1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Jerome Vouillon, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(*
# Translation of class and object expressions
## Objects
### Memory layout
Objects are represented in memory using two layers:
- The outer layer is a block with tag [Obj.object_tag].
It has a first field pointing to the inner layer (the methods),
a second field acting as a unique identifier to allow
polymorphic comparison, and the rest of the block contains
the values of the instance variables, class parameters, and
other values that can vary between two objects of the same class.
- The inner layer is a regular block (with tag zero). It contains
all values that are shared between all objects of the same class,
which means mostly methods. The first field corresponds to the number of
public methods, the second field is a mask used for optimising method
access, the following fields are alternating between the method closures
and the hash of their name (sorted in increasing hash order).
Additional fields are used for private methods.
+-------+------+-------+-------+-----+-------+-------+-----------+
| n_pub | mask | met_1 | tag_1 | ... | met_n | tag_n | other ... |
+-------+------+-------+-------+-----+-------+-------+-----------+
### Primitives
Method access is compiled in one of three possible ways:
- Generic method access (outside a class, or to an object that is not
self or an ancestor) uses dynamic lookup. A dichotomic search in
the part of the method array that stores public methods finds
the expected closure and calls it on the current object.
In most cases, a fast path also exists: each method access in the
source code has an associated cache location that stores the offset
of the last method called at this point in its method array.
Before the dichotomic search, the last stored offset (clamped
to the actual size of the method array using the mask) is checked,
and if the tag matches the associated closure is called directly.
- Method access through the self object inside a class:
the (runtime) index of the method inside the method array
has been computed at class creation time, so the method is fetched
from the block through a dynamic block load (like an array load).
- Accessing the method of an ancestor inside a class (ancestors are
variables bound by [inherit ... as ancestor] constructions):
at class creation time, the closure of the ancestor method is bound
to a variable, and the method call just calls this function without
any (further) dynamic lookup.
Instance variable access (getting and setting) also computes offsets
at class initialisation time, with those offsets used to index directly
in the outer layer of the object.
Functional object copy [ {< ... >} ] copies the outer layer, resets the
unique ID, and performs the required instance variable updates.
There are no other object primitives (objects cannot be allocated
in the IR directly, they are allocated in [CamlinternalOO])
## Classes
Classes are stored as module fields. The runtime value that represents
classes is used in two contexts:
- When using the [new] construction, to generate an object from a class.
- When referencing a class inside another class (either through
inheritance or other class expressions).
This is done by storing classes as blocks where the first field
is used to generate objects, and the second field is used to derive
classes (in a general sense, not only for inheritance).
In practice classes also contain one other field, which is used to
implement some optimisations in the main compiler (to ensure that each
class only runs its initialisation code once in the whole program, even
if its definition is in a context that is expected to be run several
times like a functor).
So the block layout is the following:
- A field named [obj_init] that is used for creating objects
- A field named [class_init] that is used for deriving classes
- A field named [env] containing values for all the variables
captured by [Translobj.oo_wrap] calls.
The module [CamlinternalOO] also defines a type [table] that represents
class layouts. Such values are not stored in the class block directly,
but the [obj_init] field captures the table for the class and [class_init]
manipulates such tables.
### The [obj_init] field
As described earlier, each object contains an inner layer that is computed
only once at class initialisation time; it seems natural to store this
block in the runtime value of the class (this block is one of the fields of
the [CamlinternalOO.table] type). However, given that creating an
object also involves setting up the instance variables and running the
initialisers, in practice the class only exports a function that creates
objects, and the table is captured in this function's closure along with
any value necessary to properly initialise the object.
Classes can have parameters, so in practice this object creation function
takes a first unit parameter (to ensure that it is always a function)
and returns a regular OCaml value that is either an object (if the class
doesn't have parameters) or a function which, given values
for the class parameters, will return an object.
Here is the type of the [obj_init] function for a class which type is
[p1 -> ... -> pn -> object method m1 : t1 ... method mn : tn end]:
[unit -> p1 -> ... -> pn -> < m1 : t1; ... mn : tn >]
(If the class has instance variables or initialisers, they are not
reflected in the type of [obj_init]).
### The [class_init] field
This field is used in two cases:
- When a class is defined in terms of another class, for instance as an
alias, a partial application, or some other kind of wrapper.
- When a class structure (i.e. the [object ... end] syntactic construction)
contains inheritance fields (e.g. [inherit cl as super]).
In both cases, we only have access to the other class' public type at
compile time, but we must still make sure all of the private fields
are setup correctly, in a way that is compatible with the current
class.
This is where tables come into play: the [class_init] field is a function
taking a table as parameter, updates it in-place, and returns a function
that is very similar to the [obj_init] function, except that instead of
taking [unit] as its first parameter and returning an object, it takes
a partially initialised object, and updates the parts of it that are
relevant for the corresponding class. It also takes the [env] field as
a parameter, so that different instances of the class can share the
same [class_init] function.
Thus, the type of [class_init] is:
[table -> env -> Obj.t -> p1 -> ... -> pn -> unit]
### The [env] field
The [env] field is a structure similar to a function's closure, storing
the value of free variables of the class expression. The actual
representation is a bit complex and not very important.
### Compilation scheme
The algorithm implemented below aims at sharing code as much as possible
between the various similar parts of the class.
- The code of the [obj_init] function is very similar to the code of
the function returned by [class_init]. The main difference is that
[obj_init] starts from scratch, allocating then initialising the object,
while inside [class_init] we want to run initialisation code on an already
allocated object (that we don't need to return).
So in practice we will build a single function that, depending on the value
of its first parameter, will either do the allocation and return the object
(if the parameter is the integer constant 0), or assume the parameter is
an already allocated and update it.
The body of this function is returned by [build_object_init].
- The table for the current class (that [obj_init] will read from) is
computed by allocating a basic table, then passing it to [class_init],
and finally calling [CamlinternalOO.init_class] on it.
This means that all the code for setting up the class (computing instance
variable indices, calling inherited class initialisers, and so on) is only
generated once, in the [class_init] function.
After building [obj_init], [build_class_init] wraps it with the class
initialization code to build the [class_init] function.
That's all for the high-level algorithm; the rest will be detailed close to
the corresponding code.
*)
open Asttypes
open Types
open Typedtree
open Lambda
open Translobj
open Translcore
open Debuginfo.Scoped_location
(* XXX Rajouter des evenements... | Add more events... *)
type error = Tags of label * label
exception Error of Location.t * error
let lfunction params body =
if params = [] then body else
match body with
| Lfunction {kind = Curried; params = params'; body = body'; attr; loc}
when attr.may_fuse_arity &&
List.length params + List.length params' <= Lambda.max_arity() ->
lfunction ~kind:Curried ~params:(params @ params')
~return:Pgenval
~body:body'
~attr
~loc
| _ ->
lfunction ~kind:Curried ~params ~return:Pgenval
~body
~attr:default_function_attribute
~loc:Loc_unknown
let lapply ap =
match ap.ap_func with
Lapply ap' ->
Lapply {ap with ap_func = ap'.ap_func; ap_args = ap'.ap_args @ ap.ap_args}
| _ ->
Lapply ap
let mkappl (func, args) =
Lapply {
ap_loc=Loc_unknown;
ap_func=func;
ap_args=args;
ap_tailcall=Default_tailcall;
ap_inlined=Default_inline;
ap_specialised=Default_specialise;
}
let lsequence l1 l2 =
if l2 = lambda_unit then l1 else Lsequence(l1, l2)
let lfield v i = Lprim(Pfield (i, Pointer, Mutable),
[Lvar v], Loc_unknown)
let transl_label l = share (Const_immstring l)
let transl_meth_list lst =
if lst = [] then Lconst (const_int 0) else
share (Const_block
(0, List.map (fun lab -> Const_immstring lab) lst))
let set_inst_var ~scopes obj id expr =
Lprim(Psetfield_computed (Typeopt.maybe_pointer expr, Assignment),
[Lvar obj; Lvar id; transl_exp ~scopes expr], Loc_unknown)
let transl_val tbl create name =
mkappl (oo_prim (if create then "new_variable" else "get_variable"),
[Lvar tbl; transl_label name])
let transl_vals tbl create strict vals rem =
List.fold_right
(fun (name, id) rem ->
Llet(strict, Pgenval, id, transl_val tbl create name, rem))
vals rem
let meths_super tbl meths inh_meths =
List.fold_right
(fun (nm, id) rem ->
try
(nm, id,
mkappl(oo_prim "get_method", [Lvar tbl; Lvar (Meths.find nm meths)]))
:: rem
with Not_found -> rem)
inh_meths []
(*
[build_class_init] has two parameters ([cstr] and [super]) that are set when
translating the expression of a class that will be inherited in an outer class.
They could be replaced with the following type:
```
type inheritance_status =
| Normal (** Not under an [inherit] construct *)
| Inheriting of {
must_narrow : bool;
(** [false] if we already went through a call to [narrow] *)
method_getters : (Ident.t * lambda) list;
(** Ancestor methods are accessed through identifiers.
These identifiers are bound at class initialisation time,
by fetching the actual closures from the table just
after setting up the inherited class. *)
instance_vars : (string * Ident.t) list;
(** Inherited instance variables need to have their index bound
in the scope of the child class *)
}
```
[cstr] is the negation of [must_narrow], and [super] is the pair
[(instance_vars, method_getters)].
*)
let bind_super tbl (vals, meths) cl_init =
transl_vals tbl false StrictOpt vals
(List.fold_right (fun (_nm, id, def) rem ->
Llet(StrictOpt, Pgenval, id, def, rem))
meths cl_init)
let create_object cl obj init =
let obj' = Ident.create_local "self" in
let (inh_init, obj_init, has_init) = init obj' in
if obj_init = lambda_unit then
(inh_init,
mkappl (oo_prim (if has_init then "create_object_and_run_initializers"
else "create_object_opt"),
[obj; Lvar cl]))
else begin
(inh_init,
Llet(Strict, Pgenval, obj',
mkappl (oo_prim "create_object_opt", [obj; Lvar cl]),
Lsequence(obj_init,
if not has_init then Lvar obj' else
mkappl (oo_prim "run_initializers_opt",
[obj; Lvar obj'; Lvar cl]))))
end
let name_pattern default p =
match p.pat_desc with
| Tpat_var (id, _, _) -> id
| Tpat_alias(_, id, _, _, _) -> id
| _ -> Ident.create_local default
(*
[build_object_init] returns an expression that creates and initialises new
objects. If the class takes parameters, it is a function that, given values
for the parameters, performs the initialisations and (if needed) object
creation.
The [obj] expression will be bound to either the integer 0, in which case
[obj_init] must allocate the object and return it, or to an already allocated
object, in which case [obj_init] will initialize the relevant parts of it
through side-effects. In the case of an immediate object it is always 0.
Parameters:
- [scopes] corresponds to the location scopes (as in the rest of the
translation code)
- [cl_table] is the variable to which the table for the current class is
bound
- [obj] is the parameter of the [obj_init] function we want to create.
As explained above at runtime it might point to either an already allocated
object, when inheriting, or a dummy zero value, when calling [new].
- [params] stores the anonymous instance variables associated with all
variables that occur inside the class definition but outside the
[object ... end] structure: class parameters and class let bindings.
The definition is always the identifier corresponding to the original
variable.
- [inh_init] accumulates data about the class identifiers encountered, and is
returned at the end to be reused in [build_class_init].
- [cl] is the class we're compiling *)
let rec build_object_init ~scopes cl_table obj params inh_init obj_init cl =
match cl.cl_desc with
Tcl_ident (path, _, _) ->
(* The object initialiser for the class in [path], specialised
to the class being defined *)
let obj_init = Ident.create_local "obj_init" in
let envs, inh_init = inh_init in
let env =
match envs with None -> []
| Some envs ->
[Lprim(Pfield (List.length inh_init + 1, Pointer, Mutable),
[Lvar envs],
Loc_unknown)]
in
let loc = of_location ~scopes cl.cl_loc in
let path_lam = transl_class_path loc cl.cl_env path in
(* Note: we don't need to bind [params] here, as they are
only used in structures. Outside structures (in class lets or
applications) we use the regular identifiers. *)
((envs, (path, path_lam, obj_init) :: inh_init),
mkappl(Lvar obj_init, env @ [obj]))
| Tcl_structure str ->
(* Initialising a concrete class structure *)
create_object cl_table obj (fun obj ->
(* [obj] will be bound to the allocated object,
unlike the original [obj] which might be zero if called directly
from an object creation expression. *)
let (inh_init, obj_init, has_init) =
List.fold_right
(fun field (inh_init, obj_init, has_init) ->
match field.cf_desc with
Tcf_inherit (_, cl, _, _, _) ->
let (inh_init, obj_init') =
(* Reset [params]. The current ones will be bound
outside the structure. *)
build_object_init ~scopes cl_table (Lvar obj) [] inh_init
(fun _ -> lambda_unit) cl
in
(* Since [obj] is bound to a concrete object,
only the side-effects of [obj_init'] are relevant. *)
(inh_init, lsequence obj_init' obj_init, true)
| Tcf_val (_, _, id, Tcfk_concrete (_, exp), _) ->
(inh_init,
lsequence (set_inst_var ~scopes obj id exp) obj_init,
has_init)
| Tcf_method _ | Tcf_val _ | Tcf_constraint _ | Tcf_attribute _->
(inh_init, obj_init, has_init)
| Tcf_initializer _ ->
(inh_init, obj_init, true)
)
str.cstr_fields
(inh_init, obj_init obj, false)
in
(* Set the instance variables associated to the class parameters and
let bindings to their expected value. *)
(inh_init,
List.fold_right
(fun (id, expr) rem ->
lsequence (Lifused (id, set_inst_var ~scopes obj id expr)) rem)
params obj_init,
has_init))
| Tcl_fun (_, pat, vals, cl, partial) ->
let (inh_init, obj_init) =
(* [vals] maps all pattern variables to idents for use inside methods *)
build_object_init ~scopes cl_table obj (vals @ params)
inh_init obj_init cl
in
(inh_init,
let build params rem =
let param = name_pattern "param" pat in
Lambda.lfunction
~kind:Curried ~params:((param, Pgenval)::params)
~return:Pgenval
~attr:default_function_attribute
~loc:(of_location ~scopes pat.pat_loc)
~body:(Matching.for_function ~scopes pat.pat_loc
None (Lvar param) [pat, rem] partial)
in
begin match obj_init with
Lfunction {kind = Curried; params; body = rem} -> build params rem
| rem -> build [] rem
end)
| Tcl_apply (cl, oexprs) ->
let (inh_init, obj_init) =
build_object_init ~scopes cl_table obj params inh_init obj_init cl
in
(inh_init, transl_apply ~scopes obj_init oexprs Loc_unknown)
| Tcl_let (rec_flag, defs, vals, cl) ->
(* See comment on the [Tcl_fun] case for the meaning of [vals] *)
let (inh_init, obj_init) =
build_object_init ~scopes cl_table obj (vals @ params)
inh_init obj_init cl
in
(inh_init, Translcore.transl_let ~scopes rec_flag defs obj_init)
| Tcl_open (_, cl)
(* Class local opens are restricted to paths only, so no code is generated
*)
| Tcl_constraint (cl, _, _, _, _) ->
build_object_init ~scopes cl_table obj params inh_init obj_init cl
(* The manual specifies that toplevel lets *must* be evaluated outside of the
class. This piece of code makes sure we skip them. *)
let rec build_object_init_0
~scopes cl_table params cl copy_env subst_env top ids =
match cl.cl_desc with
Tcl_let (_rec_flag, _defs, vals, cl) ->
build_object_init_0
~scopes cl_table (vals@params) cl copy_env subst_env top ids
| Tcl_open (_descr, cl) ->
build_object_init_0
~scopes cl_table params cl copy_env subst_env top ids
| _ ->
let self = Ident.create_local "self" in
let env = Ident.create_local "env" in
let obj = if ids = [] then lambda_unit else Lvar self in
let envs = if top then None else Some env in
let ((_,inh_init), obj_init) =
build_object_init ~scopes cl_table obj params (envs,[]) copy_env cl in
let obj_init =
if ids = [] then obj_init else lfunction [self, Pgenval] obj_init in
(inh_init, lfunction [env, Pgenval] (subst_env env inh_init obj_init))
let bind_method tbl lab id cl_init =
Llet(Strict, Pgenval, id, mkappl (oo_prim "get_method_label",
[Lvar tbl; transl_label lab]),
cl_init)
let bind_methods tbl meths vals cl_init =
let methl = Meths.fold (fun lab id tl -> (lab,id) :: tl) meths [] in
let len = List.length methl and nvals = List.length vals in
if len < 2 && nvals = 0 then Meths.fold (bind_method tbl) meths cl_init else
if len = 0 && nvals < 2 then transl_vals tbl true Strict vals cl_init else
let ids = Ident.create_local "ids" in
let i = ref (len + nvals) in
let getter, names =
if nvals = 0 then "get_method_labels", [] else
"new_methods_variables", [transl_meth_list (List.map fst vals)]
in
Llet(Strict, Pgenval, ids,
mkappl (oo_prim getter,
[Lvar tbl; transl_meth_list (List.map fst methl)] @ names),
List.fold_right
(fun (_lab,id) lam -> decr i; Llet(StrictOpt, Pgenval, id,
lfield ids !i, lam))
(methl @ vals) cl_init)
let output_methods tbl methods lam =
match methods with
[] -> lam
| [lab; code] ->
lsequence (mkappl(oo_prim "set_method", [Lvar tbl; lab; code])) lam
| _ ->
lsequence (mkappl(oo_prim "set_methods",
[Lvar tbl; Lprim(Pmakeblock(0,Immutable,None),
methods, Loc_unknown)]))
lam
let rec ignore_cstrs cl =
match cl.cl_desc with
Tcl_constraint (cl, _, _, _, _) -> ignore_cstrs cl
| Tcl_apply (cl, _) -> ignore_cstrs cl
| _ -> cl
let rec index a = function
[] -> raise Not_found
| b :: l ->
if b = a then 0 else 1 + index a l
let bind_id_as_val (id, _) = ("", id)
(** Build the class initialisation code.
Parameters:
- [scopes] corresponds to the location scopes (as in the rest of the
translation code)
- [cla] is the variable to which the table for the current class is bound
- [cstr] is [true] when called from outside, but [false] when called
from an [inherit] field. Narrowing is necessary during inheritance to
prevent clashes between methods/variables in the child class and private
methods/variables in the parent.
- [super] stores, if we're building an inherited class, the variables and
methods exposed to the child. The variables need to have their associated
index exposed, and methods have to be bound in case the child refers to
them through the ancestor variables.
- [inh_init] is the sequence of inheritance paths computed during
[build_object_init].
- [cl_init] is the expression we're building.
- [msubst] replaces methods with builtin methods when possible.
- [top] is [false] if the current class is under [Translobj.oo_wrap].
- [cl] is the class we're compiling *)
let rec build_class_init ~scopes cla cstr super inh_init cl_init msubst top cl =
match cl.cl_desc with
| Tcl_ident _ ->
begin match inh_init with
| (_, path_lam, obj_init)::inh_init ->
(inh_init,
Llet (Strict, Pgenval, obj_init,
(* Load the [class_init] field of the class,
and apply it to our current table and the class' environment.
This gets us the object initialiser. *)
mkappl(Lprim(Pfield (1, Pointer, Mutable),
[path_lam], Loc_unknown), Lvar cla ::
if top then [Lprim(Pfield (2, Pointer, Mutable),
[path_lam], Loc_unknown)]
else []),
(* The methods and variables for this class are fully registered
in the table. If we are in an inheritance context, we can now
bind everything. *)
bind_super cla super cl_init))
| _ ->
assert false
end
| Tcl_structure str ->
let cl_init = bind_super cla super cl_init in
let (inh_init, cl_init, methods, values) =
List.fold_right
(fun field (inh_init, cl_init, methods, values) ->
match field.cf_desc with
Tcf_inherit (_, cl, _, vals, meths) ->
let cl_init = output_methods cla methods cl_init in
let inh_init, cl_init =
(* Build the initialisation code for the inherited class,
plus its wrappers.
Make sure the wrappers bind the inherited methods
and variables. *)
build_class_init ~scopes cla false
(vals, meths_super cla str.cstr_meths meths)
inh_init cl_init msubst top cl in
(inh_init, cl_init, [], values)
| Tcf_val (name, _, id, _, over) ->
(* If this is an override, the variable is the same as
the one from the earlier definition, and must not be
bound again. *)
let values =
if over then values else (name.txt, id) :: values
in
(inh_init, cl_init, methods, values)
| Tcf_method (_, _, Tcfk_virtual _)
| Tcf_constraint _
->
(inh_init, cl_init, methods, values)
| Tcf_method (name, _, Tcfk_concrete (_, exp)) ->
let scopes = enter_method_definition ~scopes name.txt in
let met_code =
msubst true (transl_scoped_exp ~scopes exp) in
let met_code =
if !Clflags.native_code && List.length met_code = 1 then
(* Force correct naming of method for profiles *)
let met = Ident.create_local ("method_" ^ name.txt) in
[Llet(Strict, Pgenval, met, List.hd met_code, Lvar met)]
else met_code
in
(inh_init, cl_init,
Lvar(Meths.find name.txt str.cstr_meths) :: met_code @ methods,
values)
| Tcf_initializer exp ->
(inh_init,
Lsequence(mkappl (oo_prim "add_initializer",
Lvar cla :: msubst false
(transl_exp ~scopes exp)),
cl_init),
methods, values)
| Tcf_attribute _ ->
(inh_init, cl_init, methods, values))
str.cstr_fields
(inh_init, cl_init, [], [])
in
(* In order of execution at runtime:
- Bind the method and variable indices for the current class
([bind_methods])
- Run the code for setting up the individual fields ([cl_init], plus
[output_methods] for the remaining unset methods)
- If we are in an inheritance context, bind the inherited variables
and methods for use in the child ([bind_super] at the top of this
branch) *)
let cl_init = output_methods cla methods cl_init in
(inh_init, bind_methods cla str.cstr_meths values cl_init)
| Tcl_fun (_, _pat, vals, cl, _) ->
let (inh_init, cl_init) =
build_class_init ~scopes cla cstr super inh_init cl_init msubst top cl
in
(* Create anonymous instance variables and define them in the table *)
let vals = List.map bind_id_as_val vals in
(inh_init, transl_vals cla true StrictOpt vals cl_init)
| Tcl_apply (cl, _exprs) ->
build_class_init ~scopes cla cstr super inh_init cl_init msubst top cl
| Tcl_let (_rec_flag, _defs, vals, cl) ->
let (inh_init, cl_init) =
build_class_init ~scopes cla cstr super inh_init cl_init msubst top cl
in
(* Create anonymous instance variables and define them in the table *)
let vals = List.map bind_id_as_val vals in
(inh_init, transl_vals cla true StrictOpt vals cl_init)
| Tcl_constraint (cl, _, vals, meths, concr_meths) ->
let virt_meths =
List.filter (fun lab -> not (MethSet.mem lab concr_meths)) meths in
let concr_meths = MethSet.elements concr_meths in
let narrow_args =
[Lvar cla;
transl_meth_list vals;
transl_meth_list virt_meths;
transl_meth_list concr_meths] in
let cl = ignore_cstrs cl in
begin match cl.cl_desc, inh_init with
| Tcl_ident (path, _, _), (path', path_lam, obj_init)::inh_init ->
assert (Path.same path path');
let inh = Ident.create_local "inh"
and ofs = List.length vals + 1
and valids, methids = super in
let cl_init =
List.fold_left
(fun init (nm, id, _) ->
Llet(StrictOpt, Pgenval, id,
lfield inh (index nm concr_meths + ofs),
init))
cl_init methids in
let cl_init =
List.fold_left
(fun init (nm, id) ->
Llet(StrictOpt, Pgenval, id,
lfield inh (index nm vals + 1), init))
cl_init valids in
(inh_init,
Llet (Strict, Pgenval, inh,
mkappl(oo_prim "inherits", narrow_args @
[path_lam;
Lconst(const_int (if top then 1 else 0))]),
Llet(StrictOpt, Pgenval, obj_init, lfield inh 0, cl_init)))
| _ ->
let core cl_init =
build_class_init
~scopes cla true super inh_init cl_init msubst top cl
in
(* Skip narrowing if we're not directly under [inherit] *)
if cstr then core cl_init else
let (inh_init, cl_init) =
core (Lsequence (mkappl (oo_prim "widen", [Lvar cla]), cl_init))
in
(inh_init,
Lsequence(mkappl (oo_prim "narrow", narrow_args),
cl_init))
end
| Tcl_open (_, cl) ->
build_class_init ~scopes cla cstr super inh_init cl_init msubst top cl
let rec build_class_lets ~scopes cl =
match cl.cl_desc with
Tcl_let (rec_flag, defs, _vals, cl') ->
let env, wrap = build_class_lets ~scopes cl' in
(env, fun lam_and_kind ->
let lam, rkind = wrap lam_and_kind in
Translcore.transl_let ~scopes rec_flag defs lam, rkind)
| Tcl_open (open_descr, cl) ->
(* Failsafe to ensure we get a compilation error if arbitrary
module expressions become allowed *)
let _ : Path.t * Longident.t loc = open_descr.open_expr in
build_class_lets ~scopes cl
| _ ->
(cl.cl_env, fun lam_and_kind -> lam_and_kind)
let rec get_class_meths cl =
match cl.cl_desc with
Tcl_structure cl ->
Meths.fold (fun _ -> Ident.Set.add) cl.cstr_meths Ident.Set.empty
| Tcl_ident _ -> Ident.Set.empty
| Tcl_fun (_, _, _, cl, _)
| Tcl_let (_, _, _, cl)
| Tcl_apply (cl, _)
| Tcl_open (_, cl)
| Tcl_constraint (cl, _, _, _, _) -> get_class_meths cl
(*
XXX Il devrait etre peu couteux d'ecrire des classes :
| Writing classes should be cheap
class c x y = d e f
*)
let rec transl_class_rebind ~scopes obj_init cl vf =
match cl.cl_desc with
Tcl_ident (path, _, _) ->
if vf = Concrete then begin
try if (Env.find_class path cl.cl_env).cty_new = None then raise Exit
with Not_found -> raise Exit
end;
let cl_loc = of_location ~scopes cl.cl_loc in
let path_lam = transl_class_path cl_loc cl.cl_env path in
(path, path_lam, obj_init)
| Tcl_fun (_, pat, _, cl, partial) ->
let path, path_lam, obj_init =
transl_class_rebind ~scopes obj_init cl vf in
let build params rem =
let param = name_pattern "param" pat in
Lambda.lfunction
~kind:Curried ~params:((param, Pgenval)::params)
~return:Pgenval
~attr:default_function_attribute
~loc:(of_location ~scopes pat.pat_loc)
~body:(Matching.for_function ~scopes pat.pat_loc
None (Lvar param) [pat, rem] partial)
in
(path, path_lam,
match obj_init with
Lfunction {kind = Curried; params; body} -> build params body
| rem -> build [] rem)
| Tcl_apply (cl, oexprs) ->
let path, path_lam, obj_init =
transl_class_rebind ~scopes obj_init cl vf in
(path, path_lam, transl_apply ~scopes obj_init oexprs Loc_unknown)
| Tcl_let (rec_flag, defs, _vals, cl) ->
let path, path_lam, obj_init =
transl_class_rebind ~scopes obj_init cl vf in
(path, path_lam, Translcore.transl_let ~scopes rec_flag defs obj_init)
| Tcl_structure _ -> raise Exit
| Tcl_constraint (cl', _, _, _, _) ->
let path, path_lam, obj_init =
transl_class_rebind ~scopes obj_init cl' vf in
let rec check_constraint = function
Cty_constr(path', _, _) when Path.same path path' -> ()
| Cty_arrow (_, _, cty) -> check_constraint cty
| _ -> raise Exit
in
check_constraint cl.cl_type;
(path, path_lam, obj_init)
| Tcl_open (_, cl) ->
transl_class_rebind ~scopes obj_init cl vf
let rec transl_class_rebind_0 ~scopes (self:Ident.t) obj_init cl vf =
match cl.cl_desc with
Tcl_let (rec_flag, defs, _vals, cl) ->
let path, path_lam, obj_init =
transl_class_rebind_0 ~scopes self obj_init cl vf
in
(path, path_lam, Translcore.transl_let ~scopes rec_flag defs obj_init)
| _ ->
let path, path_lam, obj_init =
transl_class_rebind ~scopes obj_init cl vf in
(path, path_lam, lfunction [self, Pgenval] obj_init)
let transl_class_rebind ~scopes cl vf =
try
let obj_init = Ident.create_local "obj_init"
and self = Ident.create_local "self" in
let obj_init0 =
lapply {
ap_loc=Loc_unknown;
ap_func=Lvar obj_init;
ap_args=[Lvar self];
ap_tailcall=Default_tailcall;
ap_inlined=Default_inline;
ap_specialised=Default_specialise;
}
in
let _, path_lam, obj_init' =
transl_class_rebind_0 ~scopes self obj_init0 cl vf in
let id = (obj_init' = lfunction [self, Pgenval] obj_init0) in
if id then path_lam else
let cla = Ident.create_local "class"
and new_init = Ident.create_local "new_init"
and env_init = Ident.create_local "env_init"
and table = Ident.create_local "table"
and envs = Ident.create_local "envs" in
Llet(
Strict, Pgenval, new_init, lfunction [obj_init, Pgenval] obj_init',
Llet(
Alias, Pgenval, cla, path_lam,
Lprim(Pmakeblock(0, Immutable, None),
[mkappl(Lvar new_init, [lfield cla 0]);
lfunction [table, Pgenval]
(Llet(Strict, Pgenval, env_init,
mkappl(lfield cla 1, [Lvar table]),
lfunction [envs, Pgenval]
(mkappl(Lvar new_init,
[mkappl(Lvar env_init, [Lvar envs])]))));
lfield cla 2],
Loc_unknown)))
with Exit ->
lambda_unit
(* Rewrite a closure using builtins. Improves native code size. *)
let const_path local = function
Lvar id -> not (List.mem id local)
| Lconst _ -> true
| Lfunction {kind = Curried; body} ->
let fv = free_variables body in
List.for_all (fun x -> not (Ident.Set.mem x fv)) local
| _ -> false
let rec builtin_meths self env env2 body =
let const_path = const_path (env::self) in
let conv = function
(* Lvar s when List.mem s self -> "_self", [] *)
| p when const_path p -> "const", [p]
| Lprim(Parrayrefu _, [Lvar s; Lvar n], _) when List.mem s self ->
"var", [Lvar n]
| Lprim(Pfield(n, _, _), [Lvar e], _) when Ident.same e env ->
"env", [Lvar env2; Lconst(const_int n)]
| Lsend(Self, met, Lvar s, [], _) when List.mem s self ->
"meth", [met]
| _ -> raise Not_found
in
match body with
| Llet(_str, _k, s', Lvar s, body) when List.mem s self ->
builtin_meths (s'::self) env env2 body
| Lapply{ap_func = f; ap_args = [arg]} when const_path f ->
let s, args = conv arg in ("app_"^s, f :: args)
| Lapply{ap_func = f; ap_args = [arg; p]} when const_path f && const_path p ->
let s, args = conv arg in
("app_"^s^"_const", f :: args @ [p])
| Lapply{ap_func = f; ap_args = [p; arg]} when const_path f && const_path p ->
let s, args = conv arg in
("app_const_"^s, f :: p :: args)
| Lsend(Self, Lvar n, Lvar s, [arg], _) when List.mem s self ->
let s, args = conv arg in
("meth_app_"^s, Lvar n :: args)
| Lsend(Self, met, Lvar s, [], _) when List.mem s self ->
("get_meth", [met])
| Lsend(Public, met, arg, [], _) ->
let s, args = conv arg in
("send_"^s, met :: args)
| Lsend(Cached, met, arg, [_;_], _) ->
let s, args = conv arg in
("send_"^s, met :: args)
| Lfunction {kind = Curried; params = [x, _]; body} ->
let rec enter self = function
| Lprim(Parraysetu _, [Lvar s; Lvar n; Lvar x'], _)
when Ident.same x x' && List.mem s self ->
("set_var", [Lvar n])
| Llet(_str, _k, s', Lvar s, body) when List.mem s self ->
enter (s'::self) body
| _ -> raise Not_found
in enter self body
| Lfunction _ -> raise Not_found
| _ ->
let s, args = conv body in ("get_"^s, args)
module M = struct
open CamlinternalOO
let builtin_meths self env env2 body =
let builtin, args = builtin_meths self env env2 body in
(* if not arr then [mkappl(oo_prim builtin, args)] else *)
let tag = match builtin with
"get_const" -> GetConst
| "get_var" -> GetVar
| "get_env" -> GetEnv
| "get_meth" -> GetMeth
| "set_var" -> SetVar
| "app_const" -> AppConst
| "app_var" -> AppVar
| "app_env" -> AppEnv
| "app_meth" -> AppMeth
| "app_const_const" -> AppConstConst
| "app_const_var" -> AppConstVar
| "app_const_env" -> AppConstEnv
| "app_const_meth" -> AppConstMeth
| "app_var_const" -> AppVarConst
| "app_env_const" -> AppEnvConst
| "app_meth_const" -> AppMethConst
| "meth_app_const" -> MethAppConst
| "meth_app_var" -> MethAppVar
| "meth_app_env" -> MethAppEnv
| "meth_app_meth" -> MethAppMeth
| "send_const" -> SendConst
| "send_var" -> SendVar
| "send_env" -> SendEnv
| "send_meth" -> SendMeth
| _ -> assert false
in Lconst(const_int (Obj.magic tag)) :: args
end
open M
(*
Class translation.
Three subcases:
* reapplication of a known class -> transl_class_rebind
* class without local dependencies -> direct translation
* with local dependencies -> generate a stubs tree,
with a node for every local classes inherited
A class is a 3-tuple:
(obj_init, class_init, env)
obj_init: creation function (unit -> params -> obj)
class_init: inheritance function (table -> env -> obj_init)
(one by source code)
env: local environment
The local environment is used for cached classes. When a
class definition occurs under a call to Translobj.oo_wrap
(typically inside a functor), the class creation code is
split between a static part (depending only on toplevel names)
and a dynamic part, the environment. The static part is cached
in a toplevel structure, so that only the first class creation
computes it and the subsequent classes can reuse it.
Because of that, the (static) [class_init] function takes both
the class table to be filled and the environment as parameters,
and when called is given the [env] field of the class.
For the [obj_init] part, an [env_init] function (of type [env -> obj_init])
is stored in the cache, and called on the environment to generate
the [obj_init] at class creation time.
*)
(*
let prerr_ids msg ids =
let names = List.map Ident.unique_toplevel_name ids in
prerr_endline (String.concat " " (msg :: names))
*)
let free_methods l =
let fv = ref Ident.Set.empty in
let rec free l =
Lambda.iter_head_constructor free l;
match l with
| Lsend(Self, Lvar meth, _, _, _) ->
fv := Ident.Set.add meth !fv
| Lsend _ -> ()
| Lfunction{params} ->
List.iter (fun (param, _) -> fv := Ident.Set.remove param !fv) params
| Llet(_, _k, id, _arg, _body)
| Lmutlet(_k, id, _arg, _body) ->
fv := Ident.Set.remove id !fv
| Lletrec(decl, _body) ->
List.iter (fun { id } -> fv := Ident.Set.remove id !fv) decl
| Lstaticcatch(_e1, (_,vars), _e2) ->
List.iter (fun (id, _) -> fv := Ident.Set.remove id !fv) vars
| Ltrywith(_e1, exn, _e2) ->
fv := Ident.Set.remove exn !fv
| Lfor(v, _e1, _e2, _dir, _e3) ->
fv := Ident.Set.remove v !fv
| Lassign _
| Lvar _ | Lmutvar _ | Lconst _ | Lapply _
| Lprim _ | Lswitch _ | Lstringswitch _ | Lstaticraise _
| Lifthenelse _ | Lsequence _ | Lwhile _
| Levent _ | Lifused _ -> ()
in free l; !fv
let transl_class ~scopes ids cl_id pub_meths cl vflag =
let open Value_rec_types in
(* First check if it is not only a rebind *)
let rebind = transl_class_rebind ~scopes cl vflag in
if rebind <> lambda_unit then rebind, Dynamic else
(* Prepare for heavy environment handling *)
let scopes = enter_class_definition ~scopes cl_id in
let tables = Ident.create_local (Ident.name cl_id ^ "_tables") in
let (top_env, req) = oo_add_class tables in
let top = not req in
(* The manual specifies that toplevel lets *must* be evaluated outside of the
class *)
let cl_env, llets = build_class_lets ~scopes cl in
let new_ids = if top then [] else Env.diff top_env cl_env in
let env2 = Ident.create_local "env" in
let meth_ids = get_class_meths cl in
let subst env lam i0 new_ids' =
let fv = free_variables lam in
(* prerr_ids "cl_id =" [cl_id]; prerr_ids "fv =" (Ident.Set.elements fv); *)
let fv = List.fold_right Ident.Set.remove !new_ids' fv in
(* We need to handle method ids specially, as they do not appear
in the typing environment (PR#3576, PR#4560) *)
(* very hacky: we add and remove free method ids on the fly,
depending on the visit order... *)
method_ids :=
Ident.Set.diff (Ident.Set.union (free_methods lam) !method_ids) meth_ids;
(* prerr_ids "meth_ids =" (Ident.Set.elements meth_ids);
prerr_ids "method_ids =" (Ident.Set.elements !method_ids); *)
let new_ids = List.fold_right Ident.Set.add new_ids !method_ids in
let fv = Ident.Set.inter fv new_ids in
new_ids' := !new_ids' @ Ident.Set.elements fv;
(* prerr_ids "new_ids' =" !new_ids'; *)
let i = ref (i0-1) in
List.fold_left
(fun subst id ->
incr i; Ident.Map.add id (lfield env !i) subst)
Ident.Map.empty !new_ids'
in
let new_ids_meths = ref [] in
let no_env_update _ _ env = env in
let msubst arr = function
Lfunction {kind = Curried; params = (self, Pgenval) :: args; body} ->
let env = Ident.create_local "env" in
let body' =
if new_ids = [] then body else
Lambda.subst no_env_update (subst env body 0 new_ids_meths) body in
begin try
(* Doesn't seem to improve size for bytecode *)
(* if not !Clflags.native_code then raise Not_found; *)
if not arr || !Clflags.debug then raise Not_found;
builtin_meths [self] env env2 (lfunction args body')
with Not_found ->
[lfunction ((self, Pgenval) :: args)
(if not (Ident.Set.mem env (free_variables body')) then body' else
Llet(Alias, Pgenval, env,
Lprim(Pfield_computed,
[Lvar self; Lvar env2],
Loc_unknown),
body'))]
end
| _ -> assert false
in
let new_ids_init = ref [] in
let env1 = Ident.create_local "env" and env1' = Ident.create_local "env'" in
let copy_env self =
if top then lambda_unit else
Lifused(env2, Lprim(Psetfield_computed (Pointer, Assignment),
[Lvar self; Lvar env2; Lvar env1'],
Loc_unknown))
and subst_env envs l lam =
if top then lam else
(* must be called only once! *)
let lam = Lambda.subst no_env_update (subst env1 lam 1 new_ids_init) lam in
Llet(Alias, Pgenval, env1, (if l = [] then Lvar envs else lfield envs 0),
Llet(Alias, Pgenval, env1',
(if !new_ids_init = [] then Lvar env1 else lfield env1 0),
lam))
in
(* Now we start compiling the class *)
let cla = Ident.create_local "class" in
let (inh_init, obj_init) =
build_object_init_0 ~scopes cla [] cl copy_env subst_env top ids in
let inh_init' = List.rev inh_init in
let (inh_init', cl_init) =
build_class_init ~scopes cla true ([],[]) inh_init' obj_init msubst top cl
in
assert (inh_init' = []);
let table = Ident.create_local "table"
and class_init = Ident.create_local (Ident.name cl_id ^ "_init")
and env_init = Ident.create_local "env_init"
and obj_init = Ident.create_local "obj_init" in
(* Sort methods by hash *)
let pub_meths =
List.sort
(fun s s' -> compare (Btype.hash_variant s) (Btype.hash_variant s'))
pub_meths in
(* Check for hash conflicts *)
let tags = List.map Btype.hash_variant pub_meths in
let rev_map = List.combine tags pub_meths in
List.iter2
(fun tag name ->
let name' = List.assoc tag rev_map in
if name' <> name then raise(Error(cl.cl_loc, Tags(name, name'))))
tags pub_meths;
let ltable table lam =
Llet(Strict, Pgenval, table,
mkappl (oo_prim "create_table", [transl_meth_list pub_meths]), lam)
and ldirect obj_init =
Llet(Strict, Pgenval, obj_init, cl_init,
Lsequence(mkappl (oo_prim "init_class", [Lvar cla]),
mkappl (Lvar obj_init, [lambda_unit])))
in
(* Simplest case: an object defined at toplevel (ids=[]) *)
if top && ids = [] then llets (ltable cla (ldirect obj_init), Dynamic) else
let concrete = (vflag = Concrete)
and lclass mk_lam_and_kind =
let cl_init, _ =
llets (Lambda.lfunction
~kind:Curried
~attr:default_function_attribute
~loc:Loc_unknown
~return:Pgenval
~params:[cla, Pgenval]
~body:cl_init,
Dynamic (* Placeholder, real kind is computed in [lbody] below *))
in
let lam, rkind = mk_lam_and_kind (free_variables cl_init) in
Llet(Strict, Pgenval, class_init, cl_init, lam), rkind
and lbody fv =
if List.for_all (fun id -> not (Ident.Set.mem id fv)) ids then
(* Not recursive: can use make_class directly *)
mkappl (oo_prim "make_class",[transl_meth_list pub_meths;
Lvar class_init]),
Dynamic
else
(* Recursive: need to have an actual allocation for let rec compilation
to work, so hardcode make_class *)
ltable table (
Llet(
Strict, Pgenval, env_init, mkappl (Lvar class_init, [Lvar table]),
Lsequence(
mkappl (oo_prim "init_class", [Lvar table]),
Lprim(Pmakeblock(0, Immutable, None),
[mkappl (Lvar env_init, [lambda_unit]);
Lvar class_init; lambda_unit],
Loc_unknown)))),
Static
and lbody_virt lenvs =
(* Virtual classes only need to provide the [class_init] and [env]
fields. [obj_init] is filled with a dummy [lambda_unit] value. *)
Lprim(Pmakeblock(0, Immutable, None),
[lambda_unit; Lambda.lfunction
~kind:Curried
~attr:default_function_attribute
~loc:Loc_unknown
~return:Pgenval
~params:[cla, Pgenval] ~body:cl_init;
lenvs],
Loc_unknown),
Static
in
(* Still easy: a class defined at toplevel *)
if top && concrete then lclass lbody else
if top then llets (lbody_virt lambda_unit) else
(* Now for the hard stuff: prepare for table caching *)
let envs = Ident.create_local "envs"
and cached = Ident.create_local "cached" in
let lenvs =
if !new_ids_meths = [] && !new_ids_init = [] && inh_init = []
then lambda_unit
else Lvar envs in
let lenv =
let menv =
if !new_ids_meths = [] then lambda_unit else
Lprim(Pmakeblock(0, Immutable, None),
List.map (fun id -> Lvar id) !new_ids_meths,
Loc_unknown) in
if !new_ids_init = [] then menv else
Lprim(Pmakeblock(0, Immutable, None),
menv :: List.map (fun id -> Lvar id) !new_ids_init,
Loc_unknown)
and linh_envs =
List.map
(fun (_, path_lam, _) ->
Lprim(Pfield (2, Pointer, Mutable), [path_lam], Loc_unknown))
(List.rev inh_init)
in
let make_envs (lam, rkind) =
Llet(StrictOpt, Pgenval, envs,
(if linh_envs = [] then lenv else
Lprim(Pmakeblock(0, Immutable, None),
lenv :: linh_envs, Loc_unknown)),
lam),
rkind
and def_ids cla lam =
Llet(StrictOpt, Pgenval, env2,
mkappl (oo_prim "new_variable", [Lvar cla; transl_label ""]),
lam)
in
let inh_paths =
List.filter
(fun (path, _, _) -> List.mem (Path.head path) new_ids) inh_init
in
let inh_keys =
List.map
(fun (_, path_lam, _) ->
Lprim(Pfield (1, Pointer, Mutable), [path_lam], Loc_unknown))
inh_paths
in
let lclass lam =
Llet(Strict, Pgenval, class_init,
Lambda.lfunction
~kind:Curried ~params:[cla, Pgenval]
~return:Pgenval
~attr:default_function_attribute
~loc:Loc_unknown
~body:(def_ids cla cl_init), lam)
and lset cached i lam =
Lprim(Psetfield(i, Pointer, Assignment),
[Lvar cached; lam], Loc_unknown)
in
let ldirect () =
ltable cla
(Llet(Strict, Pgenval, env_init, def_ids cla cl_init,
Lsequence(mkappl (oo_prim "init_class", [Lvar cla]),
lset cached 0 (Lvar env_init))))
and lclass_virt () =
lset cached 0
(Lambda.lfunction
~kind:Curried
~attr:default_function_attribute
~loc:Loc_unknown
~return:Pgenval
~params:[cla, Pgenval]
~body:(def_ids cla cl_init))
in
let lupdate_cache =
if ids = [] then ldirect () else
if not concrete then lclass_virt () else
lclass (
mkappl (oo_prim "make_class_store",
[transl_meth_list pub_meths;
Lvar class_init; Lvar cached])) in
let lcheck_cache =
if !Clflags.native_code && !Clflags.afl_instrument then
(* When afl-fuzz instrumentation is enabled, ignore the cache
so that the program's behaviour does not change between runs *)
lupdate_cache
else
Lifthenelse(lfield cached 0, lambda_unit, lupdate_cache) in
let lcache (lam, rkind) =
let lam = Lsequence (lcheck_cache, lam) in
let lam =
if inh_keys = []
then Llet(Alias, Pgenval, cached, Lvar tables, lam)
else
Llet(Strict, Pgenval, cached,
mkappl (oo_prim "lookup_tables",
[Lvar tables; Lprim(Pmakeblock(0, Immutable, None),
inh_keys, Loc_unknown)]),
lam)
in
lam, rkind
in
llets (
lcache (
make_envs (
if ids = []
then mkappl (lfield cached 0, [lenvs]), Dynamic
else
Lprim(Pmakeblock(0, Immutable, None),
(if concrete then
[mkappl (lfield cached 0, [lenvs]);
lfield cached 1;
lenvs]
else [lambda_unit; lfield cached 0; lenvs]),
Loc_unknown
),
Static)))
(* Wrapper for class compilation *)
(*
let cl_id = ci.ci_id_class in
(* TODO: cl_id is used somewhere else as typesharp ? *)
let _arity = List.length ci.ci_params in
let pub_meths = m in
let cl = ci.ci_expr in
let vflag = vf in
*)
let transl_class ~scopes ids id pub_meths cl vf =
oo_wrap_gen cl.cl_env false (transl_class ~scopes ids id pub_meths cl) vf
let () =
transl_object := (fun ~scopes id meths cl ->
let lam, _rkind = transl_class ~scopes [] id meths cl Concrete in
lam)
(* Error report *)
open Format_doc
module Style = Misc.Style
let report_error_doc ppf = function
| Tags (lab1, lab2) ->
fprintf ppf "Method labels %a and %a are incompatible.@ %s"
Style.inline_code lab1
Style.inline_code lab2
"Change one of them."
let () =
Location.register_error_of_exn
(function
| Error (loc, err) ->
Some (Location.error_of_printer ~loc report_error_doc err)
| _ ->
None
)
let report_error = Format_doc.compat report_error_doc
|