1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* KC Sivaramakrishnan, Indian Institute of Technology, Madras */
/* Stephen Dolan, University of Cambridge */
/* Tom Kelly, OCaml Labs Consultancy */
/* */
/* Copyright 2021 OCaml Labs Consultancy Ltd */
/* Copyright 2019 Indian Institute of Technology, Madras */
/* Copyright 2019 University of Cambridge */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#define _GNU_SOURCE /* For sched.h CPU_ZERO(3) and CPU_COUNT(3) */
#include "caml/config.h"
#include <stdbool.h>
#include <stdio.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <pthread.h>
#include <string.h>
#include <assert.h>
#ifdef HAS_GNU_GETAFFINITY_NP
#include <sched.h>
#ifdef HAS_PTHREAD_NP_H
#include <pthread_np.h>
#endif
#endif
#ifdef HAS_BSD_GETAFFINITY_NP
#include <pthread_np.h>
#include <sys/cpuset.h>
typedef cpuset_t cpu_set_t;
#endif
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <sysinfoapi.h>
#endif
#include "caml/alloc.h"
#include "caml/backtrace.h"
#include "caml/backtrace_prim.h"
#include "caml/callback.h"
#include "caml/debugger.h"
#include "caml/domain.h"
#include "caml/domain_state.h"
#include "caml/runtime_events.h"
#include "caml/fail.h"
#include "caml/fiber.h"
#include "caml/finalise.h"
#include "caml/gc_ctrl.h"
#include "caml/globroots.h"
#include "caml/intext.h"
#include "caml/major_gc.h"
#include "caml/minor_gc.h"
#include "caml/memprof.h"
#include "caml/misc.h"
#include "caml/memory.h"
#include "caml/osdeps.h"
#include "caml/platform.h"
#include "caml/shared_heap.h"
#include "caml/signals.h"
#include "caml/startup.h"
#include "caml/startup_aux.h"
#include "caml/sync.h"
#include "caml/weak.h"
/* Check that the domain_state structure was laid out without padding,
since the runtime assumes this in computing offsets */
static_assert(
offsetof(caml_domain_state, LAST_DOMAIN_STATE_MEMBER) ==
(Domain_state_num_fields - 1) * 8,
"");
/* The runtime can run stop-the-world (STW) sections, during which all
active domains run the same callback in parallel (with a barrier
mechanism to synchronize within the callback).
Stop-the-world sections are used to handle duties such as:
- minor GC
- major GC phase changes
Code within the STW callback can have the guarantee that no mutator
code runs in parallel -- precisely, the guarantee holds only for
code that is followed by a barrier. Furthermore, new domains being
spawned are blocked from running any mutator code while a STW
section is in progress, and terminating domains cannot stop until
they have participated to all STW sections currently in progress.
To provide these guarantees:
- Domains must register as STW participants before running any
mutator code.
- STW sections must not trigger other callbacks into mutator code
(eg. finalisers or signal handlers).
See the comments on [caml_try_run_on_all_domains_with_spin_work]
below for more details on the synchronization mechanisms involved.
*/
/* For timely handling of STW requests, domains registered as STW
participants must be careful to service STW interrupt requests. The
compiler inserts "poll points" in mutator code, and the runtime
uses a "backup thread" mechanism during blocking sections.
When the main C-stack for a domain enters a blocking call,
a 'backup thread' becomes responsible for servicing the STW
sections on behalf of the domain. Care is needed to hand off duties
for servicing STW sections between the main thread and the backup
thread when caml_enter_blocking_section and
caml_leave_blocking_section are called.
When the state for the backup thread is BT_IN_BLOCKING_SECTION
the backup thread will service the STW section.
The state machine for the backup thread (and its transitions)
are:
BT_INIT <---------------------------------------+
| |
(install_backup_thread) |
[main thread] |
| |
v |
BT_ENTERING_OCAML <-----------------+ |
| | |
(caml_enter_blocking_section) | |
[main thread] | |
| | |
| | |
| (caml_leave_blocking_section) |
| [main thread] |
v | |
BT_IN_BLOCKING_SECTION ----------------+ |
| |
(caml_domain_terminate) |
[main thread] |
| |
v |
BT_TERMINATE (backup_thread_func)
| [backup thread]
| |
+---------------------------------------------+
*/
#define BT_IN_BLOCKING_SECTION 0
#define BT_ENTERING_OCAML 1
#define BT_TERMINATE 2
#define BT_INIT 3
/* control of STW interrupts */
struct interruptor {
/* The outermost atomic is for synchronization with
caml_interrupt_all_signal_safe. The innermost atomic is also for
cross-domain communication.*/
_Atomic(atomic_uintnat *) interrupt_word;
caml_plat_mutex lock;
caml_plat_cond cond;
int running;
int terminating;
/* unlike the domain ID, this ID number is not reused */
uintnat unique_id;
/* indicates whether there is an interrupt pending */
atomic_uintnat interrupt_pending;
};
Caml_inline int interruptor_has_pending(struct interruptor *s)
{ return atomic_load_acquire(&s->interrupt_pending) != 0; }
Caml_inline void interruptor_set_handled(struct interruptor *s)
{ atomic_store_release(&s->interrupt_pending, 0); }
Caml_inline void interruptor_set_pending(struct interruptor *s)
{ atomic_store_release(&s->interrupt_pending, 1); }
struct dom_internal {
/* readonly fields, initialised and never modified */
int id;
pthread_t tid;
caml_domain_state* state;
struct interruptor interruptor;
/* backup thread */
pthread_t backup_thread;
atomic_uintnat backup_thread_msg;
caml_plat_mutex domain_lock;
caml_plat_cond domain_cond;
bool domain_canceled;
/* modified only during STW sections */
uintnat minor_heap_area_start;
uintnat minor_heap_area_end;
};
typedef struct dom_internal dom_internal;
static struct {
/* enter barrier for STW sections, participating domains arrive into
the barrier before executing the STW callback */
caml_plat_barrier domains_still_running;
/* the number of domains that have yet to return from the callback */
atomic_uintnat num_domains_still_processing;
void (*callback)(caml_domain_state*,
void*,
int participating_count,
caml_domain_state** others_participating);
void* data;
int (*enter_spin_callback)(caml_domain_state*, void*);
void* enter_spin_data;
/* global_barrier state */
int num_domains;
caml_plat_barrier barrier;
caml_domain_state** participating;
} stw_request = {
CAML_PLAT_BARRIER_INITIALIZER,
0,
NULL,
NULL,
NULL,
NULL,
0,
CAML_PLAT_BARRIER_INITIALIZER,
NULL
};
static caml_plat_mutex all_domains_lock = CAML_PLAT_MUTEX_INITIALIZER;
static caml_plat_cond all_domains_cond = CAML_PLAT_COND_INITIALIZER;
static atomic_uintnat /* dom_internal* */ stw_leader = 0;
static uintnat stw_requests_suspended = 0; /* protected by all_domains_lock */
static caml_plat_cond requests_suspended_cond = CAML_PLAT_COND_INITIALIZER;
static dom_internal* all_domains;
static atomic_intnat domains_exiting = 0;
CAMLexport atomic_uintnat caml_num_domains_running = 0;
/* size of the virtual memory reservation for the minor heap, per domain */
uintnat caml_minor_heap_max_wsz;
/*
The amount of memory reserved for all minor heaps of all domains is
caml_params->max_domains * caml_minor_heap_max_wsz. Individual domains can
allocate smaller minor heaps, but when a domain calls Gc.set to allocate a
bigger minor heap than this reservation, we perform a new virtual memory
reservation based on the increased minor heap size.
New domains are created with a minor heap of size
caml_params->init_minor_heap_wsz.
To perform a new virtual memory reservation for the heaps, we stop the world
and do a minor collection on all domains.
See [stw_resize_minor_heap_reservation].
*/
CAMLexport uintnat caml_minor_heaps_start;
CAMLexport uintnat caml_minor_heaps_end;
static CAMLthread_local dom_internal* domain_self;
/*
* This structure is protected by all_domains_lock.
* [0, participating_domains) are all the domains taking part in STW sections.
* [participating_domains, caml_params->max_domains) are all those domains free
* to be used.
*/
static struct {
int participating_domains;
dom_internal** domains;
} stw_domains = {
0,
NULL
};
static void add_next_to_stw_domains(void)
{
CAMLassert(stw_domains.participating_domains < caml_params->max_domains);
stw_domains.participating_domains++;
#ifdef DEBUG
/* Enforce here the invariant for early-exit in
[caml_interrupt_all_signal_safe], because the latter must be
async-signal-safe and one cannot CAMLassert inside it. */
bool prev_has_interrupt_word = true;
for (int i = 0; i < caml_params->max_domains; i++) {
bool has_interrupt_word = all_domains[i].interruptor.interrupt_word != NULL;
if (i < stw_domains.participating_domains) CAMLassert(has_interrupt_word);
if (!prev_has_interrupt_word) CAMLassert(!has_interrupt_word);
prev_has_interrupt_word = has_interrupt_word;
}
#endif
}
static void remove_from_stw_domains(dom_internal* dom) {
int i;
for(i=0; stw_domains.domains[i]!=dom; ++i) {
CAMLassert(i<caml_params->max_domains);
}
CAMLassert(i < stw_domains.participating_domains);
/* swap passed domain to first free domain */
stw_domains.participating_domains--;
stw_domains.domains[i] =
stw_domains.domains[stw_domains.participating_domains];
stw_domains.domains[stw_domains.participating_domains] = dom;
}
static dom_internal* next_free_domain(void) {
if (stw_domains.participating_domains == caml_params->max_domains)
return NULL;
CAMLassert(stw_domains.participating_domains < caml_params->max_domains);
return stw_domains.domains[stw_domains.participating_domains];
}
CAMLexport CAMLthread_local caml_domain_state* caml_state;
#ifndef HAS_FULL_THREAD_VARIABLES
/* Export a getter for caml_state, to be used in DLLs */
CAMLexport caml_domain_state* caml_get_domain_state(void)
{
return caml_state;
}
#endif
Caml_inline void interrupt_domain(struct interruptor* s)
{
atomic_uintnat * interrupt_word = atomic_load_relaxed(&s->interrupt_word);
atomic_store_release(interrupt_word, CAML_UINTNAT_MAX);
}
Caml_inline void interrupt_domain_local(caml_domain_state* dom_st)
{
atomic_store_relaxed(&dom_st->young_limit, CAML_UINTNAT_MAX);
}
int caml_incoming_interrupts_queued(void)
{
return interruptor_has_pending(&domain_self->interruptor);
}
static void terminate_backup_thread(dom_internal *di);
static inline bool backup_thread_running(dom_internal *di)
{
return (atomic_load_acquire(&di->backup_thread_msg) != BT_INIT);
}
/* must NOT be called with s->lock held */
static void stw_handler(caml_domain_state* domain);
static int handle_incoming(struct interruptor* s)
{
int handled = interruptor_has_pending(s);
if (handled) {
CAMLassert (s->running);
interruptor_set_handled(s);
stw_handler(domain_self->state);
}
return handled;
}
static void handle_incoming_otherwise_relax (struct interruptor* self)
{
if (!handle_incoming(self))
cpu_relax();
}
void caml_handle_incoming_interrupts(void)
{
handle_incoming(&domain_self->interruptor);
}
int caml_send_interrupt(struct interruptor* target)
{
/* signal that there is an interrupt pending */
interruptor_set_pending(target);
/* Signal the condition variable, in case the target is itself
waiting for an interrupt to be processed elsewhere, or to wake up
the backup thread. */
caml_plat_lock_blocking(&target->lock);
caml_plat_broadcast(&target->cond); // OPT before/after unlock? elide?
caml_plat_unlock(&target->lock);
interrupt_domain(target);
return 1;
}
asize_t caml_norm_minor_heap_size (intnat wsize)
{
asize_t bs;
if (wsize < Minor_heap_min) wsize = Minor_heap_min;
bs = caml_mem_round_up_pages(Bsize_wsize (wsize));
return Wsize_bsize(bs);
}
/* The current minor heap layout is as follows:
- A contiguous memory block of size
[caml_minor_heap_max_wsz * caml_params->max_domains]
is reserved by [caml_init_domains]. The boundaries
of this reserved area are stored in the globals
[caml_minor_heaps_start]
and
[caml_minor_heaps_end].
- Each domain gets a reserved section of this block
of size [caml_minor_heap_max_wsz], whose boundaries are stored as
[domain_self->minor_heap_area_start]
and
[domain_self->minor_heap_area_end]
These variables accessed in [stw_resize_minor_heap_reservation],
synchronized by a global barrier.
- Each domain then commits a segment of size
[domain_state->minor_heap_wsz]
starting at
[domain_state->minor_heap_area_start]
that it actually uses.
This is done below in
[caml_reallocate_minor_heap]
which is called both at domain-initialization (by [domain_create])
and if a request comes to change the minor heap size.
The boundaries of this committed memory area are
[domain_state->young_start]
and
[domain_state->young_end].
Those [young_{start,end}] variables are never accessed by another
domain, so they need no synchronization.
*/
Caml_inline void check_minor_heap(void) {
caml_domain_state* domain_state = Caml_state;
CAMLassert(domain_state->young_ptr == domain_state->young_end);
caml_gc_log("young_start: %p, young_end: %p, minor_heap_area_start: %p,"
" minor_heap_area_end: %p, minor_heap_wsz: %"
ARCH_SIZET_PRINTF_FORMAT "u words",
domain_state->young_start,
domain_state->young_end,
(value*)domain_self->minor_heap_area_start,
(value*)domain_self->minor_heap_area_end,
domain_state->minor_heap_wsz);
CAMLassert(
(/* uninitialized minor heap */
domain_state->young_start == NULL
&& domain_state->young_end == NULL)
||
(/* initialized minor heap */
domain_state->young_start == (value*)domain_self->minor_heap_area_start
&& domain_state->young_end <= (value*)domain_self->minor_heap_area_end));
}
static void free_minor_heap(void) {
caml_domain_state* domain_state = Caml_state;
caml_gc_log ("trying to free old minor heap: %"
ARCH_SIZET_PRINTF_FORMAT "uk words",
domain_state->minor_heap_wsz / 1024);
check_minor_heap();
/* free old minor heap.
instead of unmapping the heap, we decommit it, so there's
no race whereby other code could attempt to reuse the memory. */
caml_mem_decommit(
(void*)domain_self->minor_heap_area_start,
Bsize_wsize(domain_state->minor_heap_wsz));
domain_state->young_start = NULL;
domain_state->young_end = NULL;
domain_state->young_ptr = NULL;
domain_state->young_trigger = NULL;
domain_state->memprof_young_trigger = NULL;
atomic_store_release(&domain_state->young_limit,
(uintnat) domain_state->young_start);
}
static int allocate_minor_heap(asize_t wsize) {
caml_domain_state* domain_state = Caml_state;
check_minor_heap();
wsize = caml_norm_minor_heap_size(wsize);
CAMLassert (wsize <= caml_minor_heap_max_wsz);
caml_gc_log ("trying to allocate minor heap: %"
ARCH_SIZET_PRINTF_FORMAT "uk words", wsize / 1024);
if (!caml_mem_commit(
(void*)domain_self->minor_heap_area_start, Bsize_wsize(wsize))) {
return -1;
}
#ifdef DEBUG
{
uintnat* p = (uintnat*)domain_self->minor_heap_area_start;
for (;
p < (uintnat*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
p++) {
*p = Debug_free_minor;
}
}
#endif
domain_state->minor_heap_wsz = wsize;
domain_state->young_start = (value*)domain_self->minor_heap_area_start;
domain_state->young_end =
(value*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
domain_state->young_ptr = domain_state->young_end;
/* Trigger a GC poll when half of the minor heap is filled. At that point, a
* major slice is scheduled. */
domain_state->young_trigger = domain_state->young_start
+ (domain_state->young_end - domain_state->young_start) / 2;
caml_memprof_set_trigger(domain_state);
caml_reset_young_limit(domain_state);
check_minor_heap();
return 0;
}
int caml_reallocate_minor_heap(asize_t wsize)
{
free_minor_heap();
return allocate_minor_heap(wsize);
}
/* This variable is owned by [all_domains_lock]. */
static uintnat next_domain_unique_id = 0;
/* Precondition: you must own [all_domains_lock].
Specification:
- returns 0 on the first call
(we want the main domain to have unique_id 0)
- returns distinct ids unless there is an overflow
- never returns 0 again, even in presence of overflow.
*/
static uintnat fresh_domain_unique_id(void) {
uintnat next = next_domain_unique_id++;
/* On 32-bit systems, there is a risk of wraparound of the unique
id counter. We have decided to let that happen and live with
it, but we still ensure that id 0 is not reused, to avoid
having new domains believe that they are the main domain. */
if (next_domain_unique_id == 0)
next_domain_unique_id++;
return next;
}
/* must be run on the domain's thread */
static void domain_create(uintnat initial_minor_heap_wsize,
caml_domain_state *parent)
{
dom_internal* d = 0;
caml_domain_state* domain_state;
struct interruptor* s;
uintnat stack_wsize = caml_get_init_stack_wsize();
CAMLassert (domain_self == 0);
/* take the all_domains_lock so that we can alter the STW participant
set atomically */
caml_plat_lock_blocking(&all_domains_lock);
/* How many STW sections we are willing to wait for, any more are
prevented from happening */
#define Max_stws_before_suspend 2
int stws_waited = 1;
/* Wait until any in-progress STW sections end. */
while (atomic_load_acquire(&stw_leader)) {
if (stws_waited++ < Max_stws_before_suspend) {
/* [caml_plat_wait] releases [all_domains_lock] until the current
STW section ends, and then takes the lock again. */
caml_plat_wait(&all_domains_cond, &all_domains_lock);
} else {
/* Prevent new STW requests to avoid our own starvation */
stw_requests_suspended++;
/* Wait for the current STW to end */
do {
caml_plat_wait(&all_domains_cond, &all_domains_lock);
} while (atomic_load_acquire(&stw_leader));
if (--stw_requests_suspended == 0) {
/* Notify threads that were trying to run an STW section.
We still hold the lock, so they won't wake up yet. */
caml_plat_broadcast(&requests_suspended_cond);
}
break;
}
}
d = next_free_domain();
if (d == NULL)
goto domain_init_complete;
s = &d->interruptor;
CAMLassert(!s->running);
CAMLassert(!interruptor_has_pending(s));
/* If the chosen domain slot has not been previously used, allocate a fresh
domain state. Otherwise, reuse it.
Reusing the slot ensures that the GC stats are not lost:
- Heap stats are moved to the free list on domain termination,
so we don't reuse those stats (caml_init_shared_heap will reset them)
- But currently there is no orphaning process for allocation stats,
we just reuse the previous stats from the previous domain
with the same index.
*/
if (d->state == NULL) {
/* FIXME: Never freed. Not clear when to. */
domain_state = (caml_domain_state*)
caml_stat_calloc_noexc(1, sizeof(caml_domain_state));
if (domain_state == NULL)
goto domain_init_complete;
d->state = domain_state;
} else {
domain_state = d->state;
}
/* Note: until we take d->domain_lock, the domain_state may still be
* shared with a domain which is terminating (see
* caml_domain_terminate). */
caml_plat_lock_blocking(&d->domain_lock);
/* This is the first thing we do after acquiring the domain lock,
so that [caml_domain_alone()] returns accurate result even
during domain initialization. */
atomic_fetch_add(&caml_num_domains_running, 1);
/* Set domain_self if we have successfully allocated the
* caml_domain_state. Otherwise domain_self will be NULL and it's up
* to the caller to deal with that. */
domain_self = d;
caml_state = domain_state;
domain_state->young_limit = 0;
/* Synchronized with [caml_interrupt_all_signal_safe], so that the
initializing write of young_limit happens before any
interrupt. */
atomic_store_explicit(&s->interrupt_word, &domain_state->young_limit,
memory_order_release);
domain_state->id = d->id;
/* Tell memprof system about the new domain before either (a) new
* domain can allocate anything or (b) parent domain can go away. */
CAMLassert(domain_state->memprof == NULL);
caml_memprof_new_domain(parent, domain_state);
if (!domain_state->memprof) {
goto init_memprof_failure;
}
CAMLassert(!interruptor_has_pending(s));
domain_state->extra_heap_resources = 0.0;
domain_state->extra_heap_resources_minor = 0.0;
domain_state->dependent_size = 0;
domain_state->dependent_allocated = 0;
domain_state->major_work_done_between_slices = 0;
/* the minor heap will be initialized by
[caml_reallocate_minor_heap] below. */
domain_state->young_start = NULL;
domain_state->young_end = NULL;
domain_state->young_ptr = NULL;
domain_state->young_trigger = NULL;
domain_state->minor_tables = caml_alloc_minor_tables();
if(domain_state->minor_tables == NULL) {
goto alloc_minor_tables_failure;
}
d->state->shared_heap = caml_init_shared_heap();
if(d->state->shared_heap == NULL) {
goto init_shared_heap_failure;
}
if (caml_init_major_gc(domain_state) < 0) {
goto init_major_gc_failure;
}
if(caml_reallocate_minor_heap(initial_minor_heap_wsize) < 0) {
goto reallocate_minor_heap_failure;
}
domain_state->dls_root = Val_unit;
caml_register_generational_global_root(&domain_state->dls_root);
domain_state->stack_cache = caml_alloc_stack_cache();
if(domain_state->stack_cache == NULL) {
goto create_stack_cache_failure;
}
domain_state->extern_state = NULL;
domain_state->intern_state = NULL;
domain_state->current_stack =
caml_alloc_main_stack(stack_wsize);
if(domain_state->current_stack == NULL) {
goto alloc_main_stack_failure;
}
/* No remaining failure cases: domain creation is going to succeed,
* so we can update globally-visible state without needing to unwind
* it. */
s->unique_id = fresh_domain_unique_id();
domain_state->unique_id = s->unique_id;
s->running = 1;
domain_state->c_stack = NULL;
domain_state->exn_handler = NULL;
domain_state->action_pending = 0;
domain_state->gc_regs_buckets = NULL;
domain_state->gc_regs = NULL;
domain_state->allocated_words = 0;
domain_state->allocated_words_direct = 0;
domain_state->allocated_words_suspended = 0;
domain_state->allocated_words_resumed = 0;
domain_state->current_ramp_up_allocated_words_diff = 0;
domain_state->swept_words = 0;
domain_state->local_roots = NULL;
domain_state->backtrace_buffer = NULL;
domain_state->backtrace_last_exn = Val_unit;
domain_state->backtrace_active = 0;
caml_register_generational_global_root(&domain_state->backtrace_last_exn);
domain_state->compare_unordered = 0;
domain_state->oo_next_id_local = 0;
domain_state->requested_major_slice = 0;
domain_state->requested_minor_gc = 0;
domain_state->major_slice_epoch = 0;
domain_state->requested_external_interrupt = 0;
domain_state->parser_trace = 0;
if (caml_params->backtrace_enabled) {
caml_record_backtraces(1);
}
#ifndef NATIVE_CODE
domain_state->external_raise = NULL;
domain_state->trap_sp_off = 1;
domain_state->trap_barrier_off = 0;
domain_state->trap_barrier_block = -1;
#endif
add_next_to_stw_domains();
goto domain_init_complete;
alloc_main_stack_failure:
create_stack_cache_failure:
caml_remove_generational_global_root(&domain_state->dls_root);
reallocate_minor_heap_failure:
caml_teardown_major_gc();
init_major_gc_failure:
caml_orphan_shared_heap(d->state->shared_heap);
caml_free_shared_heap(d->state->shared_heap);
domain_state->shared_heap = NULL;
init_shared_heap_failure:
caml_free_minor_tables(domain_state->minor_tables);
domain_state->minor_tables = NULL;
alloc_minor_tables_failure:
caml_memprof_delete_domain(domain_state);
init_memprof_failure:
domain_self = NULL;
atomic_fetch_add(&caml_num_domains_running, -1);
domain_init_complete:
caml_gc_log("domain init complete");
caml_plat_unlock(&all_domains_lock);
}
CAMLexport void caml_reset_domain_lock(void)
{
dom_internal* self = domain_self;
// This is only used to reset the domain_lock state on fork.
/* FIXME: initializing an already-initialized mutex and cond
variable is UB (especially mutexes that are locked).
* On systhreads, this is best-effort but at least the error
conditions should be checked and reported.
* If there is only one thread, it is sensible to fork but the
mutex should still not be initialized while locked. On Linux it
seems that the mutex remains valid and locked
(https://man7.org/linux/man-pages/man2/fork.2.html). For
portability on POSIX the lock should be released and destroyed
prior to calling fork and then init afterwards in both parent
and child. */
caml_plat_mutex_reinit(&self->domain_lock);
caml_plat_cond_init(&self->domain_cond);
return;
}
/* minor heap initialization and resizing */
static void reserve_minor_heaps_from_stw_single(void) {
void* heaps_base;
uintnat minor_heap_reservation_bsize;
uintnat minor_heap_max_bsz;
CAMLassert (caml_mem_round_up_pages(Bsize_wsize(caml_minor_heap_max_wsz))
== Bsize_wsize(caml_minor_heap_max_wsz));
minor_heap_max_bsz = (uintnat)Bsize_wsize(caml_minor_heap_max_wsz);
minor_heap_reservation_bsize = minor_heap_max_bsz * caml_params->max_domains;
/* reserve memory space for minor heaps */
heaps_base = caml_mem_map(minor_heap_reservation_bsize, 1 /* reserve_only */);
if (heaps_base == NULL)
caml_fatal_error("Not enough heap memory to reserve minor heaps");
caml_minor_heaps_start = (uintnat) heaps_base;
caml_minor_heaps_end = (uintnat) heaps_base + minor_heap_reservation_bsize;
caml_gc_log("new minor heap reserved from %p to %p",
(value*)caml_minor_heaps_start, (value*)caml_minor_heaps_end);
for (int i = 0; i < caml_params->max_domains; i++) {
struct dom_internal* dom = &all_domains[i];
uintnat domain_minor_heap_area = caml_minor_heaps_start +
minor_heap_max_bsz * (uintnat)i;
dom->minor_heap_area_start = domain_minor_heap_area;
dom->minor_heap_area_end =
domain_minor_heap_area + minor_heap_max_bsz;
CAMLassert(dom->minor_heap_area_end <= caml_minor_heaps_end);
}
}
static void unreserve_minor_heaps_from_stw_single(void) {
uintnat size;
caml_gc_log("unreserve_minor_heaps");
for (int i = 0; i < caml_params->max_domains; i++) {
struct dom_internal* dom = &all_domains[i];
CAMLassert(
/* this domain is not running */
!dom->interruptor.running
|| (
/* or its minor heap must already be uninitialized */
dom->state != NULL
&& dom->state->young_start == NULL
&& dom->state->young_end == NULL
));
/* Note: interruptor.running does not guarantee that dom->state is
correctly initialized, but domain initialization cannot run
concurrently with STW sections so we cannot observe partial
initialization states. */
/* uninitialize the minor heap area */
dom->minor_heap_area_start = dom->minor_heap_area_end = 0;
}
size = caml_minor_heaps_end - caml_minor_heaps_start;
CAMLassert (Bsize_wsize(caml_minor_heap_max_wsz) * caml_params->max_domains
== size);
caml_mem_unmap((void *) caml_minor_heaps_start, size);
}
static
void domain_resize_heap_reservation_from_stw_single(uintnat new_minor_wsz)
{
CAML_EV_BEGIN(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
caml_gc_log("stw_resize_minor_heap_reservation: "
"unreserve_minor_heaps");
unreserve_minor_heaps_from_stw_single();
/* new_minor_wsz is page-aligned because caml_norm_minor_heap_size has
been called to normalize it earlier.
*/
caml_minor_heap_max_wsz = new_minor_wsz;
caml_gc_log("stw_resize_minor_heap_reservation: reserve_minor_heaps");
reserve_minor_heaps_from_stw_single();
/* The call to [reserve_minor_heaps_from_stw_single] makes a new
reservation, and it also updates the reservation boundaries of each
domain by mutating its [minor_heap_area_start{,_end}] variables.
These variables are synchronized by the fact that we are inside
a STW section: no other domains are running in parallel, and
the participating domains will synchronize with this write by
exiting the barrier, before they read those variables in
[allocate_minor_heap] below. */
CAML_EV_END(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
}
static void
stw_resize_minor_heap_reservation(caml_domain_state* domain,
void* minor_wsz_data,
int participating_count,
caml_domain_state** participating) {
caml_gc_log("stw_resize_minor_heap_reservation: "
"caml_empty_minor_heap_no_major_slice_from_stw");
caml_empty_minor_heap_no_major_slice_from_stw(
domain, NULL, participating_count, participating);
caml_gc_log("stw_resize_minor_heap_reservation: free_minor_heap");
free_minor_heap();
Caml_global_barrier_if_final(participating_count) {
uintnat new_minor_wsz = (uintnat) minor_wsz_data;
domain_resize_heap_reservation_from_stw_single(new_minor_wsz);
}
caml_gc_log("stw_resize_minor_heap_reservation: "
"allocate_minor_heap");
/* Note: each domain allocates its own minor heap. This seems
important to get good NUMA behavior. We don't want a single
domain to allocate all minor heaps, which could create locality
issues we don't understand very well. */
if (allocate_minor_heap(Caml_state->minor_heap_wsz) < 0) {
caml_fatal_error("Fatal error: No memory for minor heap");
}
}
void caml_update_minor_heap_max(uintnat requested_wsz) {
caml_gc_log("Changing heap_max_wsz from %" ARCH_INTNAT_PRINTF_FORMAT
"u to %" ARCH_INTNAT_PRINTF_FORMAT "u.",
caml_minor_heap_max_wsz, requested_wsz);
while (requested_wsz > caml_minor_heap_max_wsz) {
caml_try_run_on_all_domains(
&stw_resize_minor_heap_reservation, (void*)requested_wsz, 0);
}
check_minor_heap();
}
void caml_init_domains(uintnat max_domains, uintnat minor_heap_wsz)
{
atomic_store_relaxed(&domains_exiting, 0);
atomic_store_relaxed(&caml_num_domains_running, 0);
/* Use [caml_stat_calloc_noexc] to zero initialize [all_domains]. */
all_domains = caml_stat_calloc_noexc(max_domains, sizeof(dom_internal));
if (all_domains == NULL)
caml_fatal_error("Failed to allocate all_domains");
stw_request.participating =
caml_stat_calloc_noexc(max_domains, sizeof(dom_internal*));
if (stw_request.participating == NULL)
caml_fatal_error("Failed to allocate stw_request.participating");
stw_domains.domains =
caml_stat_calloc_noexc(max_domains, sizeof(dom_internal*));
if (stw_domains.domains == NULL)
caml_fatal_error("Failed to allocate stw_domains.domains");
reserve_minor_heaps_from_stw_single();
/* stw_single: mutators and domains have not started yet. */
for (int i = 0; i < max_domains; i++) {
struct dom_internal* dom = &all_domains[i];
stw_domains.domains[i] = dom;
dom->id = i;
dom->interruptor.interrupt_word = NULL;
caml_plat_mutex_init(&dom->interruptor.lock);
caml_plat_cond_init(&dom->interruptor.cond);
dom->interruptor.running = 0;
dom->interruptor.terminating = 0;
dom->interruptor.unique_id = 0;
dom->interruptor.interrupt_pending = 0;
caml_plat_mutex_init(&dom->domain_lock);
caml_plat_cond_init(&dom->domain_cond);
dom->backup_thread_msg = BT_INIT;
dom->domain_canceled = false;
}
domain_create(minor_heap_wsz, NULL);
if (!domain_self) caml_fatal_error("Failed to create main domain");
CAMLassert (domain_self->state->unique_id == 0);
caml_init_signal_handling();
}
void caml_init_domain_self(int domain_id) {
CAMLassert(0 <= domain_id);
CAMLassert(domain_id < caml_params->max_domains);
domain_self = &all_domains[domain_id];
caml_state = domain_self->state;
}
enum domain_status { Dom_starting, Dom_started, Dom_failed };
struct domain_ml_values {
value callback;
value term_sync;
};
/* stdlib/domain.ml */
#define Term_state(sync) (&Field(sync, 0))
#define Term_mutex(sync) (&Field(sync, 1))
#define Term_condition(sync) (&Field(sync, 2))
static void init_domain_ml_values(struct domain_ml_values* ml_values,
value callback, value term_sync)
{
ml_values->callback = callback;
ml_values->term_sync = term_sync;
caml_register_generational_global_root(&ml_values->callback);
caml_register_generational_global_root(&ml_values->term_sync);
}
static void free_domain_ml_values(struct domain_ml_values* ml_values)
{
caml_remove_generational_global_root(&ml_values->callback);
caml_remove_generational_global_root(&ml_values->term_sync);
caml_stat_free(ml_values);
}
/* This is the structure of the data exchanged between the parent
domain and child domain during domain_spawn. Some fields are 'in'
parameters, passed from the parent to the child, others are 'out'
parameters returned to the parent by the child.
*/
struct domain_startup_params {
dom_internal *parent; /* in */
enum domain_status status; /* in+out:
parent and child synchronize on this value. */
struct domain_ml_values* ml_values; /* in */
dom_internal* newdom; /* out */
uintnat unique_id; /* out */
};
static void* backup_thread_func(void* v)
{
dom_internal* di = (dom_internal*)v;
uintnat msg;
struct interruptor* s = &di->interruptor;
domain_self = di;
caml_state = di->state;
msg = atomic_load_acquire (&di->backup_thread_msg);
while (msg != BT_TERMINATE) {
CAMLassert (msg <= BT_TERMINATE);
switch (msg) {
case BT_IN_BLOCKING_SECTION:
/* Handle interrupts on behalf of the main thread:
* - must hold domain_lock to handle interrupts
* - need to guarantee no blocking so that backup thread
* can be signalled from caml_leave_blocking_section
*/
if (caml_incoming_interrupts_queued()) {
if (caml_plat_try_lock(&di->domain_lock)) {
caml_handle_incoming_interrupts();
caml_plat_unlock(&di->domain_lock);
}
}
/* Wait safely if there is nothing to do. Will be woken from
* caml_send_interrupt and caml_domain_terminate.
*/
caml_plat_lock_blocking(&s->lock);
msg = atomic_load_acquire (&di->backup_thread_msg);
if (msg == BT_IN_BLOCKING_SECTION &&
!caml_incoming_interrupts_queued())
caml_plat_wait(&s->cond, &s->lock);
caml_plat_unlock(&s->lock);
break;
case BT_ENTERING_OCAML:
/* Main thread wants to enter OCaml.
* Will be woken from caml_bt_exit_ocaml
* or caml_domain_terminate.
*/
caml_plat_lock_blocking(&di->domain_lock);
msg = atomic_load_acquire (&di->backup_thread_msg);
if (msg == BT_ENTERING_OCAML)
caml_plat_wait(&di->domain_cond, &di->domain_lock);
caml_plat_unlock(&di->domain_lock);
break;
default:
cpu_relax();
break;
};
msg = atomic_load_acquire (&di->backup_thread_msg);
}
/* doing terminate */
atomic_store_release(&di->backup_thread_msg, BT_INIT);
return 0;
}
static void install_backup_thread (dom_internal* di)
{
int err;
#ifndef _WIN32
sigset_t mask, old_mask;
#endif
/* If the backup thread is running, but has been instructed to terminate,
we need to wait for it to stop until we can spawn another. */
while (backup_thread_running(di)) {
/* Give a chance for backup thread on this domain to terminate */
caml_plat_unlock (&di->domain_lock);
cpu_relax ();
caml_plat_lock_blocking(&di->domain_lock);
}
CAMLassert(!backup_thread_running(di));
#ifndef _WIN32
/* No signals on the backup thread */
sigfillset(&mask);
pthread_sigmask(SIG_BLOCK, &mask, &old_mask);
#endif
atomic_store_release(&di->backup_thread_msg, BT_ENTERING_OCAML);
err = pthread_create(&di->backup_thread, 0, backup_thread_func, (void*)di);
caml_check_error(err, "failed to create domain backup thread");
#ifndef _WIN32
pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
#endif
pthread_detach(di->backup_thread);
}
static void terminate_backup_thread(dom_internal *di)
{
CAMLassert(!caml_bt_is_self());
if (backup_thread_running(di)) {
atomic_store_release(&di->backup_thread_msg, BT_TERMINATE);
/* Wakeup backup thread if it is sleeping */
caml_plat_broadcast(&di->interruptor.cond);
caml_plat_signal(&di->domain_cond);
}
}
static void caml_domain_initialize_default(void)
{
return;
}
static void caml_domain_stop_default(void)
{
return;
}
static void caml_domain_external_interrupt_hook_default(void)
{
return;
}
CAMLexport void (*caml_domain_initialize_hook)(void) =
caml_domain_initialize_default;
CAMLexport void (*caml_domain_stop_hook)(void) =
caml_domain_stop_default;
CAMLexport void (*caml_domain_external_interrupt_hook)(void) =
caml_domain_external_interrupt_hook_default;
CAMLexport _Atomic caml_timing_hook caml_domain_terminated_hook =
(caml_timing_hook)NULL;
static value make_finished(caml_result result)
{
CAMLparam0();
CAMLlocal1(res);
res = caml_alloc_1(
(caml_result_is_exception(result) ?
1 /* Error */ :
0 /* Ok */),
result.data);
/* [Finished res] */
res = caml_alloc_1(0, res);
CAMLreturn(res);
}
static void sync_result(value term_sync, value res)
{
CAMLparam2(term_sync, res);
/* Synchronize with joining domains. We call [caml_ml_mutex_lock]
because the systhreads are still running on this domain. We
assume this does not fail the exception it would raise at this
point would be bad for us. */
caml_ml_mutex_lock(*Term_mutex(term_sync));
/* Store result */
volatile value *state = Term_state(term_sync);
CAMLassert(!Is_block(*state));
caml_modify(state, res);
/* Signal all the waiting domains to be woken up */
caml_ml_condition_broadcast(*Term_condition(term_sync));
/* The mutex is unlocked in the runtime after the cleanup
functions are finished. */
CAMLreturn0;
}
static void* domain_thread_func(void* v)
{
struct domain_startup_params* p = v;
struct domain_ml_values *ml_values = p->ml_values;
#ifndef _WIN32
void * signal_stack = caml_init_signal_stack();
if (signal_stack == NULL) {
caml_fatal_error("Failed to create domain: signal stack");
}
#endif
domain_create(caml_params->init_minor_heap_wsz, p->parent->state);
if (domain_self)
domain_self->tid = pthread_self();
/* this domain is now part of the STW participant set */
p->newdom = domain_self;
/* handshake with the parent domain */
caml_plat_lock_blocking(&p->parent->interruptor.lock);
if (domain_self) {
p->status = Dom_started;
p->unique_id = domain_self->interruptor.unique_id;
} else {
p->status = Dom_failed;
}
caml_plat_broadcast(&p->parent->interruptor.cond);
caml_plat_unlock(&p->parent->interruptor.lock);
/* Cannot access p below here. */
if (domain_self) {
install_backup_thread(domain_self);
caml_gc_log("Domain starting (unique_id = %"ARCH_INTNAT_PRINTF_FORMAT"u)",
domain_self->interruptor.unique_id);
CAML_EV_LIFECYCLE(EV_DOMAIN_SPAWN, getpid());
/* FIXME: ignoring errors during domain initialization is unsafe
and/or can deadlock. */
caml_domain_initialize_hook();
/* release callback early;
see the [note about callbacks and GC] in callback.c */
value unrooted_callback = ml_values->callback;
caml_modify_generational_global_root(&ml_values->callback, Val_unit);
value res =
make_finished(caml_callback_res(unrooted_callback, Val_unit));
sync_result(ml_values->term_sync, res);
sync_mutex mut = Mutex_val(*Term_mutex(ml_values->term_sync));
caml_domain_terminate(false);
/* This domain currently holds [mut], and has signaled all the
waiting domains to be woken up. We unlock [mut] to release the
joining domains. The unlock is done after [caml_domain_terminate] to
ensure that this domain has released all of its runtime state.
We call [caml_mutex_unlock] directly instead of
[caml_ml_mutex_unlock] because the domain no longer exists at
this point. */
caml_mutex_unlock(mut);
/* [ml_values] must be freed after unlocking [mut]. This ensures
that [term_sync] is only removed from the root set after [mut]
is unlocked. Otherwise, there is a risk of [mut] being
destroyed by [caml_mutex_finalize] finaliser while it remains
locked, leading to undefined behaviour. */
free_domain_ml_values(ml_values);
} else {
caml_gc_log("Failed to create domain");
}
#ifndef _WIN32
caml_free_signal_stack(signal_stack);
#endif
return 0;
}
/* Note: [caml_domain_spawn] and [caml_domain_alone()].
The use of [caml_domain_alone()] to implement sequential fast-path
requires that no other domain is operating in parallel. This is
indeed the case when [caml_domain_alone()] is observed while
holding the domain lock:
1. When a domain exits, it is careful to decrement
[caml_num_domains_running] as the very last step, so that
[caml_domain_alone()] does not return [true] while its mutator
or domain-termination cleanup logic are still in progress.
2. When a domain starts, it increments [caml_num_domains_running]
immediately after taking the domain lock, and its parent domain
blocks waiting for the child set the [Dom_started] flag, which
happens after this increment. Neither the parent nor the child
can wrongly observe [caml_domain_alone()] while the other may be
running code with its domain lock held.
*/
CAMLprim value caml_domain_spawn(value callback, value term_sync)
{
CAMLparam2 (callback, term_sync);
struct domain_startup_params p;
pthread_t th;
int err;
if (atomic_load_relaxed(&domains_exiting) != 0) {
caml_failwith("domain creation not allowed during shutdown");
}
#ifndef NATIVE_CODE
if (caml_debugger_in_use)
caml_fatal_error("ocamldebug does not support spawning multiple domains");
#endif
p.parent = domain_self;
p.status = Dom_starting;
p.ml_values =
(struct domain_ml_values*) caml_stat_alloc(
sizeof(struct domain_ml_values));
init_domain_ml_values(p.ml_values, callback, term_sync);
err = pthread_create(&th, 0, domain_thread_func, (void*)&p);
caml_check_error(err, "failed to create domain thread: pthread_create");
/* While waiting for the child thread to start up, we need to service any
stop-the-world requests as they come in. */
struct interruptor *interruptor = &domain_self->interruptor;
caml_plat_lock_blocking(&interruptor->lock);
while (p.status == Dom_starting) {
if (caml_incoming_interrupts_queued()) {
caml_plat_unlock(&interruptor->lock);
handle_incoming(interruptor);
caml_plat_lock_blocking(&interruptor->lock);
} else {
caml_plat_wait(&interruptor->cond, &interruptor->lock);
}
}
caml_plat_unlock(&interruptor->lock);
if (p.status == Dom_started) {
/* successfully created a domain.
p.ml_values is now owned by that domain */
pthread_detach(th);
} else {
CAMLassert (p.status == Dom_failed);
/* failed */
pthread_join(th, 0);
free_domain_ml_values(p.ml_values);
caml_failwith("failed to allocate domain");
}
/* When domain 0 first spawns a domain, the backup thread is not active, we
ensure it is started here. */
domain_self->tid = pthread_self();
if (!backup_thread_running(domain_self))
install_backup_thread(domain_self);
CAMLreturn (Val_long(p.unique_id));
}
CAMLprim value caml_ml_domain_id(value unit)
{
CAMLnoalloc;
return Val_long(domain_self->interruptor.unique_id);
}
CAMLprim value caml_ml_domain_index(value unit)
{
CAMLnoalloc;
return Val_long(domain_self->id);
}
/* Global barrier implementation */
Caml_inline int global_barrier_is_nth(barrier_status b, int n) {
return (b & ~BARRIER_SENSE_BIT) == n;
}
static barrier_status global_barrier_begin(void)
{
return caml_plat_barrier_arrive(&stw_request.barrier);
}
/* last domain into the barrier, flip sense */
static void global_barrier_flip(barrier_status sense)
{
caml_plat_barrier_flip(&stw_request.barrier, sense);
}
/* wait until another domain flips the sense */
static void global_barrier_wait(barrier_status sense, int num_participating)
{
/* it's not worth spinning for too long if there's more than one other domain
*/
unsigned spins = num_participating == 2 ? Max_spins_long : Max_spins_medium;
SPIN_WAIT_NTIMES(spins) {
if (caml_plat_barrier_sense_has_flipped(&stw_request.barrier, sense)) {
return;
}
}
/* just block */
caml_plat_barrier_wait_sense(&stw_request.barrier, sense);
}
void caml_enter_global_barrier(int num_participating)
{
CAMLassert(num_participating == stw_request.num_domains);
barrier_status b = global_barrier_begin();
barrier_status sense = b & BARRIER_SENSE_BIT;
if (global_barrier_is_nth(b, num_participating)) {
global_barrier_flip(sense);
} else {
global_barrier_wait(sense, num_participating);
}
}
barrier_status caml_global_barrier_and_check_final(int num_participating)
{
CAMLassert(num_participating == stw_request.num_domains);
barrier_status b = global_barrier_begin();
if (global_barrier_is_nth(b, num_participating)) {
CAMLassert(b); /* always nonzero */
return b;
} else {
global_barrier_wait(b & BARRIER_SENSE_BIT, num_participating);
return 0;
}
}
void caml_global_barrier_release_as_final(barrier_status b)
{
global_barrier_flip(b & BARRIER_SENSE_BIT);
}
int caml_global_barrier_num_participating(void)
{
return stw_request.num_domains;
}
static void decrement_stw_domains_still_processing(void)
{
/* we check if we are the last to leave a stw section
if so, clear the stw_leader to allow the new stw sections to start.
*/
intnat am_last =
atomic_fetch_add(&stw_request.num_domains_still_processing, -1) == 1;
if( am_last ) {
/* release the STW lock to allow new STW sections */
caml_plat_lock_blocking(&all_domains_lock);
atomic_store_release(&stw_leader, 0);
caml_plat_broadcast(&all_domains_cond);
caml_gc_log("clearing stw leader");
caml_plat_unlock(&all_domains_lock);
}
}
/* Wait for other running domains to stop, called by interrupted
domains before entering the STW section */
static void stw_wait_for_running(caml_domain_state* domain)
{
/* The STW leader issues interrupts to all domains, then they all
arrive into this barrier, with the last one releasing it; this
tends to (and should) be fast, but we likely need to wait a bit
in any case */
if (stw_request.enter_spin_callback) {
/* Spin while there is useful work to do */
SPIN_WAIT_BOUNDED {
if (caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
return;
}
if (!stw_request.enter_spin_callback
(domain, stw_request.enter_spin_data)) {
break;
}
}
}
/* Spin a bit for the other domains */
SPIN_WAIT_NTIMES(Max_spins_long) {
if (caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
return;
}
}
/* If we're still waiting, block */
caml_plat_barrier_wait(&stw_request.domains_still_running);
}
static void stw_api_barrier(caml_domain_state* domain)
{
CAML_EV_BEGIN(EV_STW_API_BARRIER);
if (caml_plat_barrier_arrive(&stw_request.domains_still_running)
== stw_request.num_domains) {
caml_plat_barrier_release(&stw_request.domains_still_running);
} else {
stw_wait_for_running(domain);
}
CAML_EV_END(EV_STW_API_BARRIER);
}
static void stw_handler(caml_domain_state* domain)
{
CAML_EV_BEGIN(EV_STW_HANDLER);
if (!caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
stw_api_barrier(domain);
}
#ifdef DEBUG
Caml_state->inside_stw_handler = 1;
#endif
stw_request.callback(
domain,
stw_request.data,
stw_request.num_domains,
stw_request.participating);
#ifdef DEBUG
Caml_state->inside_stw_handler = 0;
#endif
decrement_stw_domains_still_processing();
CAML_EV_END(EV_STW_HANDLER);
/* poll the GC to check for deferred work
we do this here because blocking or waiting threads only execute
the interrupt handler and do not poll for deferred work*/
caml_poll_gc_work();
}
#ifdef DEBUG
int caml_domain_is_in_stw(void) {
return Caml_state->inside_stw_handler;
}
#endif
/* During a stop-the-world (STW), all currently running domains stop
their usual work and synchronize to all call the same function.
STW sections use [all_domains_lock] and the variable [stw_leader]
(0 when no STW section is running, the dom_internal* pointer of the
STW leader when a STW section is running) to guarantee that no
domain is running something else:
- If two STW sections are attempted in parallel, only one will
manage to take the lock, and the domain starting the other will
join that winning STW section, without running its own STW
callback at all. (This is the [_try_] in the function name: if it
returns 0, the STW section did not run at all, so you should call
this function in a loop.)
- Domain initialization code from [domain_create] will not run in
parallel with a STW section, as [domain_create] starts by looping
until (1) it has the [all_domains_lock] and (2) there is no
current STW section (using the [stw_leader] variable). To avoid
starvation, [domain_create] will prevent new STW sections if it
can't make progress.
- Domain cleanup code runs after the terminating domain may run in
parallel to a STW section, but only after that domain has safely
removed itself from the STW participant set: the
[caml_domain_terminate] function is careful to only leave the STW
set when (1) it has the [all_domains_lock] and (2) it hasn't
received any request to participate in a STW section.
Each domain leaves the section as soon as it is finished running
the STW section callback. In particular, a mutator may resume while
some other domains are still in the section. Any code within the STW
callback that needs to happen before any mutator must be followed
by a barrier, forcing all STW participants to synchronize.
Taken together, these properties guarantee that STW sections act as
a proper exclusion mechanism: for example, some mutable state
global to all domains can be "protected by STW" if it is only
mutated within STW section, with a barrier before the next
read. Such state can be safely updated by domain initialization,
but additional synchronization would be required to update it
during domain cleanup.
Note: in the case of both [domain_create] and [caml_domain_terminate]
it is important that the loops (waiting for STW sections to finish)
regularly release [all_domains_lock], to avoid deadlocks scenario
with in-progress STW sections.
- For [caml_domain_terminate] we release the lock and join
the STW section before resuming.
- For [domain_create] we wait until the end of the section using
the condition variable [all_domains_cond] over
[all_domains_lock], which is broadcasted when a STW section
finishes.
The same logic would apply for any other situations in which a domain
wants to join or leave the set of STW participants.
The explanation above applies if [sync] = 1. When [sync] = 0, no
synchronization happens, and we simply run the handler asynchronously on
all domains. We still hold the stw_leader field until we know that
every domain has run the handler, so another STW section cannot
interfere with this one.
*/
int caml_try_run_on_all_domains_with_spin_work(
int sync,
void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
void* data,
void (*leader_setup)(caml_domain_state*),
int (*enter_spin_callback)(caml_domain_state*, void*),
void* enter_spin_data)
{
int i;
caml_domain_state* domain_state = domain_self->state;
caml_gc_log("requesting STW, sync=%d", sync);
/* Don't touch the lock if there's already a stw leader
OR we can't get the lock.
Note: this read on [stw_leader] is an optimization, giving up
faster (before trying to take the lock) in contended
situations. Without this read, [stw_leader] would be protected by
[all_domains_lock] and could be a non-atomic variable.
*/
if (atomic_load_acquire(&stw_leader) ||
!caml_plat_try_lock(&all_domains_lock)) {
caml_handle_incoming_interrupts();
return 0;
}
while (1) {
/* see if there is a stw_leader already */
if (atomic_load_acquire(&stw_leader)) {
caml_plat_unlock(&all_domains_lock);
caml_handle_incoming_interrupts();
return 0;
}
/* STW requests may be suspended by [domain_create], in which case, instead
of claiming the stw_leader, we should release the lock and wait for
requests to be unsuspended before trying again */
if (CAMLunlikely(stw_requests_suspended)) {
caml_plat_wait(&requests_suspended_cond, &all_domains_lock);
/* we hold the lock, but we must check for [stw_leader] again */
continue;
}
break;
}
/* we have the lock and can claim the stw_leader */
atomic_store_release(&stw_leader, (uintnat)domain_self);
CAML_EV_BEGIN(EV_STW_LEADER);
caml_gc_log("causing STW");
/* set up all fields for this stw_request; they must be available
for domains when they get interrupted */
stw_request.enter_spin_callback = enter_spin_callback;
stw_request.enter_spin_data = enter_spin_data;
stw_request.callback = handler;
stw_request.data = data;
stw_request.num_domains = stw_domains.participating_domains;
/* stw_request.barrier doesn't need resetting */
atomic_store_release(&stw_request.num_domains_still_processing,
stw_domains.participating_domains);
int is_alone = stw_request.num_domains == 1;
int should_sync = sync && !is_alone;
if (should_sync) {
caml_plat_barrier_reset(&stw_request.domains_still_running);
}
if( leader_setup ) {
leader_setup(domain_state);
}
#ifdef DEBUG
{
int domains_participating = 0;
for(i=0; i<caml_params->max_domains; i++) {
if(all_domains[i].interruptor.running)
domains_participating++;
}
CAMLassert(domains_participating == stw_domains.participating_domains);
CAMLassert(domains_participating > 0);
}
#endif
/* Next, interrupt all domains */
for(i = 0; i < stw_domains.participating_domains; i++) {
dom_internal * d = stw_domains.domains[i];
stw_request.participating[i] = d->state;
CAMLassert(!interruptor_has_pending(&d->interruptor));
if (d->state != domain_state) caml_send_interrupt(&d->interruptor);
}
/* Domains now know they are part of the STW.
Note: releasing the lock will not allow new domain to be created
in parallel with the rest of the STW section, as new domains
follow the protocol of waiting on [all_domains_cond] which is
only broadcast at the end of the STW section.
The reason we use a condition variable [all_domains_cond] instead
of just holding the lock until the end of the STW section is that
the last domain to exit the section (and broadcast the condition)
is not necessarily the same as the domain starting the section
(and taking the lock) -- whereas POSIX mutexes must be unlocked
by the same thread that locked them.
*/
caml_plat_unlock(&all_domains_lock);
/* arrive at enter barrier */
if (should_sync) {
stw_api_barrier(domain_state);
}
#ifdef DEBUG
domain_state->inside_stw_handler = 1;
#endif
handler(domain_state, data,
stw_request.num_domains, stw_request.participating);
#ifdef DEBUG
domain_state->inside_stw_handler = 0;
#endif
/* Note: the last domain passing through this function will
temporarily take [all_domains_lock] again and use it to broadcast
[all_domains_cond], waking up any domain waiting to be created. */
decrement_stw_domains_still_processing();
CAML_EV_END(EV_STW_LEADER);
return 1;
}
int caml_try_run_on_all_domains(
void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
void* data,
void (*leader_setup)(caml_domain_state*))
{
return
caml_try_run_on_all_domains_with_spin_work(1,
handler,
data,
leader_setup, 0, 0);
}
int caml_try_run_on_all_domains_async(
void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
void* data,
void (*leader_setup)(caml_domain_state*))
{
return
caml_try_run_on_all_domains_with_spin_work(0,
handler,
data,
leader_setup, 0, 0);
}
void caml_interrupt_self(void)
{
interrupt_domain_local(Caml_state);
}
/* This function is async-signal-safe as [all_domains] and
[caml_params->max_domains] are set before signal handlers are installed and
do not change afterwards. */
void caml_interrupt_all_signal_safe(void)
{
for (dom_internal *d = all_domains;
d < &all_domains[caml_params->max_domains];
d++) {
/* [all_domains] is an array of values. So we can access
[interrupt_word] directly without synchronisation other than
with other people who access the same [interrupt_word].*/
atomic_uintnat * interrupt_word =
atomic_load_acquire(&d->interruptor.interrupt_word);
/* Early exit: if the current domain was never initialized, then
neither have been any of the remaining ones. */
if (interrupt_word == NULL) return;
interrupt_domain(&d->interruptor);
}
}
/* To avoid any risk of forgetting an action through a race,
[caml_reset_young_limit] is the only way (apart from setting
young_limit to -1 for immediate interruption) through which
[young_limit] can be modified. We take care here of possible
races. */
void caml_reset_young_limit(caml_domain_state * dom_st)
{
/* An interrupt might have been queued in the meanwhile; the
atomic_exchange achieves the proper synchronisation with the
reads that follow (an atomic_store is not enough). */
value *trigger = dom_st->young_trigger > dom_st->memprof_young_trigger ?
dom_st->young_trigger : dom_st->memprof_young_trigger;
CAMLassert ((uintnat)dom_st->young_ptr >=
(uintnat)dom_st->memprof_young_trigger);
CAMLassert ((uintnat)dom_st->young_ptr >=
(uintnat)dom_st->young_trigger);
/* An interrupt might have been queued in the meanwhile; this
achieves the proper synchronisation. */
atomic_exchange(&dom_st->young_limit, (uintnat)trigger);
/* For non-delayable asynchronous actions, we immediately interrupt
the domain again. */
dom_internal * d = &all_domains[dom_st->id];
if (interruptor_has_pending(&d->interruptor)
|| dom_st->requested_minor_gc
|| dom_st->requested_major_slice
|| dom_st->major_slice_epoch < atomic_load (&caml_major_slice_epoch)) {
interrupt_domain_local(dom_st);
}
/* We might be here due to a recently-recorded signal or forced
systhread switching, so we need to remember that we must run
signal handlers or systhread's yield. In addition, in the case of
long-running C code (that may regularly poll with
caml_process_pending_actions), we want to force a query of all
callbacks at every minor collection or major slice (similarly to
the OCaml behaviour). */
caml_set_action_pending(dom_st);
}
void caml_update_young_limit_after_c_call(caml_domain_state * dom_st)
{
if (CAMLunlikely(dom_st->action_pending)) interrupt_domain_local(dom_st);
}
Caml_inline void advance_global_major_slice_epoch (caml_domain_state* d)
{
uintnat old_value;
CAMLassert (atomic_load (&caml_major_slice_epoch) <=
atomic_load (&caml_minor_collections_count));
old_value = atomic_exchange (&caml_major_slice_epoch,
atomic_load (&caml_minor_collections_count));
if (old_value != atomic_load (&caml_minor_collections_count)) {
/* This domain is the first one to use up half of its minor heap arena
in this minor cycle. Trigger major slice on other domains. */
caml_interrupt_all_signal_safe();
}
}
static void stw_global_major_slice(
caml_domain_state *domain,
void *unused,
int participating_count,
caml_domain_state **participating)
{
domain->requested_major_slice = 1;
/* Nothing else to do, as [stw_hander] will call [caml_poll_gc_work]
right after the callback. */
}
void caml_poll_gc_work(void)
{
CAMLalloc_point_here;
caml_domain_state* d = Caml_state;
if ((uintnat)d->young_ptr - Bhsize_wosize(Max_young_wosize) <
(uintnat)d->young_trigger) {
if (d->young_trigger == d->young_start) {
/* Trigger minor GC */
d->requested_minor_gc = 1;
} else {
CAMLassert (d->young_trigger ==
d->young_start + (d->young_end - d->young_start) / 2);
/* We have used half of our minor heap arena. Request a major slice on
this domain. */
advance_global_major_slice_epoch (d);
/* Advance the [young_trigger] to [young_start] so that the allocation
fails when the minor heap is full. */
d->young_trigger = d->young_start;
}
} else if (d->requested_minor_gc) {
/* This domain has _not_ used up half of its minor heap arena, but a minor
collection has been requested. Schedule a major collection slice so as
to not lag behind. */
advance_global_major_slice_epoch (d);
}
if (d->major_slice_epoch < atomic_load (&caml_major_slice_epoch)) {
d->requested_major_slice = 1;
}
if (d->requested_minor_gc) {
/* out of minor heap or collection forced */
d->requested_minor_gc = 0;
caml_empty_minor_heaps_once();
}
if (d->requested_major_slice || d->requested_global_major_slice) {
CAML_EV_BEGIN(EV_MAJOR);
d->requested_major_slice = 0;
caml_major_collection_slice(AUTO_TRIGGERED_MAJOR_SLICE);
CAML_EV_END(EV_MAJOR);
}
if (d->requested_global_major_slice) {
if (caml_try_run_on_all_domains_async(
&stw_global_major_slice, NULL, NULL)){
d->requested_global_major_slice = 0;
}
/* If caml_try_run_on_all_domains_async fails, we'll try again next time
caml_poll_gc_work is called. */
}
caml_reset_young_limit(d);
}
void caml_handle_gc_interrupt(void)
{
CAMLalloc_point_here;
if (caml_incoming_interrupts_queued()) {
/* interrupt */
CAML_EV_BEGIN(EV_INTERRUPT_REMOTE);
caml_handle_incoming_interrupts();
CAML_EV_END(EV_INTERRUPT_REMOTE);
}
caml_poll_gc_work();
}
/* Preemptive systhread switching */
void caml_process_external_interrupt(void)
{
if (atomic_load_acquire(&Caml_state->requested_external_interrupt)) {
caml_domain_external_interrupt_hook();
}
}
CAMLexport int caml_bt_is_in_blocking_section(void)
{
uintnat status = atomic_load_acquire(&domain_self->backup_thread_msg);
return status == BT_IN_BLOCKING_SECTION;
}
CAMLexport int caml_bt_is_self(void)
{
return pthread_equal(domain_self->backup_thread, pthread_self());
}
CAMLexport intnat caml_domain_is_multicore (void)
{
return (!caml_domain_alone()
|| backup_thread_running(domain_self));
}
CAMLexport void caml_acquire_domain_lock(void)
{
dom_internal* self = domain_self;
caml_plat_lock_blocking(&self->domain_lock);
caml_state = self->state;
}
CAMLexport void caml_bt_enter_ocaml(void)
{
dom_internal* self = domain_self;
bool bt_running = backup_thread_running(self);
CAMLassert(caml_domain_alone() || bt_running);
if (bt_running) {
atomic_store_release(&self->backup_thread_msg, BT_ENTERING_OCAML);
}
}
CAMLexport void caml_release_domain_lock(void)
{
dom_internal* self = domain_self;
caml_state = NULL;
caml_plat_unlock(&self->domain_lock);
}
CAMLexport void caml_bt_exit_ocaml(void)
{
dom_internal* self = domain_self;
bool bt_running = backup_thread_running(self);
CAMLassert(caml_domain_alone() || bt_running);
if (bt_running) {
atomic_store_release(&self->backup_thread_msg, BT_IN_BLOCKING_SECTION);
/* Wakeup backup thread if it is sleeping */
caml_plat_signal(&self->domain_cond);
}
}
/* default handler for unix_fork, will be called by unix_fork. */
static void caml_atfork_default(void)
{
caml_reset_domain_lock();
caml_acquire_domain_lock();
/* FIXME: For best portability, the IO channel locks should be
reinitialised as well. (See comment in
caml_reset_domain_lock.) */
}
CAMLexport void (*caml_atfork_hook)(void) = caml_atfork_default;
static inline int domain_terminating(dom_internal *d) {
return d->interruptor.terminating;
}
int caml_domain_terminating (caml_domain_state *dom_st)
{
return domain_terminating(&all_domains[dom_st->id]);
}
int caml_domain_is_terminating (void)
{
return domain_terminating(domain_self);
}
static bool marking_and_sweeping_done(caml_domain_state *domain_state)
{
return (domain_state->marking_done
&& domain_state->sweeping_done);
}
void caml_domain_terminate(bool last)
{
caml_domain_state* domain_state = domain_self->state;
struct interruptor* s = &domain_self->interruptor;
int finished = 0;
caml_gc_log("Domain terminating");
s->terminating = 1;
/* Join ongoing systhreads, if necessary, and then run user-defined
termination hooks. No OCaml code can run on this domain after
this. */
caml_domain_stop_hook();
call_timing_hook(&caml_domain_terminated_hook);
while (!finished) {
caml_finish_sweeping();
caml_empty_minor_heaps_once();
/* Note: [caml_empty_minor_heaps_once] will also join any ongoing
STW sections that has sent an interrupt to this domain. */
if (last)
caml_finish_major_cycle(0);
caml_finish_marking();
caml_orphan_ephemerons(domain_state);
caml_orphan_finalisers(domain_state);
/* Orphaning ephemerons and finalizers may create new marking or
sweeping work, so we may need to mark and/or sweep again. */
/* No need to check for interrupts if we are the last domain running. */
if (last) {
CAML_EV_LIFECYCLE(EV_DOMAIN_TERMINATE, getpid());
break;
}
/* If new marking or sweeping work appeared during orphaning,
run a new loop iteration. */
if (!marking_and_sweeping_done(domain_state))
continue;
/* Orphan the local shared heap.
This is only valid when [sweeping_done], and does
not create any new major GC work. */
caml_orphan_shared_heap(domain_state->shared_heap);
CAMLassert(marking_and_sweeping_done(domain_state));
/* Take the all_domains_lock to try and exit the STW participant set
without racing with a STW section being triggered. */
caml_plat_lock_blocking(&all_domains_lock);
/* The interaction of termination and major GC is quite subtle.
At the end of the major GC, we decide the number of domains to mark and
sweep for the next cycle. If a STW section has been started, it will
require this domain to participate, which in turn could involve a major
GC cycle. This would then require finish marking and sweeping again in
order to decrement the globals [num_domains_to_mark] and
[num_domains_to_sweep] (see major_gc.c). We do this by running a new
loop iteration.
*/
if (!caml_incoming_interrupts_queued()) {
finished = 1;
s->terminating = 0;
s->running = 0;
/* Remove this domain from stw_domains. */
remove_from_stw_domains(domain_self);
/* Signal the interruptor condition variable
because the backup thread may be waiting on it. */
caml_plat_lock_blocking(&s->lock);
caml_plat_broadcast(&s->cond);
caml_plat_unlock(&s->lock);
/* We must signal domain termination before releasing [all_domains_lock]:
after that, this domain will no longer take part in STWs and emitting
an event could race with runtime events teardown. */
CAML_EV_LIFECYCLE(EV_DOMAIN_TERMINATE, getpid());
}
caml_plat_unlock(&all_domains_lock);
}
if (!last) caml_assert_shared_heap_is_empty(domain_state->shared_heap);
/* [domain_state] may be re-used by a fresh domain here, now that we
have done [remove_from_stw_domains] and released the
[all_domains_lock]. In particular, we cannot touch
[domain_self->interruptor] after here because it may be reused.
However, [domain_create()] won't touch the domain state until
it has claimed the [domain_lock], so we hang onto that while we are
tearing down the state. */
/* Delete the domain state from statmemprof after any promotion
* (etc) done by this domain: any remaining memprof state will be
* handed over to surviving domains. */
caml_memprof_delete_domain(domain_state);
caml_remove_generational_global_root(&domain_state->dls_root);
caml_remove_generational_global_root(&domain_state->backtrace_last_exn);
caml_stat_free(domain_state->final_info);
caml_stat_free(domain_state->ephe_info);
caml_free_intern_state();
caml_free_extern_state();
caml_teardown_major_gc();
/* At this point, we know that the shared heap has been orphaned,
except if [last], if we are the last domain. In that case we
finalise all unswept objects and orphan the shared heap now. */
if (last) {
/* First adopt all orphan pools, to avoid missing unswept objects. */
caml_adopt_all_orphan_heaps(domain_state->shared_heap);
/* Call all custom finalisers of unswept objects. */
caml_finalise_heap();
/* Then orphan all pools again. */
caml_orphan_shared_heap(domain_state->shared_heap);
}
caml_assert_shared_heap_is_empty(domain_state->shared_heap);
caml_free_shared_heap(domain_state->shared_heap);
domain_state->shared_heap = NULL;
caml_free_minor_tables(domain_state->minor_tables);
domain_state->minor_tables = NULL;
/* At this point, the stats of the domain must be empty.
- heap stats were orphaned by [caml_orphan_shared_heap]
- alloc stats were orphaned by [caml_orphan_alloc_stats]
- the sampled copy in [sampled_gc_stats] was cleared by the minor
collection performed by [caml_empty_minor_heaps_once()], see
the termination-specific logic in
[caml_collect_gc_stats_sample_stw].
*/
/* TODO: can this ever be NULL? can we remove this check? */
if(domain_state->current_stack != NULL) {
caml_free_stack(domain_state->current_stack);
}
caml_free_backtrace_buffer(domain_state->backtrace_buffer);
caml_free_gc_regs_buckets(domain_state->gc_regs_buckets);
/* signal the domain termination to the backup thread
NB: for a program with no additional domains, the backup thread
will not have been started */
terminate_backup_thread(domain_self);
caml_plat_unlock(&domain_self->domain_lock);
caml_plat_assert_all_locks_unlocked();
/* This is the last thing we do because we need to be able to rely
on caml_domain_alone (which uses caml_num_domains_running) in at least
the shared_heap lockfree fast paths. Also, we don't want to decrement
it back to zero when the last domain exits, for caml_domain_alone()
to remain accurate. */
if (!last)
atomic_fetch_add(&caml_num_domains_running, -1);
}
/* Try and terminate the currently running domain.
This is only invoked when extra domains are left running while the
main one is terminating. In this case, we are not in a state where
we can safely release resources. The best we can do is cancel the
extra running threads. */
static void stw_terminate_domain(caml_domain_state *domain, void *data,
int participating_count,
caml_domain_state **participating)
{
if (!pthread_equal(domain_self->tid, *(pthread_t *)data)) {
if (caml_bt_is_self()) {
/* If this STW request is handled by the backup thread, the
domain thread is currently running C code. */
domain_self->domain_canceled = true;
(void)pthread_cancel(domain_self->tid);
/* We are intentionally not waiting for the thread to terminate here,
and not decrementing the number of running domains either, since
we don't know the state of the various locks and condition
variables in this state. */
atomic_store_release(&domain_self->backup_thread_msg, BT_INIT);
} else {
/* Domain threads forced to exit here will not have a chance to
run caml_domain_terminate() on their own, so we need to ask
the backup thread to terminate here. */
terminate_backup_thread(domain_self);
caml_plat_unlock(&domain_self->domain_lock);
/* No particular memory resource cleanup is attempted here, for we
have no idea which state each domain is in. */
}
pthread_exit(0);
}
}
void caml_stop_all_domains(void)
{
atomic_store_relaxed(&domains_exiting, 1);
pthread_t myself = pthread_self();
do {} while (!caml_try_run_on_all_domains(
&stw_terminate_domain, &myself, NULL));
terminate_backup_thread(domain_self);
caml_plat_unlock(&domain_self->domain_lock);
caml_plat_assert_all_locks_unlocked();
}
bool caml_free_domains(void)
{
bool result = true;
for (int i = 0; i < caml_params->max_domains; i++) {
struct dom_internal* dom = &all_domains[i];
/* Give the backup thread time to terminate gracefully, if needed */
while (backup_thread_running(dom)) {
cpu_relax();
}
dom->interruptor.interrupt_word = NULL;
caml_plat_mutex_free(&dom->interruptor.lock);
caml_plat_cond_free(&dom->interruptor.cond);
if (dom->domain_canceled)
result = false;
else
caml_plat_mutex_free(&dom->domain_lock);
caml_plat_cond_free(&dom->domain_cond);
}
#ifdef WITH_THREAD_SANITIZER
/* When running with TSan, there will be reports of races between
freeing the all_domains synchronization objects and domain threads
accessing them, even though we wait first for the domain threads to
have terminated in the above loop. */
result = false;
#endif
return result;
}
CAMLprim value caml_ml_domain_cpu_relax(value t)
{
struct interruptor* self = &domain_self->interruptor;
handle_incoming_otherwise_relax (self);
return Val_unit;
}
CAMLprim value caml_domain_dls_set(value t)
{
CAMLnoalloc;
caml_modify_generational_global_root(&Caml_state->dls_root, t);
return Val_unit;
}
CAMLprim value caml_domain_dls_get(value unused)
{
CAMLnoalloc;
return Caml_state->dls_root;
}
CAMLprim value caml_domain_dls_compare_and_set(value old, value new)
{
CAMLnoalloc;
value current = Caml_state->dls_root;
if (current == old) {
caml_modify_generational_global_root(&Caml_state->dls_root, new);
return Val_true;
} else {
return Val_false;
}
}
CAMLprim value caml_recommended_domain_count(value unused)
{
intnat n = -1;
#if defined(HAS_GNU_GETAFFINITY_NP) || defined(HAS_BSD_GETAFFINITY_NP)
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
/* error case fallsback into next method */
if (pthread_getaffinity_np(pthread_self(), sizeof(cpuset), &cpuset) == 0)
n = CPU_COUNT(&cpuset);
#endif /* HAS_GNU_GETAFFINITY_NP || HAS_BSD_GETAFFINITY_NP */
#ifdef _SC_NPROCESSORS_ONLN
if (n == -1)
n = sysconf(_SC_NPROCESSORS_ONLN);
#endif /* _SC_NPROCESSORS_ONLN */
#ifdef _WIN32
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
n = sysinfo.dwNumberOfProcessors;
#endif /* _WIN32 */
/* At least one, even if system says zero */
if (n <= 0)
n = 1;
else if (n > caml_params->max_domains)
n = caml_params->max_domains;
return (Val_long(n));
}
|