1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Emission of PowerPC assembly code *)
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linear
open Emitaux
open Emitenv
(* Reserved space at bottom of stack *)
let reserved_stack_space = 32
(* Layout of the stack. The stack is kept 16-aligned. *)
let initial_stack_offset f =
if f.fun_frame_required then
reserved_stack_space + (* Including the return address *)
size_int * f.fun_num_stack_slots.(0) + (* Local int variables *)
size_float * f.fun_num_stack_slots.(1) (* Local float variables *)
else
0
let frame_size env =
let size =
env.stack_offset + (* Trap frame, outgoing parameters *)
initial_stack_offset env.f in
Misc.align size 16
let slot_offset env loc cls =
match loc with
| Local n ->
reserved_stack_space + env.stack_offset +
(if cls = 0 then env.f.fun_num_stack_slots.(1) * size_float + n * size_int
else n * size_float)
| Incoming n ->
(* Callee's [reserved_stack_space] is included in [frame_size].
To access incoming arguments, add caller's [reserved_stack_space]. *)
frame_size env + reserved_stack_space + n
| Outgoing n -> reserved_stack_space + n
| Domainstate _ -> assert false (* not a stack slot *)
let retaddr_offset env = frame_size env + 16
let toc_save_offset env = frame_size env + 8
let trap_size = 16
(* Output a label *)
let label_prefix = ".L"
let emit_label lbl =
emit_string label_prefix; emit_int lbl
(* Section switching *)
let data_space =
" .section \".data\"\n"
let rodata_space =
" .section \".rodata\"\n"
let toc_space =
" .section \".toc\",\"aw\"\n"
let emit_named_text_section func_name =
Emitaux.emit_named_text_section func_name '@'
(* Output a processor register *)
let emit_gpr = emit_int
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
| Reg r -> emit_string (register_name r)
| _ -> Misc.fatal_error "Emit.emit_reg"
(* Output a stack reference *)
let emit_stack env r =
match r.loc with
| Stack (Domainstate n) ->
let ofs = n + Domainstate.(idx_of_field Domain_extra_params) * 8 in
`{emit_int ofs}(30)`
| Stack s ->
let ofs = slot_offset env s (register_class r) in
`{emit_int ofs}(1)`
| _ -> Misc.fatal_error "Emit.emit_stack"
(* Split a 32-bit integer constants in two 16-bit halves *)
let low_high_u n = (n land 0xFFFF, n asr 16)
(* unsigned low half, for use with "ori" *)
let native_low_high_u n =
(Nativeint.(to_int (logand n 0xFFFFn)),
Nativeint.(to_int (shift_right n 16)))
(* unsigned low half, for use with "ori" *)
let low_high_s n =
let lo = ((n + 0x8000) land 0xFFFF) - 0x8000 in
(lo, (n - lo) asr 16)
(* signed low half, for use with "addi" *)
let native_low_high_s n =
let lo = Nativeint.(sub (logand (add n 0x8000n) 0xFFFFn) 0x8000n) in
(Nativeint.to_int lo,
Nativeint.(to_int (shift_right (sub n lo) 16)))
(* signed low half, for use with "addi" *)
let is_immediate n =
n <= 32767 && n >= -32768
let is_native_immediate n =
n <= 32767n && n >= -32768n
(* Record TOC entries *)
type tocentry =
| TocSym of string
| TocLabel of int
| TocInt of nativeint
| TocFloat of int64
let tocref_entries : (tocentry, label) Hashtbl.t = Hashtbl.create 64
let emit_tocentry = function
| TocSym s -> emit_symbol s
| TocInt i -> emit_nativeint i
| TocFloat f -> emit_printf "0x%Lx # %.12g" f (Int64.float_of_bits f)
| TocLabel lbl -> emit_label lbl
let label_for_tocref entry =
try
Hashtbl.find tocref_entries entry
with Not_found ->
let lbl = new_label() in
Hashtbl.add tocref_entries entry lbl;
lbl
let emit_toctable () =
Hashtbl.iter
(fun entry lbl ->
`{emit_label lbl}: .quad {emit_tocentry entry}\n`)
tocref_entries
(* Emit a load from a TOC entry.
The [dest] should not be r0, since [dest] is used as the index register for a
ld instruction, but r0 reads as zero when used as an index register.
*)
let emit_tocload emit_dest dest entry =
let lbl = label_for_tocref entry in
` addis {emit_dest dest}, 2, {emit_label lbl}@toc@ha\n`;
` ld {emit_dest dest}, {emit_label lbl}@toc@l({emit_dest dest}) # {emit_tocentry entry}\n`
(* Output a load or store operation *)
let load_mnemonic = function
| Byte_unsigned -> "lbz"
| Byte_signed -> "lbz"
| Sixteen_unsigned -> "lhz"
| Sixteen_signed -> "lha"
| Thirtytwo_unsigned -> "lwz"
| Thirtytwo_signed -> "lwa"
| Word_int | Word_val | Sixtyfour -> "ld"
| Single -> "lfs"
| Double -> "lfd"
let store_mnemonic = function
| Byte_unsigned | Byte_signed -> "stb"
| Sixteen_unsigned | Sixteen_signed -> "sth"
| Thirtytwo_unsigned | Thirtytwo_signed -> "stw"
| Word_int | Word_val | Sixtyfour -> "std"
| Single -> "stfs"
| Double -> "stfd"
let store_needs_lwsync chunk assignment =
assignment && (chunk = Word_int || chunk = Word_val)
let valid_offset instr ofs =
ofs land 3 = 0 || (instr <> "ld" && instr <> "std" && instr <> "lwa")
let emit_load_store instr addressing_mode addr n arg =
match addressing_mode with
| Ibased(s, d) ->
emit_tocload emit_gpr 11 (TocSym s);
let (lo, hi) = low_high_s d in
if hi <> 0 then
` addis 11, 11, {emit_int hi}\n`;
if valid_offset instr lo then
` {emit_string instr} {emit_reg arg}, {emit_int lo}(11)\n`
else begin
` li 0, {emit_int lo}\n`;
` {emit_string instr}x {emit_reg arg}, 11, 0\n`
end
| Iindexed ofs ->
if is_immediate ofs && valid_offset instr ofs then
` {emit_string instr} {emit_reg arg}, {emit_int ofs}({emit_reg addr.(n)})\n`
else begin
let (lo, hi) = low_high_u ofs in
` addis 0, 0, {emit_int hi}\n`;
if lo <> 0 then
` ori 0, 0, {emit_int lo}\n`;
` {emit_string instr}x {emit_reg arg}, {emit_reg addr.(n)}, 0\n`
end
| Iindexed2 ->
` {emit_string instr}x {emit_reg arg}, {emit_reg addr.(n)}, {emit_reg addr.(n+1)}\n`
(* After a comparison, extract the result as 0 or 1 *)
let emit_extract_crbit bitnum negated res =
` mfcr 0\n`;
` rlwinm {emit_reg res}, 0, {emit_int(bitnum+1)}, 31, 31\n`;
if negated then
` xori {emit_reg res}, {emit_reg res}, 1\n`
let emit_set_comp cmp res =
let bitnum =
match cmp with
Ceq | Cne -> 2
| Cgt | Cle -> 1
| Clt | Cge -> 0
and negated =
match cmp with
| Cne | Cle | Cge -> true
| Ceq | Clt | Cgt -> false
in
emit_extract_crbit bitnum negated res
let emit_float_comp cmp arg =
` fcmpu 0, {emit_reg arg.(0)}, {emit_reg arg.(1)}\n`;
(* bit 0 = lt, bit 1 = gt, bit 2 = eq *)
let bitnum =
match cmp with
| CFeq | CFneq -> 2
| CFle | CFnle -> ` cror 3, 0, 2\n`; 3 (* lt or eq *)
| CFgt | CFngt -> 1
| CFge | CFnge -> ` cror 3, 1, 2\n`; 3 (* gt or eq *)
| CFlt | CFnlt -> 0
and negated =
match cmp with
| CFneq | CFngt | CFnge | CFnlt | CFnle -> true
| CFeq | CFgt | CFge | CFlt | CFle -> false
in
(bitnum, negated)
(* Free the stack frame *)
let emit_free_frame env =
let n = frame_size env in
if n > 0 then
` addi 1, 1, {emit_int n}\n`
(* Emit a "bl" instruction to a given symbol *)
let emit_call s =
` bl {emit_symbol s}\n`
(* Add a nop after a "bl" call for ELF64 *)
let emit_call_nop () =
` nop \n`
(* Reload the TOC register r2 from the value saved on the stack *)
let emit_reload_toc env =
` ld 2, {emit_int (toc_save_offset env)}(1)\n`
(* Adjust stack_offset and emit corresponding CFI directive *)
let adjust_stack_offset env delta =
env.stack_offset <- env.stack_offset + delta;
cfi_adjust_cfa_offset delta
(* Record live pointers at call points *)
let record_frame_label env live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
| {typ = Val; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Val; loc = Stack s} as reg ->
live_offset := slot_offset env s (register_class reg) :: !live_offset
| {typ = Addr} as r ->
Misc.fatal_error ("bad GC root " ^ Reg.name r)
| _ -> ())
live;
record_frame_descr ~label:lbl ~frame_size:(frame_size env)
~live_offset:!live_offset dbg;
lbl
let record_frame env live dbg =
let lbl = record_frame_label env live dbg in
`{emit_label lbl}:\n`
(* Names for conditional branches after comparisons *)
let branch_for_comparison = function
Ceq -> "beq" | Cne -> "bne"
| Cle -> "ble" | Cgt -> "bgt"
| Cge -> "bge" | Clt -> "blt"
let name_for_int_comparison = function
Isigned cmp -> ("cmpd", branch_for_comparison cmp)
| Iunsigned cmp -> ("cmpld", branch_for_comparison cmp)
(* Names for various instructions *)
let name_for_intop = function
Iadd -> "add"
| Imul -> "mulld"
| Imulh -> "mulhd"
| Idiv -> "divd"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| Ilsl -> "sld"
| Ilsr -> "srd"
| Iasr -> "srad"
| _ -> Misc.fatal_error "Emit.Intop"
let name_for_intop_imm = function
Iadd -> "addi"
| Imul -> "mulli"
| Iand -> "andi."
| Ior -> "ori"
| Ixor -> "xori"
| Ilsl -> "sldi"
| Ilsr -> "srdi"
| Iasr -> "sradi"
| _ -> Misc.fatal_error "Emit.Intop_imm"
let name_for_floatop1 = function
Inegf -> "fneg"
| Iabsf -> "fabs"
| _ -> Misc.fatal_error "Emit.Iopf1"
let name_for_floatop2 = function
Iaddf -> "fadd"
| Isubf -> "fsub"
| Imulf -> "fmul"
| Idivf -> "fdiv"
| _ -> Misc.fatal_error "Emit.Iopf2"
let name_for_specific = function
Imultaddf -> "fmadd"
| Imultsubf -> "fmsub"
| _ -> Misc.fatal_error "Emit.Ispecific"
(* Relaxation of branches that exceed the span of a relative branch. *)
module BR = Branch_relaxation.Make (struct
type distance = int
module Cond_branch = struct
type t = Branch
let all = [Branch]
let max_displacement = function
(* 14-bit signed offset in words. *)
| Branch -> 8192
let classify_instr = function
| Lop (Ialloc _)
| Lop (Ipoll _)
| Lop (Iintop Icheckbound)
| Lop (Iintop_imm (Icheckbound, _))
(* The various "far" variants in [specific_operation] don't need to
return [Some] here, since their code sequences never contain any
conditional branches that might need relaxing. *)
| Lcondbranch _
| Lcondbranch3 _ -> Some Branch
| _ -> None
end
let offset_pc_at_branch = 1
let prologue_size f =
if f.fun_frame_required then 4 else 0
let tocload_size = 2
let load_store_size instr = function
| Ibased(_s, d) ->
let (lo, hi) = low_high_s d in
tocload_size +
(if hi <> 0 then 1 else 0) +
(if valid_offset instr lo then 1 else 2)
| Iindexed ofs ->
if is_immediate ofs && valid_offset instr ofs then 1 else begin
let (lo, _hi) = low_high_u ofs in
if lo <> 0 then 3 else 2
end
| Iindexed2 -> 1
let instr_size f = function
| Lend -> 0
| Lprologue -> prologue_size f
| Lop(Imove | Ispill | Ireload) -> 1
| Lop(Iconst_int n) ->
if is_native_immediate n then 1
else if (let (_lo, hi) = native_low_high_s n in
hi >= -0x8000 && hi <= 0x7FFF) then 2
else if (let (_lo, hi) = native_low_high_u n in
hi >= -0x8000 && hi <= 0x7FFF) then 2
else tocload_size
| Lop(Iconst_float _) -> tocload_size
| Lop(Iconst_symbol _) -> tocload_size
| Lop(Icall_ind) -> 4
| Lop(Icall_imm _) -> 3
| Lop(Itailcall_ind) -> 6
| Lop(Itailcall_imm { func; _ }) ->
if func = f.fun_name
then 1
else 6 + tocload_size
| Lop(Iextcall { alloc; stack_ofs; _}) ->
if stack_ofs > 0 then tocload_size + 4
else if alloc then tocload_size + 2
else 5
| Lop(Istackoffset _) -> 1
| Lop(Iload {memory_chunk; addressing_mode; is_atomic }) ->
let loadinstr = load_mnemonic memory_chunk in
(if is_atomic then 4 else 0) +
(if memory_chunk = Byte_signed then 1 else 0) +
load_store_size loadinstr addressing_mode
| Lop(Istore(chunk, addr, assignment)) ->
let storeinstr = store_mnemonic chunk in
(if chunk = Single then 1 else 0) +
(if store_needs_lwsync chunk assignment then 1 else 0) +
load_store_size storeinstr addr
| Lop(Ialloc _) -> 5
| Lop(Ispecific(Ialloc_far _)) -> 6
| Lop(Ipoll { return_label = Some(_) }) -> 5
| Lop(Ipoll { return_label = None }) -> 3
| Lop(Ispecific(Ipoll_far { return_label = Some(_) } )) -> 5
| Lop(Ispecific(Ipoll_far { return_label = None } )) -> 4
| Lop(Iintop Imod) -> 3
| Lop(Iintop(Icomp _)) -> 4
| Lop(Iintop(Icheckbound)) -> 2
| Lop(Ispecific(Icheckbound_far)) -> 3
| Lop(Icompf _) -> 5
| Lop(Iintop _) -> 1
| Lop(Iintop_imm(Icomp _, _)) -> 4
| Lop(Iintop_imm(Icheckbound, _)) -> 2
| Lop(Ispecific(Icheckbound_imm_far _)) -> 3
| Lop(Iintop_imm _) -> 1
| Lop(Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf) -> 1
| Lop(Ifloatofint) -> 3
| Lop(Iintoffloat) -> 3
| Lop(Iopaque) -> 0
| Lop(Ispecific _) -> 1
| Lop(Idls_get) -> 1
| Lop(Ireturn_addr) -> 1
| Lreloadretaddr -> 2
| Lreturn -> 2
| Llabel _ -> 0
| Lbranch _ -> 1
| Lcondbranch (Ifloattest(CFle | CFnle | CFge | CFnge), _) -> 3
| Lcondbranch _ -> 2
| Lcondbranch3(lbl0, lbl1, lbl2) ->
1 + (if lbl0 = None then 0 else 1)
+ (if lbl1 = None then 0 else 1)
+ (if lbl2 = None then 0 else 1)
| Lswitch _ -> 7 + tocload_size
| Lentertrap -> 1
| Ladjust_trap_depth _ -> 0
| Lpushtrap _ -> 4 + tocload_size
| Lpoptrap -> 2
| Lraise (Lambda.Raise_regular | Lambda.Raise_reraise) -> 2
| Lraise Lambda.Raise_notrace -> 5
let relax_allocation ~num_bytes:bytes ~dbginfo =
Lop (Ispecific (Ialloc_far { bytes; dbginfo }))
let relax_poll ~return_label =
Lop (Ispecific (Ipoll_far { return_label }))
let relax_intop_checkbound () =
Lop (Ispecific (Icheckbound_far))
let relax_intop_imm_checkbound ~bound =
Lop (Ispecific (Icheckbound_imm_far bound))
(* [classify_addr], above, never identifies these instructions as needing
relaxing. As such, these functions should never be called. *)
let relax_specific_op _ = assert false
end)
(* Assembly code for inlined allocation *)
let emit_alloc env i bytes dbginfo far =
if env.call_gc_label = 0 then env.call_gc_label <- new_label ();
let offset = Domainstate.(idx_of_field Domain_young_limit) * 8 in
` ld 0, {emit_int offset}(30)\n`;
` addi 31, 31, {emit_int(-bytes)}\n`;
` cmpld 31, 0\n`;
if not far then begin
` bltl- {emit_label env.call_gc_label}\n`;
record_frame env i.live (Dbg_alloc dbginfo);
` addi {emit_reg i.res.(0)}, 31, {emit_int size_addr}\n`
end else begin
let lbl = new_label() in
` bge+ {emit_label lbl}\n`;
` bl {emit_label env.call_gc_label}\n`;
record_frame env i.live (Dbg_alloc dbginfo);
`{emit_label lbl}: addi {emit_reg i.res.(0)}, 31, {emit_int size_addr}\n`
end
let emit_poll env i return_label far =
if env.call_gc_label = 0 then env.call_gc_label <- new_label ();
let offset = Domainstate.(idx_of_field Domain_young_limit) * 8 in
` ld 0, {emit_int offset}(30)\n`;
` cmpld 31, 0\n`;
if not far then begin
begin match return_label with
| None ->
begin
` bltl- {emit_label env.call_gc_label}\n`;
record_frame env i.live (Dbg_alloc [])
end
| Some return_label ->
begin
` bltl- {emit_label env.call_gc_label}\n`;
record_frame env i.live (Dbg_alloc []);
` b {emit_label return_label}\n`
end
end;
end else begin
let lbl = new_label () in
` bge+ {emit_label lbl}\n`;
` bl {emit_label env.call_gc_label}\n`;
record_frame env i.live (Dbg_alloc []);
`{emit_label lbl}: \n`;
match return_label with
| None -> ()
| Some return_label -> ` b {emit_label return_label}\n`
end
let bound_error_label env dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label env Reg.Set.empty (Dbg_other dbg) in
env.bound_error_sites <-
{ bd_lbl = lbl_bound_error;
bd_frame = lbl_frame; } :: env.bound_error_sites;
lbl_bound_error
end else begin
match env.bound_error_call with
| None ->
let lbl = new_label() in
env.bound_error_call <- Some lbl;
lbl
| Some lbl -> lbl
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}:`; emit_call "caml_ml_array_bound_error";
`{emit_label bd.bd_frame}:`; emit_call_nop()
let emit_call_bound_errors env =
List.iter emit_call_bound_error env.bound_error_sites;
match env.bound_error_call with
| None -> ()
| Some lbl ->
`{emit_label lbl}:`; emit_call "caml_ml_array_bound_error";
emit_call_nop()
(* Output the assembly code for an instruction *)
let emit_instr env i =
emit_debug_info i.dbg;
match i.desc with
| Lend -> ()
| Lprologue ->
let n = frame_size env in
if n > 0 then begin
` addi 1, 1, {emit_int(-n)}\n`;
cfi_adjust_cfa_offset n
end;
if env.f.fun_frame_required then begin
let ra = retaddr_offset env in
` mflr 0\n`;
` std 0, {emit_int ra}(1)\n`;
cfi_offset ~reg: 65 (* LR *) ~offset: (ra - n);
` std 2, {emit_int(toc_save_offset env)}(1)\n`
end
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match (src, dst) with
| {loc = Reg _; typ = (Val | Int | Addr)}, {loc = Reg _} ->
` mr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _; typ = Float}, {loc = Reg _; typ = Float} ->
` fmr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _; typ = (Val | Int | Addr)}, {loc = Stack _} ->
` std {emit_reg src}, {emit_stack env dst}\n`
| {loc = Reg _; typ = Float}, {loc = Stack _} ->
` stfd {emit_reg src}, {emit_stack env dst}\n`
| {loc = Stack _; typ = (Val | Int | Addr)}, {loc = Reg _} ->
` ld {emit_reg dst}, {emit_stack env src}\n`
| {loc = Stack _; typ = Float}, {loc = Reg _} ->
` lfd {emit_reg dst}, {emit_stack env src}\n`
| (_, _) ->
Misc.fatal_error "Emit: Imove"
end
| Lop(Iconst_int n) ->
if is_native_immediate n then
` li {emit_reg i.res.(0)}, {emit_nativeint n}\n`
else begin
(* Try a signed decomposition first, because the sequence
addis/addi is eligible for instruction fusion. *)
let (lo, hi) = native_low_high_s n in
if hi >= -0x8000 && hi <= 0x7FFF then begin
` addis {emit_reg i.res.(0)}, 0, {emit_int hi}\n`;
if lo <> 0 then
` addi {emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_int lo}\n`
end else begin
(* Now try an unsigned decomposition *)
let (lo, hi) = native_low_high_u n in
if hi >= -0x8000 && hi <= 0x7FFF then begin
` addis {emit_reg i.res.(0)}, 0, {emit_int hi}\n`;
if lo <> 0 then
` ori {emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_int lo}\n`
end else begin
emit_tocload emit_reg i.res.(0) (TocInt n)
end end end
| Lop(Iconst_float f) ->
let entry = TocFloat f in
let lbl = label_for_tocref entry in
` addis 11, 2, {emit_label lbl}@toc@ha\n`;
` lfd {emit_reg i.res.(0)}, {emit_label lbl}@toc@l(11) # {emit_tocentry entry}\n`
| Lop(Iconst_symbol s) ->
emit_tocload emit_reg i.res.(0) (TocSym s)
| Lop(Icall_ind) ->
` mtctr {emit_reg i.arg.(0)}\n`;
` mr 12, {emit_reg i.arg.(0)}\n`; (* addr of fn in r12 *)
` bctrl\n`;
record_frame env i.live (Dbg_other i.dbg);
emit_reload_toc env
| Lop(Icall_imm { func; }) ->
(* For PPC64, we cannot just emit a "bl s; nop" sequence, because
of the following scenario:
- current function f1 calls f2 that has the same TOC
- f2 tailcalls f3 that has a different TOC
Because f1 and f2 have the same TOC, the linker inserted no
code in f1 to save and restore r2 around the call to f2.
Because f2 tailcalls f3, r2 will not be restored to f2's TOC
when f3 returns. So, we're back into f1, with the wrong TOC in r2.
We have two options:
1- Turn the call into an indirect call, like we do for
Itailcall_imm. Cost: 6 instructions.
2- Follow the "bl" with an instruction to restore r2
explicitly. If the called function has a different TOC,
this instruction is redundant with those inserted
by the linker, but this is harmless.
Cost: 3 instructions if same TOC, 7 if different TOC.
Let's try option 2. *)
emit_call func;
record_frame env i.live (Dbg_other i.dbg);
` nop\n`;
emit_reload_toc env
| Lop(Itailcall_ind) ->
` mtctr {emit_reg i.arg.(0)}\n`;
` mr 12, {emit_reg i.arg.(0)}\n`; (* addr of fn in r12 *)
if env.f.fun_frame_required then begin
` ld 11, {emit_int(retaddr_offset env)}(1)\n`;
` mtlr 11\n`
end;
emit_free_frame env;
` bctr\n`
| Lop(Itailcall_imm { func; }) ->
if func = env.f.fun_name then
` b {emit_label env.f.fun_tailrec_entry_point_label}\n`
else begin
emit_tocload emit_gpr 12 (TocSym func); (* addr of fn must be in r12 *)
` mtctr 12\n`;
if env.f.fun_frame_required then begin
` ld 11, {emit_int(retaddr_offset env)}(1)\n`;
` mtlr 11\n`
end;
emit_free_frame env;
` bctr\n`
end
| Lop(Iextcall { func; alloc; stack_ofs }) ->
if stack_ofs > 0 then begin
emit_tocload emit_gpr 25 (TocSym func);
` li 24, {emit_int stack_ofs}\n`;
(* size in bytes of stack area containing the arguments *)
emit_call "caml_c_call_stack_args";
record_frame env i.live (Dbg_other i.dbg);
` nop\n`
end else if alloc then begin
emit_tocload emit_gpr 25 (TocSym func);
emit_call "caml_c_call";
record_frame env i.live (Dbg_other i.dbg);
` nop\n`
end else begin
(* Save OCaml stack pointer in a callee-save register *)
` mr 28, 1\n`;
(* Switch to C stack *)
let offset = Domainstate.(idx_of_field Domain_c_stack) * 8 in
` ld 1, {emit_int offset}(30)\n`;
emit_call func;
emit_call_nop();
(* Switch back to OCaml stack *)
` mr 1, 28\n`
end
| Lop(Istackoffset n) ->
` addi 1, 1, {emit_int (-n)}\n`;
adjust_stack_offset env n
| Lop(Iload { memory_chunk; addressing_mode; is_atomic }) ->
let loadinstr = load_mnemonic memory_chunk in
if is_atomic then
` sync\n`;
emit_load_store loadinstr addressing_mode i.arg 0 i.res.(0);
if is_atomic then begin
` cmpw {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`;
` bne- $+4\n`;
` isync\n`
end;
if memory_chunk = Byte_signed then
` extsb {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Istore(Single, addr, _assignment)) ->
let tmp = phys_reg 100 (* FPR 0 *) in
` frsp {emit_reg tmp}, {emit_reg i.arg.(0)}\n`;
emit_load_store "stfs" addr i.arg 1 tmp
| Lop(Istore(chunk, addr, assignment)) ->
let storeinstr = store_mnemonic chunk in
(* Non-initializing stores need a memory barrier to follow the
Multicore OCaml memory model. Stores of size other than
Word_int and Word_val do not follow the memory model and therefore
do not need a barrier *)
if store_needs_lwsync chunk assignment then
` lwsync\n`;
emit_load_store storeinstr addr i.arg 1 i.arg.(0)
| Lop(Ialloc { bytes; dbginfo }) ->
emit_alloc env i bytes dbginfo false
| Lop(Ispecific(Ialloc_far { bytes; dbginfo })) ->
emit_alloc env i bytes dbginfo true
| Lop(Ipoll { return_label }) ->
emit_poll env i return_label false
| Lop(Ispecific(Ipoll_far { return_label })) ->
emit_poll env i return_label true
| Lop(Iintop Isub) -> (* subfc has swapped arguments *)
` subfc {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`
| Lop(Iintop Imod) ->
` divd 0, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` mulld 0, 0, {emit_reg i.arg.(1)}\n`;
` subfc {emit_reg i.res.(0)}, 0, {emit_reg i.arg.(0)}\n`
| Lop(Iintop(Icomp cmp)) ->
begin match cmp with
Isigned c ->
` cmpd {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
emit_set_comp c i.res.(0)
| Iunsigned c ->
` cmpld {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
emit_set_comp c i.res.(0)
end
| Lop(Icompf cmp) ->
let (bitnum, negated) = emit_float_comp cmp i.arg in
emit_extract_crbit bitnum negated i.res.(0)
| Lop(Iintop (Icheckbound)) ->
let lbl = bound_error_label env i.dbg in
` cmpld {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` ble- {emit_label lbl}\n`
| Lop(Ispecific (Icheckbound_far)) ->
let lbl_err = bound_error_label env i.dbg in
let lbl_next = new_label() in
` cmpld {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` bgt+ {emit_label lbl_next}\n`;
` b {emit_label lbl_err}\n`;
`{emit_label lbl_next}:\n`
| Lop(Iintop op) ->
let instr = name_for_intop op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop_imm(Isub, n)) ->
` addi {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int(-n)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
begin match cmp with
Isigned c ->
` cmpdi {emit_reg i.arg.(0)}, {emit_int n}\n`;
emit_set_comp c i.res.(0)
| Iunsigned c ->
` cmpldi {emit_reg i.arg.(0)}, {emit_int n}\n`;
emit_set_comp c i.res.(0)
end
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label env i.dbg in
` cmpldi {emit_reg i.arg.(0)}, {emit_int n}\n`;
` ble- {emit_label lbl}\n`
| Lop(Ispecific(Icheckbound_imm_far n)) ->
let lbl_err = bound_error_label env i.dbg in
let lbl_next = new_label() in
` cmpldi {emit_reg i.arg.(0)}, {emit_int n}\n`;
` bgt+ {emit_label lbl_next}\n`;
` b {emit_label lbl_err}\n`;
`{emit_label lbl_next}:\n`
| Lop(Iintop_imm(op, n)) ->
let instr = name_for_intop_imm op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int n}\n`
| Lop(Inegf | Iabsf as op) ->
let instr = name_for_floatop1 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
let instr = name_for_floatop2 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Ifloatofint) ->
(* Can use protected zone (288 bytes below r1 *)
` std {emit_reg i.arg.(0)}, -16(1)\n`;
` lfd {emit_reg i.res.(0)}, -16(1)\n`;
` fcfid {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintoffloat) ->
(* Can use protected zone (288 bytes below r1 *)
` fctidz 0, {emit_reg i.arg.(0)}\n`;
` stfd 0, -16(1)\n`;
` ld {emit_reg i.res.(0)}, -16(1)\n`
| Lop(Iopaque) ->
assert (i.arg.(0).loc = i.res.(0).loc)
| Lop(Ispecific sop) ->
let instr = name_for_specific sop in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(2)}\n`
| Lop (Idls_get) ->
let offset = Domainstate.(idx_of_field Domain_dls_root) * 8 in
` ld {emit_reg i.res.(0)}, {emit_int offset}(30)\n`
| Lop (Ireturn_addr) ->
if env.f.fun_frame_required then
` ld {emit_reg i.res.(0)}, {emit_int(retaddr_offset env)}(1)\n`
else
` mflr {emit_reg i.res.(0)}\n`
| Lreloadretaddr ->
` ld 11, {emit_int(retaddr_offset env)}(1)\n`;
` mtlr 11\n`
| Lreturn ->
emit_free_frame env;
` blr\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` b {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
` cmpdi {emit_reg i.arg.(0)}, 0\n`;
` bne {emit_label lbl}\n`
| Ifalsetest ->
` cmpdi {emit_reg i.arg.(0)}, 0\n`;
` beq {emit_label lbl}\n`
| Iinttest cmp ->
let (comp, branch) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` {emit_string branch} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
let (comp, branch) = name_for_int_comparison cmp in
` {emit_string comp}i {emit_reg i.arg.(0)}, {emit_int n}\n`;
` {emit_string branch} {emit_label lbl}\n`
| Ifloattest cmp -> begin
let bitnum, negated = emit_float_comp cmp i.arg in
if negated
then ` bf {emit_int bitnum}, {emit_label lbl}\n`
else ` bt {emit_int bitnum}, {emit_label lbl}\n`
end
| Ioddtest ->
` andi. 0, {emit_reg i.arg.(0)}, 1\n`;
` bne {emit_label lbl}\n`
| Ieventest ->
` andi. 0, {emit_reg i.arg.(0)}, 1\n`;
` beq {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmpdi {emit_reg i.arg.(0)}, 1\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` blt {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` beq {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` bgt {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
let jumptables_lbl = match env.jumptables_lbl with
| None ->
env.jumptables_lbl <- Some lbl;
assert (List.length env.jumptables = 0);
lbl
| Some l -> l in
let start = List.length env.jumptables in
let (start_lo, start_hi) = low_high_s start in
emit_tocload emit_gpr 11 (TocLabel jumptables_lbl);
` addi 12, {emit_reg i.arg.(0)}, {emit_int start_lo}\n`;
if start_hi <> 0 then
` addis 12, 12, {emit_int start_hi}\n`;
` sldi 12, 12, 2\n`;
` lwax 0, 11, 12\n`;
` add 0, 11, 0\n`;
` mtctr 0\n`;
` bctr\n`;
env.jumptables <- List.rev_append (Array.to_list jumptbl) env.jumptables
| Lentertrap ->
emit_reload_toc env
| Ladjust_trap_depth { delta_traps } ->
adjust_stack_offset env (trap_size * delta_traps)
| Lpushtrap { lbl_handler; } ->
` addi 1, 1, {emit_int (-trap_size)}\n`;
adjust_stack_offset env trap_size;
` std 29, {emit_int reserved_stack_space}(1)\n`;
emit_tocload emit_gpr 29 (TocLabel lbl_handler);
` std 29, {emit_int (reserved_stack_space + 8)}(1)\n`;
` addi 29, 1, {emit_int reserved_stack_space}\n`
| Lpoptrap ->
` ld 29, {emit_int reserved_stack_space}(1)\n`;
` addi 1, 1, {emit_int trap_size}\n`;
adjust_stack_offset env (-trap_size)
| Lraise k ->
begin match k with
| Lambda.Raise_regular ->
emit_call "caml_raise_exn";
record_frame env Reg.Set.empty (Dbg_raise i.dbg);
emit_call_nop()
| Lambda.Raise_reraise ->
emit_call "caml_reraise_exn";
record_frame env Reg.Set.empty (Dbg_raise i.dbg);
emit_call_nop()
| Lambda.Raise_notrace ->
` ld 0, 8(29)\n`;
` addi 1, 29, {emit_int (trap_size - reserved_stack_space)}\n`;
` mtctr 0\n`;
` ld 29, {emit_int (reserved_stack_space - trap_size)}(1)\n`;
` bctr\n`
end
(* Emit a sequence of instructions *)
let rec emit_all env i =
match i.desc with
| Lend -> ()
| _ -> emit_instr env i; emit_all env i.next
(* On this target, the possible "out of line" code blocks are:
- a single "call GC" point, which comes immediately after the
function's body;
- zero, one or several "call bound error" point, which comes just after.
*)
let max_out_of_line_code_offset fundecl =
let rec num_checkbounds count instr =
match instr.desc with
| Lend -> count
| Lop (Iintop Icheckbound)
| Lop (Iintop_imm (Icheckbound, _)) ->
num_checkbounds (count + 1) instr.next
(* The following two should never be seen, since this function is run
before branch relaxation. *)
| Lop (Ispecific Icheckbound_far)
| Lop (Ispecific (Icheckbound_imm_far _)) -> assert false
| _ -> num_checkbounds count instr.next in
let num_chk = num_checkbounds 0 fundecl.fun_body in
(* This is what the end of the function looks like:
- offset 0: call GC point (5 insn)
- offset 5: first (or only if not !Clflags.debug) call bound error
(2 insns)
- offsets 7, 9, .. : second, third, ..., call bound error
(2 insns each) *)
if num_chk = 0 then 0
else if !Clflags.debug then 5 + (num_chk - 1) * 2
else 5
(* Emission of a function declaration *)
let fundecl fundecl =
let env = mk_env fundecl in
emit_named_text_section fundecl.fun_name;
` .align 2\n`;
(* Dynamic stack checking *)
let stack_threshold_size = Config.stack_threshold * 8 in (* bytes *)
let max_frame_size = frame_size env + fundecl.fun_extra_stack_used in
let handle_overflow = ref None in
if fundecl.fun_contains_nontail_calls
|| max_frame_size >= stack_threshold_size then begin
let overflow = new_label () and ret = new_label () in
(* The return address is saved in a register not used for param passing *)
(* The size is passed in a register normally not used for param passing *)
`{emit_label overflow}: mflr 28\n`;
` li 27, {emit_int (Config.stack_threshold + max_frame_size / 8)}\n`;
emit_call "caml_call_realloc_stack";
emit_call_nop ();
` mtlr 28\n`;
` b {emit_label ret}\n`;
handle_overflow := Some(overflow, ret)
end;
(* Function entry point *)
` .globl {emit_symbol fundecl.fun_name}\n`;
emit_type_directive fundecl.fun_name "@function";
`{emit_symbol fundecl.fun_name}:\n`;
`0: addis 2, 12, (.TOC. - 0b)@ha\n`;
` addi 2, 2, (.TOC. - 0b)@l\n`;
` .localentry {emit_symbol fundecl.fun_name}, . - 0b\n`;
emit_debug_info fundecl.fun_dbg;
cfi_startproc();
(* Dynamic stack checking *)
begin match !handle_overflow with
| None -> ()
| Some(overflow, ret) ->
let threshold_offset =
Domainstate.stack_ctx_words * 8 + stack_threshold_size in
let f = max_frame_size + threshold_offset in
let offset = Domainstate.(idx_of_field Domain_current_stack) * 8 in
` ld 11, {emit_int offset}(30)\n`;
` addi 11, 11, {emit_int f}\n`;
` cmpld 1, 11\n`;
` ble- {emit_label overflow}\n`;
`{emit_label ret}:\n`
end;
BR.relax fundecl
~max_out_of_line_code_offset: (max_out_of_line_code_offset fundecl);
emit_all env fundecl.fun_body;
(* Emit the glue code to call the GC *)
if env.call_gc_label > 0 then begin
`{emit_label env.call_gc_label}:\n`;
` std 2, 24(1)\n`;
(* save our TOC, will be restored by caml_call_gc *)
emit_tocload emit_gpr 12 (TocSym "caml_call_gc");
` mtctr 12\n`;
` bctr\n`
end;
(* Emit the glue code to handle bound errors *)
emit_call_bound_errors env;
cfi_endproc();
emit_size_directive fundecl.fun_name;
(* Emit the numeric literals *)
if env.float_literals <> [] then begin
emit_string rodata_space;
` .align 3\n`;
List.iter
(fun { fl; lbl } ->
`{emit_label lbl}:`;
emit_float64_split_directive ".long" fl)
env.float_literals
end;
(* Emit the jump tables *)
match env.jumptables, env.jumptables_lbl with
| _ :: _, None | [], Some _ -> assert false (* Sanity check *)
| [], None -> ()
| _ :: _, Some j ->
emit_string rodata_space;
` .align 2\n`;
`{emit_label j}:`;
List.iter
(fun lbl ->
` .long {emit_label lbl} - {emit_label j}\n`)
(List.rev env.jumptables)
(* Emission of data *)
let declare_global_data s =
` .globl {emit_symbol s}\n`;
emit_type_directive s "@object"
let emit_item = function
Cglobal_symbol s ->
declare_global_data s
| Cdefine_symbol s ->
`{emit_symbol s}:\n`;
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .short {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` .quad {emit_nativeint n}\n`
| Csingle f ->
emit_float32_directive ".long" (Int32.bits_of_float f)
| Cdouble f ->
emit_float64_directive ".quad" (Int64.bits_of_float f)
| Csymbol_address s ->
` .quad {emit_symbol s}\n`
| Cstring s ->
emit_bytes_directive " .byte " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
` .align {emit_int (Misc.log2 n)}\n`
let data l =
emit_string data_space;
` .align 3\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
reset_debug_info();
` .file \"\"\n`; (* PR#7037 *)
` .abiversion 2\n`;
Hashtbl.clear tocref_entries;
(* Emit the beginning of the segments *)
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
emit_string data_space;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
emit_named_text_section lbl_begin;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
(* Emit the end of the segments *)
let lbl_end = Compilenv.make_symbol (Some "code_end") in
emit_named_text_section lbl_end;
declare_global_data lbl_end;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
emit_string data_space;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
declare_global_data lbl_end;
` .quad 0\n`; (* PR#6329 *)
`{emit_symbol lbl_end}:\n`;
` .quad 0\n`;
(* Emit the frame descriptors *)
emit_string data_space; (* not rodata_space because it contains relocations *)
` .align 3\n`; (* #7887 *)
let lbl = Compilenv.make_symbol (Some "frametable") in
declare_global_data lbl;
`{emit_symbol lbl}:\n`;
emit_frames
{ efa_code_label =
(fun l -> ` .quad {emit_label l}\n`);
efa_data_label =
(fun l -> ` .quad {emit_label l}\n`);
efa_8 = (fun n -> ` .byte {emit_int n}\n`);
efa_16 = (fun n -> ` .short {emit_int n}\n`);
efa_32 = (fun n -> ` .long {emit_int32 n}\n`);
efa_word = (fun n -> ` .quad {emit_int n}\n`);
efa_align = (fun n -> ` .balign {emit_int n}\n`);
efa_label_rel = (fun lbl ofs ->
` .long ({emit_label lbl} - .) + {emit_int32 ofs}\n`);
efa_def_label = (fun l -> `{emit_label l}:\n`);
efa_string = (fun s -> emit_bytes_directive " .byte " (s ^ "\000"))
};
emit_size_directive lbl;
(* Emit the TOC entries *)
emit_string toc_space;
emit_toctable();
Hashtbl.clear tocref_entries;
emit_nonexecstack_note ()
|