1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Cmm
module V = Backend_var
module Raw_name = struct
type t =
| Anon
| R
| Var of V.t
let create_from_var var = Var var
let to_string t =
match t with
| Anon -> None
| R -> Some "R"
| Var var ->
let name = V.name var in
if String.length name <= 0 then None else Some name
end
type t =
{ mutable raw_name: Raw_name.t;
stamp: int;
typ: Cmm.machtype_component;
mutable loc: location;
mutable spill: bool;
mutable part: int option;
mutable interf: t list;
mutable prefer: (t * int) list;
mutable degree: int;
mutable spill_cost: int;
mutable visited: int }
and location =
Unknown
| Reg of int
| Stack of stack_location
and stack_location =
Local of int
| Incoming of int
| Outgoing of int
| Domainstate of int
type reg = t
let dummy =
{ raw_name = Raw_name.Anon; stamp = 0; typ = Int; loc = Unknown;
spill = false; interf = []; prefer = []; degree = 0; spill_cost = 0;
visited = 0; part = None;
}
let currstamp = ref 0
let reg_list = ref([] : t list)
let hw_reg_list = ref ([] : t list)
let visit_generation = ref 1
(* Any visited value not equal to !visit_generation counts as "unvisited" *)
let unvisited = 0
let mark_visited r =
r.visited <- !visit_generation
let is_visited r =
r.visited = !visit_generation
let clear_visited_marks () =
incr visit_generation
let create ty =
let r = { raw_name = Raw_name.Anon; stamp = !currstamp; typ = ty;
loc = Unknown; spill = false; interf = []; prefer = []; degree = 0;
spill_cost = 0; visited = unvisited; part = None; } in
reg_list := r :: !reg_list;
incr currstamp;
r
let createv tyv =
let n = Array.length tyv in
let rv = Array.make n dummy in
for i = 0 to n-1 do rv.(i) <- create tyv.(i) done;
rv
let createv_like rv =
let n = Array.length rv in
let rv' = Array.make n dummy in
for i = 0 to n-1 do rv'.(i) <- create rv.(i).typ done;
rv'
let clone r =
let nr = create r.typ in
nr.raw_name <- r.raw_name;
nr
let at_location ty loc =
let r = { raw_name = Raw_name.R; stamp = !currstamp; typ = ty; loc;
spill = false; interf = []; prefer = []; degree = 0;
spill_cost = 0; visited = unvisited; part = None; } in
hw_reg_list := r :: !hw_reg_list;
incr currstamp;
r
let typv rv =
Array.map (fun r -> r.typ) rv
let anonymous t =
match Raw_name.to_string t.raw_name with
| None -> true
| Some _raw_name -> false
let name t =
match Raw_name.to_string t.raw_name with
| None -> ""
| Some raw_name ->
let with_spilled =
if t.spill then
"spilled-" ^ raw_name
else
raw_name
in
match t.part with
| None -> with_spilled
| Some part -> with_spilled ^ "#" ^ Int.to_string part
let first_virtual_reg_stamp = ref (-1)
let reset() =
(* When reset() is called for the first time, the current stamp reflects
all hard pseudo-registers that have been allocated by Proc, so
remember it and use it as the base stamp for allocating
soft pseudo-registers *)
if !first_virtual_reg_stamp = -1 then begin
first_virtual_reg_stamp := !currstamp;
assert (!reg_list = []) (* Only hard regs created before now *)
end;
currstamp := !first_virtual_reg_stamp;
reg_list := [];
visit_generation := 1;
!hw_reg_list |> List.iter (fun r ->
r.visited <- unvisited)
let all_registers() = !reg_list
let num_registers() = !currstamp
let reinit_reg r =
r.loc <- Unknown;
r.interf <- [];
r.prefer <- [];
r.degree <- 0;
(* Preserve the very high spill costs introduced by the reloading pass *)
if r.spill_cost >= 100000
then r.spill_cost <- 100000
else r.spill_cost <- 0
let reinit() =
List.iter reinit_reg !reg_list
module RegOrder =
struct
type t = reg
let compare r1 r2 = r1.stamp - r2.stamp
end
module Set = Set.Make(RegOrder)
module Map = Map.Make(RegOrder)
let add_set_array s v =
match Array.length v with
0 -> s
| 1 -> Set.add v.(0) s
| n -> let rec add_all i =
if i >= n then s else Set.add v.(i) (add_all(i+1))
in add_all 0
let diff_set_array s v =
match Array.length v with
0 -> s
| 1 -> Set.remove v.(0) s
| n -> let rec remove_all i =
if i >= n then s else Set.remove v.(i) (remove_all(i+1))
in remove_all 0
let inter_set_array s v =
match Array.length v with
0 -> Set.empty
| 1 -> if Set.mem v.(0) s
then Set.add v.(0) Set.empty
else Set.empty
| n -> let rec inter_all i =
if i >= n then Set.empty
else if Set.mem v.(i) s then Set.add v.(i) (inter_all(i+1))
else inter_all(i+1)
in inter_all 0
let disjoint_set_array s v =
match Array.length v with
0 -> true
| 1 -> not (Set.mem v.(0) s)
| n -> let rec disjoint_all i =
if i >= n then true
else if Set.mem v.(i) s then false
else disjoint_all (i+1)
in disjoint_all 0
let set_of_array v =
match Array.length v with
0 -> Set.empty
| 1 -> Set.add v.(0) Set.empty
| n -> let rec add_all i =
if i >= n then Set.empty else Set.add v.(i) (add_all(i+1))
in add_all 0
|