.ci_inactive <- inactive;
ci.ci_active <- IntervalSet.union active ci.ci_active
(* Allocate a new stack slot to the interval. *)
let allocate_stack_slot num_stack_slots i =
let cl = Proc.register_class i.reg in
let ci = active.(cl) in
let ss =
match SlotSet.min_elt_opt ci.ci_free_slots with
| Some ss ->
ci.ci_free_slots <- SlotSet.remove ss ci.ci_free_slots;
ss
| None ->
let ss = num_stack_slots.(cl) in
num_stack_slots.(cl) <- succ ss;
ss
in
i.reg.loc <- Stack(Local ss);
i.reg.spill <- true;
ci.ci_spilled <- IntervalSet.add i ci.ci_spilled
(* Find a register for the given interval and assigns this register.
The interval is added to active. Raises Not_found if no free registers
left. *)
let allocate_free_register num_stack_slots i =
begin match i.reg.loc, i.reg.spill with
Unknown, true ->
(* Allocate a stack slot for the already spilled interval *)
allocate_stack_slot num_stack_slots i
| Unknown, _ ->
(* We need to allocate a register to this interval somehow *)
let cl = Proc.register_class i.reg in
begin match Proc.num_available_registers.(cl) with
0 ->
(* There are no registers available for this class *)
raise Not_found
| rn ->
let ci = active.(cl) in
let r0 = Proc.first_available_register.(cl) in
(* Create register mask for this class
note: if frame pointers are enabled then some registers may have
indexes that are off-bounds; we hence protect write accesses
below (given that the assign function will not consider such
registers) *)
let regmask = Array.make rn true in
(* Remove all assigned registers from the register mask *)
IntervalSet.iter
(function
{reg = {loc = Reg r}} ->
if r - r0 < rn then regmask.(r - r0) <- false
| _ -> ())
ci.ci_active;
(* Remove all overlapping registers from the register mask *)
let remove_bound_overlapping = function
{reg = {loc = Reg r}} as j ->
if (r - r0 < rn) && regmask.(r - r0)
&& Interval.overlap j i then
regmask.(r - r0) <- false
| _ -> () in
IntervalSet.iter remove_bound_overlapping ci.ci_inactive;
IntervalSet.iter remove_bound_overlapping ci.ci_fixed;
(* Assign the first free register (if any) *)
let rec assign r =
if r = rn then
raise Not_found
else if regmask.(r) then begin
(* Assign the free register and insert the
current interval into the active list *)
i.reg.loc <- Reg (r0 + r);
i.reg.spill <- false;
ci.ci_active <- IntervalSet.add i ci.ci_active
end else
assign (succ r) in
assign 0
end
| _ -> ()
end
let allocate_blocked_register num_stack_slots i =
let cl = Proc.register_class i.reg in
let ci = active.(cl) in
match IntervalSet.max_elt_opt ci.ci_active with
| Some ilast when
ilast.iend > i.iend &&
(* Last interval in active is the last interval, so spill it. *)
let chk r = r.reg.loc = ilast.reg.loc && Interval.overlap r i in
(* But only if its physical register is admissible for the current
interval. *)
not (IntervalSet.exists chk ci.ci_fixed ||
IntervalSet.exists chk ci.ci_inactive)
->
let il = IntervalSet.remove ilast ci.ci_active in
begin match ilast.reg.loc with Reg _ -> () | _ -> assert false end;
(* Use register from last interval for current interval *)
i.reg.loc <- ilast.reg.loc;
(* Remove the last interval from active and insert the current *)
ci.ci_active <- IntervalSet.add i il;
(* Now get a new stack slot for the spilled register *)
allocate_stack_slot num_stack_slots ilast
| _ ->
(* Either the current interval is last and we have to spill it,
or there are no registers at all in the register class (i.e.
floating point class on i386). *)
allocate_stack_slot num_stack_slots i
let walk_interval num_stack_slots i =
let pos = i.ibegin land (lnot 0x01) in
(* Release all intervals that have been expired at the current position *)
Array.iter
(fun ci ->
release_expired_fixed ci pos;
release_expired_active ci pos;
release_expired_inactive ci pos;
release_expired_spilled ci pos)
active;
try
(* Allocate free register (if any) *)
allocate_free_register num_stack_slots i
with
Not_found ->
(* No free register, need to decide which interval to spill *)
allocate_blocked_register num_stack_slots i
let allocate_registers (intervals : Interval.result) =
(* Initialize the stack slots and interval lists *)
for cl = 0 to Proc.num_register_classes - 1 do
(* Start with empty interval lists *)
active.(cl) <- {
ci_fixed = IntervalSet.empty;
ci_active = IntervalSet.empty;
ci_inactive = IntervalSet.empty;
ci_spilled = IntervalSet.empty;
ci_free_slots = SlotSet.empty;
};
done;
(* Reset the stack slot counts *)
let num_stack_slots = Array.make Proc.num_register_classes 0 in
(* Add all fixed intervals (sorted by end position) *)
List.iter
(fun i ->
let ci = active.(Proc.register_class i.reg) in
ci.ci_fixed <- IntervalSet.add i ci.ci_fixed)
intervals.fixed_intervals;
(* Walk all the intervals within the list *)
List.iter (walk_interval num_stack_slots) intervals.intervals;
num_stack_slots
|