File: domain.c

package info (click to toggle)
ocaml 5.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 44,372 kB
  • sloc: ml: 370,196; ansic: 52,820; sh: 27,419; asm: 5,462; makefile: 3,684; python: 974; awk: 278; javascript: 273; perl: 59; fortran: 21; cs: 9
file content (2358 lines) | stat: -rw-r--r-- 78,709 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*      KC Sivaramakrishnan, Indian Institute of Technology, Madras       */
/*                 Stephen Dolan, University of Cambridge                 */
/*                   Tom Kelly, OCaml Labs Consultancy                    */
/*                                                                        */
/*   Copyright 2021 OCaml Labs Consultancy Ltd                            */
/*   Copyright 2019 Indian Institute of Technology, Madras                */
/*   Copyright 2019 University of Cambridge                               */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

#define _GNU_SOURCE  /* For sched.h CPU_ZERO(3) and CPU_COUNT(3) */
#include "caml/config.h"
#include <stdbool.h>
#include <stdio.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <pthread.h>
#include <string.h>
#include <assert.h>
#ifdef HAS_GNU_GETAFFINITY_NP
#include <sched.h>
#ifdef HAS_PTHREAD_NP_H
#include <pthread_np.h>
#endif
#endif
#ifdef HAS_BSD_GETAFFINITY_NP
#include <pthread_np.h>
#include <sys/cpuset.h>
typedef cpuset_t cpu_set_t;
#endif
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <sysinfoapi.h>
#endif
#include "caml/alloc.h"
#include "caml/backtrace.h"
#include "caml/backtrace_prim.h"
#include "caml/callback.h"
#include "caml/debugger.h"
#include "caml/domain.h"
#include "caml/domain_state.h"
#include "caml/runtime_events.h"
#include "caml/fail.h"
#include "caml/fiber.h"
#include "caml/finalise.h"
#include "caml/gc_ctrl.h"
#include "caml/globroots.h"
#include "caml/intext.h"
#include "caml/major_gc.h"
#include "caml/minor_gc.h"
#include "caml/memprof.h"
#include "caml/misc.h"
#include "caml/memory.h"
#include "caml/osdeps.h"
#include "caml/platform.h"
#include "caml/shared_heap.h"
#include "caml/signals.h"
#include "caml/startup.h"
#include "caml/startup_aux.h"
#include "caml/sync.h"
#include "caml/weak.h"

/* Check that the domain_state structure was laid out without padding,
   since the runtime assumes this in computing offsets */
static_assert(
    offsetof(caml_domain_state, LAST_DOMAIN_STATE_MEMBER) ==
    (Domain_state_num_fields - 1) * 8,
    "");

/* The runtime can run stop-the-world (STW) sections, during which all
   active domains run the same callback in parallel (with a barrier
   mechanism to synchronize within the callback).

   Stop-the-world sections are used to handle duties such as:
    - minor GC
    - major GC phase changes

   Code within the STW callback can have the guarantee that no mutator
   code runs in parallel -- precisely, the guarantee holds only for
   code that is followed by a barrier. Furthermore, new domains being
   spawned are blocked from running any mutator code while a STW
   section is in progress, and terminating domains cannot stop until
   they have participated to all STW sections currently in progress.

   To provide these guarantees:
    - Domains must register as STW participants before running any
      mutator code.
    - STW sections must not trigger other callbacks into mutator code
      (eg. finalisers or signal handlers).

   See the comments on [caml_try_run_on_all_domains_with_spin_work]
   below for more details on the synchronization mechanisms involved.
*/

/* For timely handling of STW requests, domains registered as STW
   participants must be careful to service STW interrupt requests. The
   compiler inserts "poll points" in mutator code, and the runtime
   uses a "backup thread" mechanism during blocking sections.

   When the main C-stack for a domain enters a blocking call,
   a 'backup thread' becomes responsible for servicing the STW
   sections on behalf of the domain. Care is needed to hand off duties
   for servicing STW sections between the main thread and the backup
   thread when caml_enter_blocking_section and
   caml_leave_blocking_section are called.

   When the state for the backup thread is BT_IN_BLOCKING_SECTION
   the backup thread will service the STW section.

   The state machine for the backup thread (and its transitions)
   are:

           BT_INIT  <---------------------------------------+
              |                                             |
   (install_backup_thread)                                  |
       [main thread]                                        |
              |                                             |
              v                                             |
       BT_ENTERING_OCAML  <-----------------+               |
              |                             |               |
(caml_enter_blocking_section)               |               |
        [main thread]                       |               |
              |                             |               |
              |                             |               |
              |               (caml_leave_blocking_section) |
              |                       [main thread]         |
              v                             |               |
    BT_IN_BLOCKING_SECTION  ----------------+               |
              |                                             |
     (caml_domain_terminate)                                |
        [main thread]                                       |
              |                                             |
              v                                             |
        BT_TERMINATE                               (backup_thread_func)
              |                                      [backup thread]
              |                                             |
              +---------------------------------------------+

 */
#define BT_IN_BLOCKING_SECTION 0
#define BT_ENTERING_OCAML 1
#define BT_TERMINATE 2
#define BT_INIT 3

/* control of STW interrupts */
struct interruptor {
  /* The outermost atomic is for synchronization with
     caml_interrupt_all_signal_safe. The innermost atomic is also for
     cross-domain communication.*/
  _Atomic(atomic_uintnat *) interrupt_word;
  caml_plat_mutex lock;
  caml_plat_cond cond;

  int running;
  int terminating;
  /* unlike the domain ID, this ID number is not reused */
  uintnat unique_id;

  /* indicates whether there is an interrupt pending */
  atomic_uintnat interrupt_pending;
};

Caml_inline int interruptor_has_pending(struct interruptor *s)
{ return atomic_load_acquire(&s->interrupt_pending) != 0; }
Caml_inline void interruptor_set_handled(struct interruptor *s)
{ atomic_store_release(&s->interrupt_pending, 0); }
Caml_inline void interruptor_set_pending(struct interruptor *s)
{ atomic_store_release(&s->interrupt_pending, 1); }

struct dom_internal {
  /* readonly fields, initialised and never modified */
  int id;
  pthread_t tid;
  caml_domain_state* state;
  struct interruptor interruptor;

  /* backup thread */
  pthread_t backup_thread;
  atomic_uintnat backup_thread_msg;
  caml_plat_mutex domain_lock;
  caml_plat_cond domain_cond;
  bool domain_canceled;

  /* modified only during STW sections */
  uintnat minor_heap_area_start;
  uintnat minor_heap_area_end;
};
typedef struct dom_internal dom_internal;

static struct {
  /* enter barrier for STW sections, participating domains arrive into
     the barrier before executing the STW callback */
  caml_plat_barrier domains_still_running;
  /* the number of domains that have yet to return from the callback */
  atomic_uintnat num_domains_still_processing;
  void (*callback)(caml_domain_state*,
                   void*,
                   int participating_count,
                   caml_domain_state** others_participating);
  void* data;
  int (*enter_spin_callback)(caml_domain_state*, void*);
  void* enter_spin_data;

  /* global_barrier state */
  int num_domains;
  caml_plat_barrier barrier;

  caml_domain_state** participating;
} stw_request = {
  CAML_PLAT_BARRIER_INITIALIZER,
  0,
  NULL,
  NULL,
  NULL,
  NULL,
  0,
  CAML_PLAT_BARRIER_INITIALIZER,
  NULL
};

static caml_plat_mutex all_domains_lock = CAML_PLAT_MUTEX_INITIALIZER;
static caml_plat_cond all_domains_cond = CAML_PLAT_COND_INITIALIZER;
static atomic_uintnat /* dom_internal* */ stw_leader = 0;
static uintnat stw_requests_suspended = 0; /* protected by all_domains_lock */
static caml_plat_cond requests_suspended_cond = CAML_PLAT_COND_INITIALIZER;
static dom_internal* all_domains;
static atomic_intnat domains_exiting = 0;

CAMLexport atomic_uintnat caml_num_domains_running = 0;

/* size of the virtual memory reservation for the minor heap, per domain */
uintnat caml_minor_heap_max_wsz;
/*
  The amount of memory reserved for all minor heaps of all domains is
  caml_params->max_domains * caml_minor_heap_max_wsz. Individual domains can
  allocate smaller minor heaps, but when a domain calls Gc.set to allocate a
  bigger minor heap than this reservation, we perform a new virtual memory
  reservation based on the increased minor heap size.

  New domains are created with a minor heap of size
  caml_params->init_minor_heap_wsz.

  To perform a new virtual memory reservation for the heaps, we stop the world
  and do a minor collection on all domains.
  See [stw_resize_minor_heap_reservation].
*/

CAMLexport uintnat caml_minor_heaps_start;
CAMLexport uintnat caml_minor_heaps_end;
static CAMLthread_local dom_internal* domain_self;

/*
 * This structure is protected by all_domains_lock.
 * [0, participating_domains) are all the domains taking part in STW sections.
 * [participating_domains, caml_params->max_domains) are all those domains free
 * to be used.
 */
static struct {
  int participating_domains;
  dom_internal** domains;
} stw_domains = {
  0,
  NULL
};

static void add_next_to_stw_domains(void)
{
  CAMLassert(stw_domains.participating_domains < caml_params->max_domains);
  stw_domains.participating_domains++;
#ifdef DEBUG
  /* Enforce here the invariant for early-exit in
     [caml_interrupt_all_signal_safe], because the latter must be
     async-signal-safe and one cannot CAMLassert inside it. */
  bool prev_has_interrupt_word = true;
  for (int i = 0; i < caml_params->max_domains; i++) {
    bool has_interrupt_word = all_domains[i].interruptor.interrupt_word != NULL;
    if (i < stw_domains.participating_domains) CAMLassert(has_interrupt_word);
    if (!prev_has_interrupt_word) CAMLassert(!has_interrupt_word);
    prev_has_interrupt_word = has_interrupt_word;
  }
#endif
}

static void remove_from_stw_domains(dom_internal* dom) {
  int i;
  for(i=0; stw_domains.domains[i]!=dom; ++i) {
    CAMLassert(i<caml_params->max_domains);
  }
  CAMLassert(i < stw_domains.participating_domains);

  /* swap passed domain to first free domain */
  stw_domains.participating_domains--;
  stw_domains.domains[i] =
      stw_domains.domains[stw_domains.participating_domains];
  stw_domains.domains[stw_domains.participating_domains] = dom;
}

static dom_internal* next_free_domain(void) {
  if (stw_domains.participating_domains == caml_params->max_domains)
    return NULL;

  CAMLassert(stw_domains.participating_domains < caml_params->max_domains);
  return stw_domains.domains[stw_domains.participating_domains];
}

CAMLexport CAMLthread_local caml_domain_state* caml_state;

#ifndef HAS_FULL_THREAD_VARIABLES
/* Export a getter for caml_state, to be used in DLLs */
CAMLexport caml_domain_state* caml_get_domain_state(void)
{
  return caml_state;
}
#endif

Caml_inline void interrupt_domain(struct interruptor* s)
{
  atomic_uintnat * interrupt_word = atomic_load_relaxed(&s->interrupt_word);
  atomic_store_release(interrupt_word, CAML_UINTNAT_MAX);
}

Caml_inline void interrupt_domain_local(caml_domain_state* dom_st)
{
  atomic_store_relaxed(&dom_st->young_limit, CAML_UINTNAT_MAX);
}

int caml_incoming_interrupts_queued(void)
{
  return interruptor_has_pending(&domain_self->interruptor);
}

static void terminate_backup_thread(dom_internal *di);

static inline bool backup_thread_running(dom_internal *di)
{
    return (atomic_load_acquire(&di->backup_thread_msg) != BT_INIT);
}

/* must NOT be called with s->lock held */
static void stw_handler(caml_domain_state* domain);
static int handle_incoming(struct interruptor* s)
{
  int handled = interruptor_has_pending(s);
  if (handled) {
    CAMLassert (s->running);
    interruptor_set_handled(s);

    stw_handler(domain_self->state);
  }
  return handled;
}

static void handle_incoming_otherwise_relax (struct interruptor* self)
{
  if (!handle_incoming(self))
    cpu_relax();
}

void caml_handle_incoming_interrupts(void)
{
  handle_incoming(&domain_self->interruptor);
}

int caml_send_interrupt(struct interruptor* target)
{
  /* signal that there is an interrupt pending */
  interruptor_set_pending(target);

  /* Signal the condition variable, in case the target is itself
     waiting for an interrupt to be processed elsewhere, or to wake up
     the backup thread. */
  caml_plat_lock_blocking(&target->lock);
  caml_plat_broadcast(&target->cond); // OPT before/after unlock? elide?
  caml_plat_unlock(&target->lock);

  interrupt_domain(target);

  return 1;
}

asize_t caml_norm_minor_heap_size (intnat wsize)
{
  asize_t bs;
  if (wsize < Minor_heap_min) wsize = Minor_heap_min;
  bs = caml_mem_round_up_pages(Bsize_wsize (wsize));

  return Wsize_bsize(bs);
}

/* The current minor heap layout is as follows:

- A contiguous memory block of size
   [caml_minor_heap_max_wsz * caml_params->max_domains]
  is reserved by [caml_init_domains]. The boundaries
  of this reserved area are stored in the globals
    [caml_minor_heaps_start]
  and
    [caml_minor_heaps_end].

- Each domain gets a reserved section of this block
  of size [caml_minor_heap_max_wsz], whose boundaries are stored as
    [domain_self->minor_heap_area_start]
  and
    [domain_self->minor_heap_area_end]

  These variables accessed in [stw_resize_minor_heap_reservation],
  synchronized by a global barrier.

- Each domain then commits a segment of size
    [domain_state->minor_heap_wsz]
  starting at
    [domain_state->minor_heap_area_start]
  that it actually uses.

  This is done below in
    [caml_reallocate_minor_heap]
  which is called both at domain-initialization (by [domain_create])
  and if a request comes to change the minor heap size.

  The boundaries of this committed memory area are
     [domain_state->young_start]
   and
     [domain_state->young_end].

  Those [young_{start,end}] variables are never accessed by another
  domain, so they need no synchronization.
*/

Caml_inline void check_minor_heap(void) {
  caml_domain_state* domain_state = Caml_state;
  CAMLassert(domain_state->young_ptr == domain_state->young_end);

  caml_gc_log("young_start: %p, young_end: %p, minor_heap_area_start: %p,"
      " minor_heap_area_end: %p, minor_heap_wsz: %"
      ARCH_SIZET_PRINTF_FORMAT "u words",
      domain_state->young_start,
      domain_state->young_end,
      (value*)domain_self->minor_heap_area_start,
      (value*)domain_self->minor_heap_area_end,
      domain_state->minor_heap_wsz);
  CAMLassert(
    (/* uninitialized minor heap */
      domain_state->young_start == NULL
      && domain_state->young_end == NULL)
    ||
    (/* initialized minor heap */
      domain_state->young_start == (value*)domain_self->minor_heap_area_start
      && domain_state->young_end <= (value*)domain_self->minor_heap_area_end));
}

static void free_minor_heap(void) {
  caml_domain_state* domain_state = Caml_state;

  caml_gc_log ("trying to free old minor heap: %"
        ARCH_SIZET_PRINTF_FORMAT "uk words",
        domain_state->minor_heap_wsz / 1024);

  check_minor_heap();

  /* free old minor heap.
     instead of unmapping the heap, we decommit it, so there's
     no race whereby other code could attempt to reuse the memory. */
  caml_mem_decommit(
      (void*)domain_self->minor_heap_area_start,
      Bsize_wsize(domain_state->minor_heap_wsz));

  domain_state->young_start   = NULL;
  domain_state->young_end     = NULL;
  domain_state->young_ptr     = NULL;
  domain_state->young_trigger = NULL;
  domain_state->memprof_young_trigger = NULL;
  atomic_store_release(&domain_state->young_limit,
                   (uintnat) domain_state->young_start);
}

static int allocate_minor_heap(asize_t wsize) {
  caml_domain_state* domain_state = Caml_state;

  check_minor_heap();

  wsize = caml_norm_minor_heap_size(wsize);

  CAMLassert (wsize <= caml_minor_heap_max_wsz);

  caml_gc_log ("trying to allocate minor heap: %"
               ARCH_SIZET_PRINTF_FORMAT "uk words", wsize / 1024);

  if (!caml_mem_commit(
          (void*)domain_self->minor_heap_area_start, Bsize_wsize(wsize))) {
    return -1;
  }

#ifdef DEBUG
  {
    uintnat* p = (uintnat*)domain_self->minor_heap_area_start;
    for (;
      p < (uintnat*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
      p++) {
      *p = Debug_free_minor;
    }
  }
#endif

  domain_state->minor_heap_wsz = wsize;

  domain_state->young_start = (value*)domain_self->minor_heap_area_start;
  domain_state->young_end =
      (value*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
  domain_state->young_ptr = domain_state->young_end;
  /* Trigger a GC poll when half of the minor heap is filled. At that point, a
   * major slice is scheduled. */
  domain_state->young_trigger = domain_state->young_start
         + (domain_state->young_end - domain_state->young_start) / 2;
  caml_memprof_set_trigger(domain_state);
  caml_reset_young_limit(domain_state);

  check_minor_heap();
  return 0;
}

int caml_reallocate_minor_heap(asize_t wsize)
{
  free_minor_heap();
  return allocate_minor_heap(wsize);
}

/* This variable is owned by [all_domains_lock]. */
static uintnat next_domain_unique_id = 0;

/* Precondition: you must own [all_domains_lock].

   Specification:
   - returns 0 on the first call
     (we want the main domain to have unique_id 0)
   - returns distinct ids unless there is an overflow
   - never returns 0 again, even in presence of overflow.
 */
static uintnat fresh_domain_unique_id(void) {
    uintnat next = next_domain_unique_id++;

    /* On 32-bit systems, there is a risk of wraparound of the unique
       id counter. We have decided to let that happen and live with
       it, but we still ensure that id 0 is not reused, to avoid
       having new domains believe that they are the main domain. */
    if (next_domain_unique_id == 0)
      next_domain_unique_id++;

    return next;
}

/* must be run on the domain's thread */
static void domain_create(uintnat initial_minor_heap_wsize,
                          caml_domain_state *parent)
{
  dom_internal* d = 0;
  caml_domain_state* domain_state;
  struct interruptor* s;
  uintnat stack_wsize = caml_get_init_stack_wsize();

  CAMLassert (domain_self == 0);

  /* take the all_domains_lock so that we can alter the STW participant
     set atomically */
  caml_plat_lock_blocking(&all_domains_lock);

  /* How many STW sections we are willing to wait for, any more are
     prevented from happening */
#define Max_stws_before_suspend 2
  int stws_waited = 1;
  /* Wait until any in-progress STW sections end. */
  while (atomic_load_acquire(&stw_leader)) {
    if (stws_waited++ < Max_stws_before_suspend) {
      /* [caml_plat_wait] releases [all_domains_lock] until the current
         STW section ends, and then takes the lock again. */
      caml_plat_wait(&all_domains_cond, &all_domains_lock);
    } else {
      /* Prevent new STW requests to avoid our own starvation */
      stw_requests_suspended++;
      /* Wait for the current STW to end */
      do {
        caml_plat_wait(&all_domains_cond, &all_domains_lock);
      } while (atomic_load_acquire(&stw_leader));
      if (--stw_requests_suspended == 0) {
        /* Notify threads that were trying to run an STW section.
           We still hold the lock, so they won't wake up yet. */
        caml_plat_broadcast(&requests_suspended_cond);
      }
      break;
    }
  }

  d = next_free_domain();

  if (d == NULL)
    goto domain_init_complete;

  s = &d->interruptor;
  CAMLassert(!s->running);
  CAMLassert(!interruptor_has_pending(s));

  /* If the chosen domain slot has not been previously used, allocate a fresh
     domain state. Otherwise, reuse it.

     Reusing the slot ensures that the GC stats are not lost:
     - Heap stats are moved to the free list on domain termination,
       so we don't reuse those stats (caml_init_shared_heap will reset them)
     - But currently there is no orphaning process for allocation stats,
       we just reuse the previous stats from the previous domain
       with the same index.
  */
  if (d->state == NULL) {
    /* FIXME: Never freed. Not clear when to. */
    domain_state = (caml_domain_state*)
      caml_stat_calloc_noexc(1, sizeof(caml_domain_state));
    if (domain_state == NULL)
      goto domain_init_complete;
    d->state = domain_state;
  } else {
    domain_state = d->state;
  }

  /* Note: until we take d->domain_lock, the domain_state may still be
   * shared with a domain which is terminating (see
   * caml_domain_terminate). */

  caml_plat_lock_blocking(&d->domain_lock);

  /* This is the first thing we do after acquiring the domain lock,
     so that [caml_domain_alone()] returns accurate result even
     during domain initialization. */
  atomic_fetch_add(&caml_num_domains_running, 1);

  /* Set domain_self if we have successfully allocated the
   * caml_domain_state. Otherwise domain_self will be NULL and it's up
   * to the caller to deal with that. */

  domain_self = d;
  caml_state = domain_state;

  domain_state->young_limit = 0;
  /* Synchronized with [caml_interrupt_all_signal_safe], so that the
     initializing write of young_limit happens before any
     interrupt. */
  atomic_store_explicit(&s->interrupt_word, &domain_state->young_limit,
                        memory_order_release);

  domain_state->id = d->id;

  /* Tell memprof system about the new domain before either (a) new
   * domain can allocate anything or (b) parent domain can go away. */
  CAMLassert(domain_state->memprof == NULL);
  caml_memprof_new_domain(parent, domain_state);
  if (!domain_state->memprof) {
    goto init_memprof_failure;
  }

  CAMLassert(!interruptor_has_pending(s));

  domain_state->extra_heap_resources = 0.0;
  domain_state->extra_heap_resources_minor = 0.0;

  domain_state->dependent_size = 0;
  domain_state->dependent_allocated = 0;

  domain_state->major_work_done_between_slices = 0;

  /* the minor heap will be initialized by
     [caml_reallocate_minor_heap] below. */
  domain_state->young_start = NULL;
  domain_state->young_end = NULL;
  domain_state->young_ptr = NULL;
  domain_state->young_trigger = NULL;

  domain_state->minor_tables = caml_alloc_minor_tables();
  if(domain_state->minor_tables == NULL) {
    goto alloc_minor_tables_failure;
  }

  d->state->shared_heap = caml_init_shared_heap();
  if(d->state->shared_heap == NULL) {
    goto init_shared_heap_failure;
  }

  if (caml_init_major_gc(domain_state) < 0) {
    goto init_major_gc_failure;
  }

  if(caml_reallocate_minor_heap(initial_minor_heap_wsize) < 0) {
    goto reallocate_minor_heap_failure;
  }

  domain_state->dls_root = Val_unit;
  caml_register_generational_global_root(&domain_state->dls_root);

  domain_state->stack_cache = caml_alloc_stack_cache();
  if(domain_state->stack_cache == NULL) {
    goto create_stack_cache_failure;
  }

  domain_state->extern_state = NULL;

  domain_state->intern_state = NULL;

  domain_state->current_stack =
      caml_alloc_main_stack(stack_wsize);
  if(domain_state->current_stack == NULL) {
    goto alloc_main_stack_failure;
  }

  /* No remaining failure cases: domain creation is going to succeed,
   * so we can update globally-visible state without needing to unwind
   * it. */
  s->unique_id = fresh_domain_unique_id();
  domain_state->unique_id = s->unique_id;
  s->running = 1;

  domain_state->c_stack = NULL;
  domain_state->exn_handler = NULL;

  domain_state->action_pending = 0;

  domain_state->gc_regs_buckets = NULL;
  domain_state->gc_regs = NULL;

  domain_state->allocated_words = 0;
  domain_state->allocated_words_direct = 0;
  domain_state->allocated_words_suspended = 0;
  domain_state->allocated_words_resumed = 0;
  domain_state->current_ramp_up_allocated_words_diff = 0;
  domain_state->swept_words = 0;

  domain_state->local_roots = NULL;

  domain_state->backtrace_buffer = NULL;
  domain_state->backtrace_last_exn = Val_unit;
  domain_state->backtrace_active = 0;
  caml_register_generational_global_root(&domain_state->backtrace_last_exn);

  domain_state->compare_unordered = 0;
  domain_state->oo_next_id_local = 0;

  domain_state->requested_major_slice = 0;
  domain_state->requested_minor_gc = 0;
  domain_state->major_slice_epoch = 0;
  domain_state->requested_external_interrupt = 0;

  domain_state->parser_trace = 0;

  if (caml_params->backtrace_enabled) {
    caml_record_backtraces(1);
  }

#ifndef NATIVE_CODE
  domain_state->external_raise = NULL;
  domain_state->trap_sp_off = 1;
  domain_state->trap_barrier_off = 0;
  domain_state->trap_barrier_block = -1;
#endif

  add_next_to_stw_domains();
  goto domain_init_complete;

alloc_main_stack_failure:
create_stack_cache_failure:
  caml_remove_generational_global_root(&domain_state->dls_root);
reallocate_minor_heap_failure:
  caml_teardown_major_gc();
init_major_gc_failure:
  caml_orphan_shared_heap(d->state->shared_heap);
  caml_free_shared_heap(d->state->shared_heap);
  domain_state->shared_heap = NULL;
init_shared_heap_failure:
  caml_free_minor_tables(domain_state->minor_tables);
  domain_state->minor_tables = NULL;
alloc_minor_tables_failure:
  caml_memprof_delete_domain(domain_state);
init_memprof_failure:
  domain_self = NULL;

  atomic_fetch_add(&caml_num_domains_running, -1);

domain_init_complete:
  caml_gc_log("domain init complete");
  caml_plat_unlock(&all_domains_lock);
}

CAMLexport void caml_reset_domain_lock(void)
{
  dom_internal* self = domain_self;
  // This is only used to reset the domain_lock state on fork.
  /* FIXME: initializing an already-initialized mutex and cond
     variable is UB (especially mutexes that are locked).

     * On systhreads, this is best-effort but at least the error
       conditions should be checked and reported.

     * If there is only one thread, it is sensible to fork but the
       mutex should still not be initialized while locked. On Linux it
       seems that the mutex remains valid and locked
       (https://man7.org/linux/man-pages/man2/fork.2.html). For
       portability on POSIX the lock should be released and destroyed
       prior to calling fork and then init afterwards in both parent
       and child. */
  caml_plat_mutex_reinit(&self->domain_lock);
  caml_plat_cond_init(&self->domain_cond);

  return;
}

/* minor heap initialization and resizing */

static void reserve_minor_heaps_from_stw_single(void) {
  void* heaps_base;
  uintnat minor_heap_reservation_bsize;
  uintnat minor_heap_max_bsz;

  CAMLassert (caml_mem_round_up_pages(Bsize_wsize(caml_minor_heap_max_wsz))
          == Bsize_wsize(caml_minor_heap_max_wsz));

  minor_heap_max_bsz = (uintnat)Bsize_wsize(caml_minor_heap_max_wsz);
  minor_heap_reservation_bsize = minor_heap_max_bsz * caml_params->max_domains;

  /* reserve memory space for minor heaps */
  heaps_base = caml_mem_map(minor_heap_reservation_bsize, 1 /* reserve_only */);
  if (heaps_base == NULL)
    caml_fatal_error("Not enough heap memory to reserve minor heaps");

  caml_minor_heaps_start = (uintnat) heaps_base;
  caml_minor_heaps_end = (uintnat) heaps_base + minor_heap_reservation_bsize;

  caml_gc_log("new minor heap reserved from %p to %p",
              (value*)caml_minor_heaps_start, (value*)caml_minor_heaps_end);

  for (int i = 0; i < caml_params->max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    uintnat domain_minor_heap_area = caml_minor_heaps_start +
      minor_heap_max_bsz * (uintnat)i;

    dom->minor_heap_area_start = domain_minor_heap_area;
    dom->minor_heap_area_end =
         domain_minor_heap_area + minor_heap_max_bsz;

    CAMLassert(dom->minor_heap_area_end <= caml_minor_heaps_end);
  }
}

static void unreserve_minor_heaps_from_stw_single(void) {
  uintnat size;

  caml_gc_log("unreserve_minor_heaps");

  for (int i = 0; i < caml_params->max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    CAMLassert(
      /* this domain is not running */
      !dom->interruptor.running
      || (
        /* or its minor heap must already be uninitialized */
        dom->state != NULL
        && dom->state->young_start == NULL
        && dom->state->young_end == NULL
      ));
    /* Note: interruptor.running does not guarantee that dom->state is
       correctly initialized, but domain initialization cannot run
       concurrently with STW sections so we cannot observe partial
       initialization states. */

    /* uninitialize the minor heap area */
    dom->minor_heap_area_start = dom->minor_heap_area_end = 0;
  }

  size = caml_minor_heaps_end - caml_minor_heaps_start;
  CAMLassert (Bsize_wsize(caml_minor_heap_max_wsz) * caml_params->max_domains
              == size);
  caml_mem_unmap((void *) caml_minor_heaps_start, size);
}

static
void domain_resize_heap_reservation_from_stw_single(uintnat new_minor_wsz)
{
  CAML_EV_BEGIN(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
  caml_gc_log("stw_resize_minor_heap_reservation: "
              "unreserve_minor_heaps");

  unreserve_minor_heaps_from_stw_single();
  /* new_minor_wsz is page-aligned because caml_norm_minor_heap_size has
     been called to normalize it earlier.
  */
  caml_minor_heap_max_wsz = new_minor_wsz;
  caml_gc_log("stw_resize_minor_heap_reservation: reserve_minor_heaps");
  reserve_minor_heaps_from_stw_single();
  /* The call to [reserve_minor_heaps_from_stw_single] makes a new
     reservation, and it also updates the reservation boundaries of each
     domain by mutating its [minor_heap_area_start{,_end}] variables.

     These variables are synchronized by the fact that we are inside
     a STW section: no other domains are running in parallel, and
     the participating domains will synchronize with this write by
     exiting the barrier, before they read those variables in
     [allocate_minor_heap] below. */
  CAML_EV_END(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
}

static void
stw_resize_minor_heap_reservation(caml_domain_state* domain,
                                  void* minor_wsz_data,
                                  int participating_count,
                                  caml_domain_state** participating) {
  caml_gc_log("stw_resize_minor_heap_reservation: "
              "caml_empty_minor_heap_no_major_slice_from_stw");
  caml_empty_minor_heap_no_major_slice_from_stw(
    domain, NULL, participating_count, participating);

  caml_gc_log("stw_resize_minor_heap_reservation: free_minor_heap");
  free_minor_heap();

  Caml_global_barrier_if_final(participating_count) {
    uintnat new_minor_wsz = (uintnat) minor_wsz_data;
    domain_resize_heap_reservation_from_stw_single(new_minor_wsz);
  }

  caml_gc_log("stw_resize_minor_heap_reservation: "
              "allocate_minor_heap");
  /* Note: each domain allocates its own minor heap. This seems
     important to get good NUMA behavior. We don't want a single
     domain to allocate all minor heaps, which could create locality
     issues we don't understand very well. */
  if (allocate_minor_heap(Caml_state->minor_heap_wsz) < 0) {
    caml_fatal_error("Fatal error: No memory for minor heap");
  }
}

void caml_update_minor_heap_max(uintnat requested_wsz) {
  caml_gc_log("Changing heap_max_wsz from %" ARCH_INTNAT_PRINTF_FORMAT
              "u to %" ARCH_INTNAT_PRINTF_FORMAT "u.",
              caml_minor_heap_max_wsz, requested_wsz);
  while (requested_wsz > caml_minor_heap_max_wsz) {
    caml_try_run_on_all_domains(
      &stw_resize_minor_heap_reservation, (void*)requested_wsz, 0);
  }
  check_minor_heap();
}

void caml_init_domains(uintnat max_domains, uintnat minor_heap_wsz)
{
  atomic_store_relaxed(&domains_exiting, 0);
  atomic_store_relaxed(&caml_num_domains_running, 0);

  /* Use [caml_stat_calloc_noexc] to zero initialize [all_domains]. */
  all_domains = caml_stat_calloc_noexc(max_domains, sizeof(dom_internal));
  if (all_domains == NULL)
    caml_fatal_error("Failed to allocate all_domains");

  stw_request.participating =
      caml_stat_calloc_noexc(max_domains, sizeof(dom_internal*));
  if (stw_request.participating == NULL)
    caml_fatal_error("Failed to allocate stw_request.participating");

  stw_domains.domains =
      caml_stat_calloc_noexc(max_domains, sizeof(dom_internal*));
  if (stw_domains.domains == NULL)
    caml_fatal_error("Failed to allocate stw_domains.domains");

  reserve_minor_heaps_from_stw_single();
  /* stw_single: mutators and domains have not started yet. */

  for (int i = 0; i < max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    stw_domains.domains[i] = dom;

    dom->id = i;

    dom->interruptor.interrupt_word = NULL;
    caml_plat_mutex_init(&dom->interruptor.lock);
    caml_plat_cond_init(&dom->interruptor.cond);
    dom->interruptor.running = 0;
    dom->interruptor.terminating = 0;
    dom->interruptor.unique_id = 0;
    dom->interruptor.interrupt_pending = 0;

    caml_plat_mutex_init(&dom->domain_lock);
    caml_plat_cond_init(&dom->domain_cond);
    dom->backup_thread_msg = BT_INIT;
    dom->domain_canceled = false;
  }

  domain_create(minor_heap_wsz, NULL);
  if (!domain_self) caml_fatal_error("Failed to create main domain");
  CAMLassert (domain_self->state->unique_id == 0);

  caml_init_signal_handling();
}

void caml_init_domain_self(int domain_id) {
  CAMLassert(0 <= domain_id);
  CAMLassert(domain_id < caml_params->max_domains);
  domain_self = &all_domains[domain_id];
  caml_state = domain_self->state;
}

enum domain_status { Dom_starting, Dom_started, Dom_failed };

struct domain_ml_values {
  value callback;
  value term_sync;
};

/* stdlib/domain.ml */
#define Term_state(sync) (&Field(sync, 0))
#define Term_mutex(sync) (&Field(sync, 1))
#define Term_condition(sync) (&Field(sync, 2))

static void init_domain_ml_values(struct domain_ml_values* ml_values,
                                  value callback, value term_sync)
{
  ml_values->callback = callback;
  ml_values->term_sync = term_sync;
  caml_register_generational_global_root(&ml_values->callback);
  caml_register_generational_global_root(&ml_values->term_sync);
}

static void free_domain_ml_values(struct domain_ml_values* ml_values)
{
  caml_remove_generational_global_root(&ml_values->callback);
  caml_remove_generational_global_root(&ml_values->term_sync);
  caml_stat_free(ml_values);
}

/* This is the structure of the data exchanged between the parent
   domain and child domain during domain_spawn. Some fields are 'in'
   parameters, passed from the parent to the child, others are 'out'
   parameters returned to the parent by the child.
*/
struct domain_startup_params {
  dom_internal *parent; /* in */
  enum domain_status status; /* in+out:
                                parent and child synchronize on this value. */
  struct domain_ml_values* ml_values; /* in */
  dom_internal* newdom; /* out */
  uintnat unique_id; /* out */
};

static void* backup_thread_func(void* v)
{
  dom_internal* di = (dom_internal*)v;
  uintnat msg;
  struct interruptor* s = &di->interruptor;

  domain_self = di;
  caml_state = di->state;

  msg = atomic_load_acquire (&di->backup_thread_msg);
  while (msg != BT_TERMINATE) {
    CAMLassert (msg <= BT_TERMINATE);
    switch (msg) {
      case BT_IN_BLOCKING_SECTION:
        /* Handle interrupts on behalf of the main thread:
         *  - must hold domain_lock to handle interrupts
         *  - need to guarantee no blocking so that backup thread
         *    can be signalled from caml_leave_blocking_section
         */
        if (caml_incoming_interrupts_queued()) {
          if (caml_plat_try_lock(&di->domain_lock)) {
            caml_handle_incoming_interrupts();
            caml_plat_unlock(&di->domain_lock);
          }
        }
        /* Wait safely if there is nothing to do. Will be woken from
         * caml_send_interrupt and caml_domain_terminate.
         */
        caml_plat_lock_blocking(&s->lock);
        msg = atomic_load_acquire (&di->backup_thread_msg);
        if (msg == BT_IN_BLOCKING_SECTION &&
            !caml_incoming_interrupts_queued())
          caml_plat_wait(&s->cond, &s->lock);
        caml_plat_unlock(&s->lock);
        break;
      case BT_ENTERING_OCAML:
        /* Main thread wants to enter OCaml.
         * Will be woken from caml_bt_exit_ocaml
         * or caml_domain_terminate.
         */
        caml_plat_lock_blocking(&di->domain_lock);
        msg = atomic_load_acquire (&di->backup_thread_msg);
        if (msg == BT_ENTERING_OCAML)
          caml_plat_wait(&di->domain_cond, &di->domain_lock);
        caml_plat_unlock(&di->domain_lock);
        break;
      default:
        cpu_relax();
        break;
    };
    msg = atomic_load_acquire (&di->backup_thread_msg);
  }

  /* doing terminate */
  atomic_store_release(&di->backup_thread_msg, BT_INIT);

  return 0;
}

static void install_backup_thread (dom_internal* di)
{
  int err;
#ifndef _WIN32
  sigset_t mask, old_mask;
#endif

  /* If the backup thread is running, but has been instructed to terminate,
     we need to wait for it to stop until we can spawn another. */
  while (backup_thread_running(di)) {
    /* Give a chance for backup thread on this domain to terminate */
    caml_plat_unlock (&di->domain_lock);
    cpu_relax ();
    caml_plat_lock_blocking(&di->domain_lock);
  }

  CAMLassert(!backup_thread_running(di));

#ifndef _WIN32
  /* No signals on the backup thread */
  sigfillset(&mask);
  pthread_sigmask(SIG_BLOCK, &mask, &old_mask);
#endif

  atomic_store_release(&di->backup_thread_msg, BT_ENTERING_OCAML);
  err = pthread_create(&di->backup_thread, 0, backup_thread_func, (void*)di);
  caml_check_error(err, "failed to create domain backup thread");

#ifndef _WIN32
  pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
#endif

  pthread_detach(di->backup_thread);
}

static void terminate_backup_thread(dom_internal *di)
{
  CAMLassert(!caml_bt_is_self());

  if (backup_thread_running(di)) {
    atomic_store_release(&di->backup_thread_msg, BT_TERMINATE);
    /* Wakeup backup thread if it is sleeping */
    caml_plat_broadcast(&di->interruptor.cond);
    caml_plat_signal(&di->domain_cond);
  }
}

static void caml_domain_initialize_default(void)
{
  return;
}

static void caml_domain_stop_default(void)
{
  return;
}

static void caml_domain_external_interrupt_hook_default(void)
{
  return;
}

CAMLexport void (*caml_domain_initialize_hook)(void) =
   caml_domain_initialize_default;

CAMLexport void (*caml_domain_stop_hook)(void) =
   caml_domain_stop_default;

CAMLexport void (*caml_domain_external_interrupt_hook)(void) =
   caml_domain_external_interrupt_hook_default;

CAMLexport _Atomic caml_timing_hook caml_domain_terminated_hook =
  (caml_timing_hook)NULL;

static value make_finished(caml_result result)
{
  CAMLparam0();
  CAMLlocal1(res);
  res = caml_alloc_1(
    (caml_result_is_exception(result) ?
     1 /* Error */ :
     0 /* Ok */),
    result.data);
  /* [Finished res] */
  res = caml_alloc_1(0, res);
  CAMLreturn(res);
}

static void sync_result(value term_sync, value res)
{
  CAMLparam2(term_sync, res);
  /* Synchronize with joining domains. We call [caml_ml_mutex_lock]
     because the systhreads are still running on this domain. We
     assume this does not fail the exception it would raise at this
     point would be bad for us. */
  caml_ml_mutex_lock(*Term_mutex(term_sync));

  /* Store result */
  volatile value *state = Term_state(term_sync);
  CAMLassert(!Is_block(*state));
  caml_modify(state, res);

  /* Signal all the waiting domains to be woken up */
  caml_ml_condition_broadcast(*Term_condition(term_sync));

  /* The mutex is unlocked in the runtime after the cleanup
     functions are finished. */
  CAMLreturn0;
}

static void* domain_thread_func(void* v)
{
  struct domain_startup_params* p = v;
  struct domain_ml_values *ml_values = p->ml_values;

#ifndef _WIN32
  void * signal_stack = caml_init_signal_stack();
  if (signal_stack == NULL) {
    caml_fatal_error("Failed to create domain: signal stack");
  }
#endif

  domain_create(caml_params->init_minor_heap_wsz, p->parent->state);
  if (domain_self)
    domain_self->tid = pthread_self();

  /* this domain is now part of the STW participant set */
  p->newdom = domain_self;

  /* handshake with the parent domain */
  caml_plat_lock_blocking(&p->parent->interruptor.lock);
  if (domain_self) {
    p->status = Dom_started;
    p->unique_id = domain_self->interruptor.unique_id;
  } else {
    p->status = Dom_failed;
  }
  caml_plat_broadcast(&p->parent->interruptor.cond);
  caml_plat_unlock(&p->parent->interruptor.lock);
  /* Cannot access p below here. */

  if (domain_self) {
    install_backup_thread(domain_self);

    caml_gc_log("Domain starting (unique_id = %"ARCH_INTNAT_PRINTF_FORMAT"u)",
                domain_self->interruptor.unique_id);
    CAML_EV_LIFECYCLE(EV_DOMAIN_SPAWN, getpid());
    /* FIXME: ignoring errors during domain initialization is unsafe
       and/or can deadlock. */
    caml_domain_initialize_hook();

    /* release callback early;
       see the [note about callbacks and GC] in callback.c */
    value unrooted_callback = ml_values->callback;
    caml_modify_generational_global_root(&ml_values->callback, Val_unit);
    value res =
      make_finished(caml_callback_res(unrooted_callback, Val_unit));
    sync_result(ml_values->term_sync, res);

    sync_mutex mut = Mutex_val(*Term_mutex(ml_values->term_sync));
    caml_domain_terminate(false);

    /* This domain currently holds [mut], and has signaled all the
       waiting domains to be woken up. We unlock [mut] to release the
       joining domains. The unlock is done after [caml_domain_terminate] to
       ensure that this domain has released all of its runtime state.
       We call [caml_mutex_unlock] directly instead of
       [caml_ml_mutex_unlock] because the domain no longer exists at
       this point. */
    caml_mutex_unlock(mut);

    /* [ml_values] must be freed after unlocking [mut]. This ensures
       that [term_sync] is only removed from the root set after [mut]
       is unlocked. Otherwise, there is a risk of [mut] being
       destroyed by [caml_mutex_finalize] finaliser while it remains
       locked, leading to undefined behaviour. */
    free_domain_ml_values(ml_values);
  } else {
    caml_gc_log("Failed to create domain");
  }
#ifndef _WIN32
  caml_free_signal_stack(signal_stack);
#endif
  return 0;
}

/* Note: [caml_domain_spawn] and [caml_domain_alone()].

   The use of [caml_domain_alone()] to implement sequential fast-path
   requires that no other domain is operating in parallel. This is
   indeed the case when [caml_domain_alone()] is observed while
   holding the domain lock:

   1. When a domain exits, it is careful to decrement
      [caml_num_domains_running] as the very last step, so that
      [caml_domain_alone()] does not return [true] while its mutator
      or domain-termination cleanup logic are still in progress.

   2. When a domain starts, it increments [caml_num_domains_running]
      immediately after taking the domain lock, and its parent domain
      blocks waiting for the child set the [Dom_started] flag, which
      happens after this increment. Neither the parent nor the child
      can wrongly observe [caml_domain_alone()] while the other may be
      running code with its domain lock held.
*/


CAMLprim value caml_domain_spawn(value callback, value term_sync)
{
  CAMLparam2 (callback, term_sync);
  struct domain_startup_params p;
  pthread_t th;
  int err;

  if (atomic_load_relaxed(&domains_exiting) != 0) {
    caml_failwith("domain creation not allowed during shutdown");
  }

#ifndef NATIVE_CODE
  if (caml_debugger_in_use)
    caml_fatal_error("ocamldebug does not support spawning multiple domains");
#endif
  p.parent = domain_self;
  p.status = Dom_starting;

  p.ml_values =
      (struct domain_ml_values*) caml_stat_alloc(
                                    sizeof(struct domain_ml_values));
  init_domain_ml_values(p.ml_values, callback, term_sync);

  err = pthread_create(&th, 0, domain_thread_func, (void*)&p);
  caml_check_error(err, "failed to create domain thread: pthread_create");

  /* While waiting for the child thread to start up, we need to service any
     stop-the-world requests as they come in. */
  struct interruptor *interruptor = &domain_self->interruptor;
  caml_plat_lock_blocking(&interruptor->lock);
  while (p.status == Dom_starting) {
    if (caml_incoming_interrupts_queued()) {
      caml_plat_unlock(&interruptor->lock);
      handle_incoming(interruptor);
      caml_plat_lock_blocking(&interruptor->lock);
    } else {
      caml_plat_wait(&interruptor->cond, &interruptor->lock);
    }
  }
  caml_plat_unlock(&interruptor->lock);

  if (p.status == Dom_started) {
    /* successfully created a domain.
       p.ml_values is now owned by that domain */
    pthread_detach(th);
  } else {
    CAMLassert (p.status == Dom_failed);
    /* failed */
    pthread_join(th, 0);
    free_domain_ml_values(p.ml_values);
    caml_failwith("failed to allocate domain");
  }
  /* When domain 0 first spawns a domain, the backup thread is not active, we
     ensure it is started here. */
  domain_self->tid = pthread_self();
  if (!backup_thread_running(domain_self))
    install_backup_thread(domain_self);

  CAMLreturn (Val_long(p.unique_id));
}

CAMLprim value caml_ml_domain_id(value unit)
{
  CAMLnoalloc;
  return Val_long(domain_self->interruptor.unique_id);
}

CAMLprim value caml_ml_domain_index(value unit)
{
  CAMLnoalloc;
  return Val_long(domain_self->id);
}

/* Global barrier implementation */

Caml_inline int global_barrier_is_nth(barrier_status b, int n) {
  return (b & ~BARRIER_SENSE_BIT) == n;
}

static barrier_status global_barrier_begin(void)
{
  return caml_plat_barrier_arrive(&stw_request.barrier);
}

/* last domain into the barrier, flip sense */
static void global_barrier_flip(barrier_status sense)
{
  caml_plat_barrier_flip(&stw_request.barrier, sense);
}

/* wait until another domain flips the sense */
static void global_barrier_wait(barrier_status sense, int num_participating)
{
  /* it's not worth spinning for too long if there's more than one other domain
   */
  unsigned spins = num_participating == 2 ? Max_spins_long : Max_spins_medium;
  SPIN_WAIT_NTIMES(spins) {
    if (caml_plat_barrier_sense_has_flipped(&stw_request.barrier, sense)) {
      return;
    }
  }
  /* just block */
  caml_plat_barrier_wait_sense(&stw_request.barrier, sense);
}

void caml_enter_global_barrier(int num_participating)
{
  CAMLassert(num_participating == stw_request.num_domains);
  barrier_status b = global_barrier_begin();
  barrier_status sense = b & BARRIER_SENSE_BIT;
  if (global_barrier_is_nth(b, num_participating)) {
    global_barrier_flip(sense);
  } else {
    global_barrier_wait(sense, num_participating);
  }
}

barrier_status caml_global_barrier_and_check_final(int num_participating)
{
  CAMLassert(num_participating == stw_request.num_domains);
  barrier_status b = global_barrier_begin();
  if (global_barrier_is_nth(b, num_participating)) {
    CAMLassert(b); /* always nonzero */
    return b;
  } else {
    global_barrier_wait(b & BARRIER_SENSE_BIT, num_participating);
    return 0;
  }
}

void caml_global_barrier_release_as_final(barrier_status b)
{
  global_barrier_flip(b & BARRIER_SENSE_BIT);
}

int caml_global_barrier_num_participating(void)
{
  return stw_request.num_domains;
}

static void decrement_stw_domains_still_processing(void)
{
  /* we check if we are the last to leave a stw section
     if so, clear the stw_leader to allow the new stw sections to start.
   */
  intnat am_last =
      atomic_fetch_add(&stw_request.num_domains_still_processing, -1) == 1;

  if( am_last ) {
    /* release the STW lock to allow new STW sections */
    caml_plat_lock_blocking(&all_domains_lock);
    atomic_store_release(&stw_leader, 0);
    caml_plat_broadcast(&all_domains_cond);
    caml_gc_log("clearing stw leader");
    caml_plat_unlock(&all_domains_lock);
  }
}

/* Wait for other running domains to stop, called by interrupted
   domains before entering the STW section */
static void stw_wait_for_running(caml_domain_state* domain)
{
  /* The STW leader issues interrupts to all domains, then they all
     arrive into this barrier, with the last one releasing it; this
     tends to (and should) be fast, but we likely need to wait a bit
     in any case */

  if (stw_request.enter_spin_callback) {
    /* Spin while there is useful work to do */
    SPIN_WAIT_BOUNDED {
      if (caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
        return;
      }

      if (!stw_request.enter_spin_callback
            (domain, stw_request.enter_spin_data)) {
        break;
      }
    }
  }

  /* Spin a bit for the other domains */
  SPIN_WAIT_NTIMES(Max_spins_long) {
    if (caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
      return;
    }
  }

  /* If we're still waiting, block */
  caml_plat_barrier_wait(&stw_request.domains_still_running);
}

static void stw_api_barrier(caml_domain_state* domain)
{
  CAML_EV_BEGIN(EV_STW_API_BARRIER);
  if (caml_plat_barrier_arrive(&stw_request.domains_still_running)
      == stw_request.num_domains) {
    caml_plat_barrier_release(&stw_request.domains_still_running);
  } else {
    stw_wait_for_running(domain);
  }
  CAML_EV_END(EV_STW_API_BARRIER);
}

static void stw_handler(caml_domain_state* domain)
{
  CAML_EV_BEGIN(EV_STW_HANDLER);
  if (!caml_plat_barrier_is_released(&stw_request.domains_still_running)) {
    stw_api_barrier(domain);
  }

  #ifdef DEBUG
  Caml_state->inside_stw_handler = 1;
  #endif
  stw_request.callback(
      domain,
      stw_request.data,
      stw_request.num_domains,
      stw_request.participating);
  #ifdef DEBUG
  Caml_state->inside_stw_handler = 0;
  #endif

  decrement_stw_domains_still_processing();

  CAML_EV_END(EV_STW_HANDLER);

  /* poll the GC to check for deferred work
     we do this here because blocking or waiting threads only execute
     the interrupt handler and do not poll for deferred work*/
  caml_poll_gc_work();
}


#ifdef DEBUG
int caml_domain_is_in_stw(void) {
  return Caml_state->inside_stw_handler;
}
#endif

/* During a stop-the-world (STW), all currently running domains stop
   their usual work and synchronize to all call the same function.

   STW sections use [all_domains_lock] and the variable [stw_leader]
   (0 when no STW section is running, the dom_internal* pointer of the
   STW leader when a STW section is running) to guarantee that no
   domain is running something else:

   - If two STW sections are attempted in parallel, only one will
     manage to take the lock, and the domain starting the other will
     join that winning STW section, without running its own STW
     callback at all. (This is the [_try_] in the function name: if it
     returns 0, the STW section did not run at all, so you should call
     this function in a loop.)

   - Domain initialization code from [domain_create] will not run in
     parallel with a STW section, as [domain_create] starts by looping
     until (1) it has the [all_domains_lock] and (2) there is no
     current STW section (using the [stw_leader] variable). To avoid
     starvation, [domain_create] will prevent new STW sections if it
     can't make progress.

   - Domain cleanup code runs after the terminating domain may run in
     parallel to a STW section, but only after that domain has safely
     removed itself from the STW participant set: the
     [caml_domain_terminate] function is careful to only leave the STW
     set when (1) it has the [all_domains_lock] and (2) it hasn't
     received any request to participate in a STW section.

   Each domain leaves the section as soon as it is finished running
   the STW section callback. In particular, a mutator may resume while
   some other domains are still in the section. Any code within the STW
   callback that needs to happen before any mutator must be followed
   by a barrier, forcing all STW participants to synchronize.

   Taken together, these properties guarantee that STW sections act as
   a proper exclusion mechanism: for example, some mutable state
   global to all domains can be "protected by STW" if it is only
   mutated within STW section, with a barrier before the next
   read. Such state can be safely updated by domain initialization,
   but additional synchronization would be required to update it
   during domain cleanup.

   Note: in the case of both [domain_create] and [caml_domain_terminate]
   it is important that the loops (waiting for STW sections to finish)
   regularly release [all_domains_lock], to avoid deadlocks scenario
   with in-progress STW sections.
    - For [caml_domain_terminate] we release the lock and join
      the STW section before resuming.
    - For [domain_create] we wait until the end of the section using
      the condition variable [all_domains_cond] over
      [all_domains_lock], which is broadcasted when a STW section
      finishes.
   The same logic would apply for any other situations in which a domain
   wants to join or leave the set of STW participants.

  The explanation above applies if [sync] = 1. When [sync] = 0, no
  synchronization happens, and we simply run the handler asynchronously on
  all domains. We still hold the stw_leader field until we know that
  every domain has run the handler, so another STW section cannot
  interfere with this one.

*/
int caml_try_run_on_all_domains_with_spin_work(
  int sync,
  void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
  void* data,
  void (*leader_setup)(caml_domain_state*),
  int (*enter_spin_callback)(caml_domain_state*, void*),
  void* enter_spin_data)
{
  int i;
  caml_domain_state* domain_state = domain_self->state;

  caml_gc_log("requesting STW, sync=%d", sync);

  /* Don't touch the lock if there's already a stw leader
     OR we can't get the lock.

     Note: this read on [stw_leader] is an optimization, giving up
     faster (before trying to take the lock) in contended
     situations. Without this read, [stw_leader] would be protected by
     [all_domains_lock] and could be a non-atomic variable.
  */
  if (atomic_load_acquire(&stw_leader) ||
      !caml_plat_try_lock(&all_domains_lock)) {
    caml_handle_incoming_interrupts();
    return 0;
  }

  while (1) {
    /* see if there is a stw_leader already */
    if (atomic_load_acquire(&stw_leader)) {
      caml_plat_unlock(&all_domains_lock);
      caml_handle_incoming_interrupts();
      return 0;
    }

    /* STW requests may be suspended by [domain_create], in which case, instead
       of claiming the stw_leader, we should release the lock and wait for
       requests to be unsuspended before trying again */
    if (CAMLunlikely(stw_requests_suspended)) {
      caml_plat_wait(&requests_suspended_cond, &all_domains_lock);
      /* we hold the lock, but we must check for [stw_leader] again */
      continue;
    }

    break;
  }

  /* we have the lock and can claim the stw_leader */
  atomic_store_release(&stw_leader, (uintnat)domain_self);

  CAML_EV_BEGIN(EV_STW_LEADER);
  caml_gc_log("causing STW");

  /* set up all fields for this stw_request; they must be available
     for domains when they get interrupted */
  stw_request.enter_spin_callback = enter_spin_callback;
  stw_request.enter_spin_data = enter_spin_data;
  stw_request.callback = handler;
  stw_request.data = data;
  stw_request.num_domains = stw_domains.participating_domains;
  /* stw_request.barrier doesn't need resetting */
  atomic_store_release(&stw_request.num_domains_still_processing,
                       stw_domains.participating_domains);

  int is_alone = stw_request.num_domains == 1;
  int should_sync = sync && !is_alone;

  if (should_sync) {
    caml_plat_barrier_reset(&stw_request.domains_still_running);
  }

  if( leader_setup ) {
    leader_setup(domain_state);
  }

#ifdef DEBUG
  {
    int domains_participating = 0;
    for(i=0; i<caml_params->max_domains; i++) {
      if(all_domains[i].interruptor.running)
        domains_participating++;
    }
    CAMLassert(domains_participating == stw_domains.participating_domains);
    CAMLassert(domains_participating > 0);
  }
#endif

  /* Next, interrupt all domains */
  for(i = 0; i < stw_domains.participating_domains; i++) {
    dom_internal * d = stw_domains.domains[i];
    stw_request.participating[i] = d->state;
    CAMLassert(!interruptor_has_pending(&d->interruptor));
    if (d->state != domain_state) caml_send_interrupt(&d->interruptor);
  }


  /* Domains now know they are part of the STW.

     Note: releasing the lock will not allow new domain to be created
     in parallel with the rest of the STW section, as new domains
     follow the protocol of waiting on [all_domains_cond] which is
     only broadcast at the end of the STW section.

     The reason we use a condition variable [all_domains_cond] instead
     of just holding the lock until the end of the STW section is that
     the last domain to exit the section (and broadcast the condition)
     is not necessarily the same as the domain starting the section
     (and taking the lock) -- whereas POSIX mutexes must be unlocked
     by the same thread that locked them.
  */
  caml_plat_unlock(&all_domains_lock);

  /* arrive at enter barrier */
  if (should_sync) {
    stw_api_barrier(domain_state);
  }

  #ifdef DEBUG
  domain_state->inside_stw_handler = 1;
  #endif
  handler(domain_state, data,
          stw_request.num_domains, stw_request.participating);
  #ifdef DEBUG
  domain_state->inside_stw_handler = 0;
  #endif

  /* Note: the last domain passing through this function will
     temporarily take [all_domains_lock] again and use it to broadcast
     [all_domains_cond], waking up any domain waiting to be created. */
  decrement_stw_domains_still_processing();

  CAML_EV_END(EV_STW_LEADER);

  return 1;
}

int caml_try_run_on_all_domains(
  void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
  void* data,
  void (*leader_setup)(caml_domain_state*))
{
  return
      caml_try_run_on_all_domains_with_spin_work(1,
                                                 handler,
                                                 data,
                                                 leader_setup, 0, 0);
}

int caml_try_run_on_all_domains_async(
  void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
  void* data,
  void (*leader_setup)(caml_domain_state*))
{
  return
      caml_try_run_on_all_domains_with_spin_work(0,
                                                 handler,
                                                 data,
                                                 leader_setup, 0, 0);
}

void caml_interrupt_self(void)
{
  interrupt_domain_local(Caml_state);
}

/*  This function is async-signal-safe as [all_domains] and
    [caml_params->max_domains] are set before signal handlers are installed and
    do not change afterwards. */
void caml_interrupt_all_signal_safe(void)
{
  for (dom_internal *d = all_domains;
       d < &all_domains[caml_params->max_domains];
       d++) {
    /* [all_domains] is an array of values. So we can access
       [interrupt_word] directly without synchronisation other than
       with other people who access the same [interrupt_word].*/
    atomic_uintnat * interrupt_word =
      atomic_load_acquire(&d->interruptor.interrupt_word);
    /* Early exit: if the current domain was never initialized, then
       neither have been any of the remaining ones. */
    if (interrupt_word == NULL) return;
    interrupt_domain(&d->interruptor);
  }
}

/* To avoid any risk of forgetting an action through a race,
   [caml_reset_young_limit] is the only way (apart from setting
   young_limit to -1 for immediate interruption) through which
   [young_limit] can be modified. We take care here of possible
   races. */
void caml_reset_young_limit(caml_domain_state * dom_st)
{
  /* An interrupt might have been queued in the meanwhile; the
     atomic_exchange achieves the proper synchronisation with the
     reads that follow (an atomic_store is not enough). */
  value *trigger = dom_st->young_trigger > dom_st->memprof_young_trigger ?
          dom_st->young_trigger : dom_st->memprof_young_trigger;
  CAMLassert ((uintnat)dom_st->young_ptr >=
              (uintnat)dom_st->memprof_young_trigger);
  CAMLassert ((uintnat)dom_st->young_ptr >=
              (uintnat)dom_st->young_trigger);
  /* An interrupt might have been queued in the meanwhile; this
     achieves the proper synchronisation. */
  atomic_exchange(&dom_st->young_limit, (uintnat)trigger);

  /* For non-delayable asynchronous actions, we immediately interrupt
     the domain again. */
  dom_internal * d = &all_domains[dom_st->id];
  if (interruptor_has_pending(&d->interruptor)
      || dom_st->requested_minor_gc
      || dom_st->requested_major_slice
      || dom_st->major_slice_epoch < atomic_load (&caml_major_slice_epoch)) {
    interrupt_domain_local(dom_st);
  }
  /* We might be here due to a recently-recorded signal or forced
     systhread switching, so we need to remember that we must run
     signal handlers or systhread's yield. In addition, in the case of
     long-running C code (that may regularly poll with
     caml_process_pending_actions), we want to force a query of all
     callbacks at every minor collection or major slice (similarly to
     the OCaml behaviour). */
  caml_set_action_pending(dom_st);
}

void caml_update_young_limit_after_c_call(caml_domain_state * dom_st)
{
  if (CAMLunlikely(dom_st->action_pending)) interrupt_domain_local(dom_st);
}

Caml_inline void advance_global_major_slice_epoch (caml_domain_state* d)
{
  uintnat old_value;

  CAMLassert (atomic_load (&caml_major_slice_epoch) <=
              atomic_load (&caml_minor_collections_count));

  old_value = atomic_exchange (&caml_major_slice_epoch,
                               atomic_load (&caml_minor_collections_count));

  if (old_value != atomic_load (&caml_minor_collections_count)) {
    /* This domain is the first one to use up half of its minor heap arena
        in this minor cycle. Trigger major slice on other domains. */
    caml_interrupt_all_signal_safe();
  }
}

static void stw_global_major_slice(
  caml_domain_state *domain,
  void *unused,
  int participating_count,
  caml_domain_state **participating)
{
  domain->requested_major_slice = 1;
  /* Nothing else to do, as [stw_hander] will call [caml_poll_gc_work]
     right after the callback. */
}

void caml_poll_gc_work(void)
{
  CAMLalloc_point_here;

  caml_domain_state* d = Caml_state;

  if ((uintnat)d->young_ptr - Bhsize_wosize(Max_young_wosize) <
      (uintnat)d->young_trigger) {

    if (d->young_trigger == d->young_start) {
      /* Trigger minor GC */
      d->requested_minor_gc = 1;
    } else {
      CAMLassert (d->young_trigger ==
                  d->young_start + (d->young_end - d->young_start) / 2);
      /* We have used half of our minor heap arena. Request a major slice on
         this domain. */
      advance_global_major_slice_epoch (d);
      /* Advance the [young_trigger] to [young_start] so that the allocation
         fails when the minor heap is full. */
      d->young_trigger = d->young_start;
    }
  } else if (d->requested_minor_gc) {
    /* This domain has _not_ used up half of its minor heap arena, but a minor
       collection has been requested. Schedule a major collection slice so as
       to not lag behind. */
    advance_global_major_slice_epoch (d);
  }

  if (d->major_slice_epoch < atomic_load (&caml_major_slice_epoch)) {
    d->requested_major_slice = 1;
  }

  if (d->requested_minor_gc) {
    /* out of minor heap or collection forced */
    d->requested_minor_gc = 0;
    caml_empty_minor_heaps_once();
  }

  if (d->requested_major_slice || d->requested_global_major_slice) {
    CAML_EV_BEGIN(EV_MAJOR);
    d->requested_major_slice = 0;
    caml_major_collection_slice(AUTO_TRIGGERED_MAJOR_SLICE);
    CAML_EV_END(EV_MAJOR);
  }

  if (d->requested_global_major_slice) {
    if (caml_try_run_on_all_domains_async(
          &stw_global_major_slice, NULL, NULL)){
      d->requested_global_major_slice = 0;
    }
    /* If caml_try_run_on_all_domains_async fails, we'll try again next time
       caml_poll_gc_work is called. */
  }

  caml_reset_young_limit(d);
}

void caml_handle_gc_interrupt(void)
{
  CAMLalloc_point_here;

  if (caml_incoming_interrupts_queued()) {
    /* interrupt */
    CAML_EV_BEGIN(EV_INTERRUPT_REMOTE);
    caml_handle_incoming_interrupts();
    CAML_EV_END(EV_INTERRUPT_REMOTE);
  }

  caml_poll_gc_work();
}

/* Preemptive systhread switching */
void caml_process_external_interrupt(void)
{
  if (atomic_load_acquire(&Caml_state->requested_external_interrupt)) {
    caml_domain_external_interrupt_hook();
  }
}

CAMLexport int caml_bt_is_in_blocking_section(void)
{
  uintnat status = atomic_load_acquire(&domain_self->backup_thread_msg);
  return status == BT_IN_BLOCKING_SECTION;
}

CAMLexport int caml_bt_is_self(void)
{
  return pthread_equal(domain_self->backup_thread, pthread_self());
}

CAMLexport intnat caml_domain_is_multicore (void)
{
  return (!caml_domain_alone()
          || backup_thread_running(domain_self));
}

CAMLexport void caml_acquire_domain_lock(void)
{
  dom_internal* self = domain_self;
  caml_plat_lock_blocking(&self->domain_lock);
  caml_state = self->state;
}

CAMLexport void caml_bt_enter_ocaml(void)
{
  dom_internal* self = domain_self;
  bool bt_running = backup_thread_running(self);
  CAMLassert(caml_domain_alone() || bt_running);

  if (bt_running) {
    atomic_store_release(&self->backup_thread_msg, BT_ENTERING_OCAML);
  }
}

CAMLexport void caml_release_domain_lock(void)
{
  dom_internal* self = domain_self;
  caml_state = NULL;
  caml_plat_unlock(&self->domain_lock);
}

CAMLexport void caml_bt_exit_ocaml(void)
{
  dom_internal* self = domain_self;
  bool bt_running = backup_thread_running(self);

  CAMLassert(caml_domain_alone() || bt_running);

  if (bt_running) {
    atomic_store_release(&self->backup_thread_msg, BT_IN_BLOCKING_SECTION);
    /* Wakeup backup thread if it is sleeping */
    caml_plat_signal(&self->domain_cond);
  }
}

/* default handler for unix_fork, will be called by unix_fork. */
static void caml_atfork_default(void)
{
  caml_reset_domain_lock();
  caml_acquire_domain_lock();
  /* FIXME: For best portability, the IO channel locks should be
     reinitialised as well. (See comment in
     caml_reset_domain_lock.) */
}

CAMLexport void (*caml_atfork_hook)(void) = caml_atfork_default;

static inline int domain_terminating(dom_internal *d) {
  return d->interruptor.terminating;
}

int caml_domain_terminating (caml_domain_state *dom_st)
{
  return domain_terminating(&all_domains[dom_st->id]);
}

int caml_domain_is_terminating (void)
{
  return domain_terminating(domain_self);
}

static bool marking_and_sweeping_done(caml_domain_state *domain_state)
{
  return (domain_state->marking_done
          && domain_state->sweeping_done);
}

void caml_domain_terminate(bool last)
{
  caml_domain_state* domain_state = domain_self->state;
  struct interruptor* s = &domain_self->interruptor;
  int finished = 0;

  caml_gc_log("Domain terminating");
  s->terminating = 1;

  /* Join ongoing systhreads, if necessary, and then run user-defined
     termination hooks. No OCaml code can run on this domain after
     this. */
  caml_domain_stop_hook();
  call_timing_hook(&caml_domain_terminated_hook);

  while (!finished) {
    caml_finish_sweeping();

    caml_empty_minor_heaps_once();
    /* Note: [caml_empty_minor_heaps_once] will also join any ongoing
       STW sections that has sent an interrupt to this domain. */

    if (last)
      caml_finish_major_cycle(0);

    caml_finish_marking();

    caml_orphan_ephemerons(domain_state);
    caml_orphan_finalisers(domain_state);

    /* Orphaning ephemerons and finalizers may create new marking or
       sweeping work, so we may need to mark and/or sweep again. */

    /* No need to check for interrupts if we are the last domain running. */
    if (last) {
      CAML_EV_LIFECYCLE(EV_DOMAIN_TERMINATE, getpid());
      break;
    }

    /* If new marking or sweeping work appeared during orphaning,
       run a new loop iteration. */
    if (!marking_and_sweeping_done(domain_state))
      continue;

    /* Orphan the local shared heap.
       This is only valid when [sweeping_done], and does
       not create any new major GC work. */
    caml_orphan_shared_heap(domain_state->shared_heap);
    CAMLassert(marking_and_sweeping_done(domain_state));

    /* Take the all_domains_lock to try and exit the STW participant set
       without racing with a STW section being triggered. */
    caml_plat_lock_blocking(&all_domains_lock);

    /* The interaction of termination and major GC is quite subtle.

       At the end of the major GC, we decide the number of domains to mark and
       sweep for the next cycle. If a STW section has been started, it will
       require this domain to participate, which in turn could involve a major
       GC cycle. This would then require finish marking and sweeping again in
       order to decrement the globals [num_domains_to_mark] and
       [num_domains_to_sweep] (see major_gc.c). We do this by running a new
       loop iteration.
     */
    if (!caml_incoming_interrupts_queued()) {
      finished = 1;
      s->terminating = 0;
      s->running = 0;

      /* Remove this domain from stw_domains. */
      remove_from_stw_domains(domain_self);

      /* Signal the interruptor condition variable
         because the backup thread may be waiting on it. */
      caml_plat_lock_blocking(&s->lock);
      caml_plat_broadcast(&s->cond);
      caml_plat_unlock(&s->lock);

      /* We must signal domain termination before releasing [all_domains_lock]:
         after that, this domain will no longer take part in STWs and emitting
         an event could race with runtime events teardown. */
      CAML_EV_LIFECYCLE(EV_DOMAIN_TERMINATE, getpid());
    }
    caml_plat_unlock(&all_domains_lock);
  }

  if (!last) caml_assert_shared_heap_is_empty(domain_state->shared_heap);

  /* [domain_state] may be re-used by a fresh domain here, now that we
     have done [remove_from_stw_domains] and released the
     [all_domains_lock]. In particular, we cannot touch
     [domain_self->interruptor] after here because it may be reused.

     However, [domain_create()] won't touch the domain state until
     it has claimed the [domain_lock], so we hang onto that while we are
     tearing down the state. */

  /* Delete the domain state from statmemprof after any promotion
   * (etc) done by this domain: any remaining memprof state will be
   * handed over to surviving domains. */
  caml_memprof_delete_domain(domain_state);

  caml_remove_generational_global_root(&domain_state->dls_root);
  caml_remove_generational_global_root(&domain_state->backtrace_last_exn);
  caml_stat_free(domain_state->final_info);
  caml_stat_free(domain_state->ephe_info);
  caml_free_intern_state();
  caml_free_extern_state();
  caml_teardown_major_gc();

  /* At this point, we know that the shared heap has been orphaned,
     except if [last], if we are the last domain. In that case we
     finalise all unswept objects and orphan the shared heap now. */
  if (last) {
    /* First adopt all orphan pools, to avoid missing unswept objects. */
    caml_adopt_all_orphan_heaps(domain_state->shared_heap);

    /* Call all custom finalisers of unswept objects. */
    caml_finalise_heap();

    /* Then orphan all pools again. */
    caml_orphan_shared_heap(domain_state->shared_heap);
  }
  caml_assert_shared_heap_is_empty(domain_state->shared_heap);

  caml_free_shared_heap(domain_state->shared_heap);
  domain_state->shared_heap = NULL;
  caml_free_minor_tables(domain_state->minor_tables);
  domain_state->minor_tables = NULL;

  /* At this point, the stats of the domain must be empty.
     - heap stats were orphaned by [caml_orphan_shared_heap]
     - alloc stats were orphaned by [caml_orphan_alloc_stats]
     - the sampled copy in [sampled_gc_stats] was cleared by the minor
       collection performed by [caml_empty_minor_heaps_once()], see
       the termination-specific logic in
       [caml_collect_gc_stats_sample_stw].
  */

  /* TODO: can this ever be NULL? can we remove this check? */
  if(domain_state->current_stack != NULL) {
    caml_free_stack(domain_state->current_stack);
  }
  caml_free_backtrace_buffer(domain_state->backtrace_buffer);
  caml_free_gc_regs_buckets(domain_state->gc_regs_buckets);

  /* signal the domain termination to the backup thread
     NB: for a program with no additional domains, the backup thread
     will not have been started */
  terminate_backup_thread(domain_self);
  caml_plat_unlock(&domain_self->domain_lock);

  caml_plat_assert_all_locks_unlocked();
  /* This is the last thing we do because we need to be able to rely
     on caml_domain_alone (which uses caml_num_domains_running) in at least
     the shared_heap lockfree fast paths. Also, we don't want to decrement
     it back to zero when the last domain exits, for caml_domain_alone()
     to remain accurate. */
  if (!last)
    atomic_fetch_add(&caml_num_domains_running, -1);
}

/* Try and terminate the currently running domain.
   This is only invoked when extra domains are left running while the
   main one is terminating. In this case, we are not in a state where
   we can safely release resources. The best we can do is cancel the
   extra running threads. */
static void stw_terminate_domain(caml_domain_state *domain, void *data,
  int participating_count,
  caml_domain_state **participating)
{
  if (!pthread_equal(domain_self->tid, *(pthread_t *)data)) {
    if (caml_bt_is_self()) {
      /* If this STW request is handled by the backup thread, the
         domain thread is currently running C code. */
      domain_self->domain_canceled = true;
      (void)pthread_cancel(domain_self->tid);
      /* We are intentionally not waiting for the thread to terminate here,
         and not decrementing the number of running domains either, since
         we don't know the state of the various locks and condition
         variables in this state. */
      atomic_store_release(&domain_self->backup_thread_msg, BT_INIT);
    } else {
      /* Domain threads forced to exit here will not have a chance to
         run caml_domain_terminate() on their own, so we need to ask
         the backup thread to terminate here. */
      terminate_backup_thread(domain_self);
      caml_plat_unlock(&domain_self->domain_lock);
      /* No particular memory resource cleanup is attempted here, for we
         have no idea which state each domain is in. */
    }
    pthread_exit(0);
  }
}

void caml_stop_all_domains(void)
{
  atomic_store_relaxed(&domains_exiting, 1);

  pthread_t myself = pthread_self();
  do {} while (!caml_try_run_on_all_domains(
               &stw_terminate_domain, &myself, NULL));

  terminate_backup_thread(domain_self);
  caml_plat_unlock(&domain_self->domain_lock);

  caml_plat_assert_all_locks_unlocked();
}

bool caml_free_domains(void)
{
  bool result = true;

  for (int i = 0; i < caml_params->max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    /* Give the backup thread time to terminate gracefully, if needed */
    while (backup_thread_running(dom)) {
      cpu_relax();
    }

    dom->interruptor.interrupt_word = NULL;
    caml_plat_mutex_free(&dom->interruptor.lock);
    caml_plat_cond_free(&dom->interruptor.cond);

    if (dom->domain_canceled)
      result = false;
    else
      caml_plat_mutex_free(&dom->domain_lock);
    caml_plat_cond_free(&dom->domain_cond);
  }

#ifdef WITH_THREAD_SANITIZER
  /* When running with TSan, there will be reports of races between
     freeing the all_domains synchronization objects and domain threads
     accessing them, even though we wait first for the domain threads to
     have terminated in the above loop. */
  result = false;
#endif

  return result;
}

CAMLprim value caml_ml_domain_cpu_relax(value t)
{
  struct interruptor* self = &domain_self->interruptor;
  handle_incoming_otherwise_relax (self);
  return Val_unit;
}

CAMLprim value caml_domain_dls_set(value t)
{
  CAMLnoalloc;
  caml_modify_generational_global_root(&Caml_state->dls_root, t);
  return Val_unit;
}

CAMLprim value caml_domain_dls_get(value unused)
{
  CAMLnoalloc;
  return Caml_state->dls_root;
}

CAMLprim value caml_domain_dls_compare_and_set(value old, value new)
{
  CAMLnoalloc;
  value current = Caml_state->dls_root;
  if (current == old) {
    caml_modify_generational_global_root(&Caml_state->dls_root, new);
    return Val_true;
  } else {
    return Val_false;
  }
}

CAMLprim value caml_recommended_domain_count(value unused)
{
  intnat n = -1;

#if defined(HAS_GNU_GETAFFINITY_NP) || defined(HAS_BSD_GETAFFINITY_NP)
  cpu_set_t cpuset;

  CPU_ZERO(&cpuset);
  /* error case fallsback into next method */
  if (pthread_getaffinity_np(pthread_self(), sizeof(cpuset), &cpuset) == 0)
    n = CPU_COUNT(&cpuset);
#endif /* HAS_GNU_GETAFFINITY_NP || HAS_BSD_GETAFFINITY_NP */

#ifdef _SC_NPROCESSORS_ONLN
  if (n == -1)
    n = sysconf(_SC_NPROCESSORS_ONLN);
#endif /* _SC_NPROCESSORS_ONLN */

#ifdef _WIN32
  SYSTEM_INFO sysinfo;
  GetSystemInfo(&sysinfo);
  n = sysinfo.dwNumberOfProcessors;
#endif /* _WIN32 */

  /* At least one, even if system says zero */
  if (n <= 0)
    n = 1;
  else if (n > caml_params->max_domains)
    n = caml_params->max_domains;

  return (Val_long(n));
}