1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Jean-Christophe Filliâtre *)
(* *)
(* Copyright 2023 CNRS *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Priority queues over ordered elements.
We choose to have polymorphic elements here, so that we can later
derive both polymorphic and monomorphic priority queues from it.
*)
module type OrderedPolyType = sig
type 'a t
val compare : 'a t -> 'b t -> int
end
module MakeMinPoly(E: OrderedPolyType) =
struct
type 'a elt = 'a E.t
(* Our priority queues are implemented using the standard "min heap"
data structure, a dynamic array representing a binary tree. *)
type 'a t = 'a E.t Dynarray.t
let create =
Dynarray.create
let length =
Dynarray.length
let is_empty =
Dynarray.is_empty
let clear =
Dynarray.clear
(* The node at index [i] has children nodes at indices [2 * i + 1]
and [2 * i + 2] -- if they are valid indices in the dynarray. *)
let left_child i = 2 * i + 1
let right_child i = 2 * i + 2
let parent_node i = (i - 1) / 2
(* We say that a heap respects the "heap ordering" if the value of
each node is no greater than the value of its children. The
algorithm manipulates arrays that respect the heap ordering,
except for one node whose value may be too small or too large.
The auxiliary functions [sift_up] and [sift_down] take
such a misplaced value, and move it "up" (respectively: "down")
until the heap ordering is restored.
Functions [sift_up] and [sift_down] do not perform swaps, but
rather expect the value to be assigned in the heap as an
additional parameter [x], resulting in twice less assignments. *)
(* store [x] at index [i], moving it up if necessary *)
let rec sift_up h i x =
if i = 0 then Dynarray.set h 0 x else
let p = parent_node i in
let y = Dynarray.get h p in
if E.compare x y < 0 then (
Dynarray.set h i y;
sift_up h p x
) else
Dynarray.set h i x
let add h x =
let i = Dynarray.length h in
Dynarray.add_last h x;
if i > 0 then sift_up h i x
let add_iter h iter x =
iter (add h) x
let min_elt h =
if Dynarray.is_empty h then None else Some (Dynarray.get h 0)
let get_min_elt h =
if Dynarray.is_empty h then invalid_arg "empty priority queue";
Dynarray.get h 0
let lt h i j =
E.compare (Dynarray.get h i) (Dynarray.get h j) < 0
(* store [x] at index [i], moving it down if necessary *)
let rec sift_down h ~len i x =
let left = left_child i in
if left >= len then Dynarray.set h i x (* no child, stop *) else
let smallest =
let right = right_child i in
if right >= len then left (* no right child *) else
if lt h left right then left else right
in
let y = Dynarray.get h smallest in
if E.compare y x < 0 then (
Dynarray.set h i y;
sift_down h ~len smallest x
) else
Dynarray.set h i x
let pop_min h =
let n = Dynarray.length h in
if n = 0 then None else
let x = Dynarray.pop_last h in
if n = 1 then Some x else (
let r = Dynarray.get h 0 in
sift_down h ~len:(n - 1) 0 x;
Some r
)
let remove_min h =
let n = Dynarray.length h in
if n > 0 then (
let x = Dynarray.pop_last h in
if n > 1 then sift_down h ~len:(n - 1) 0 x
)
let copy =
Dynarray.copy
(* array to heap in linear time (Floyd, 1964)
many elements travel a short distance, few travel longer distances
and we can show that it totals to O(N) *)
let heapify h =
let n = Dynarray.length h in
for i = n/2 - 1 downto 0 do
sift_down h ~len:n i (Dynarray.get h i)
done;
h
let of_array a =
Dynarray.of_array a |> heapify
let of_list l =
Dynarray.of_list l |> heapify
let of_iter iter x =
let a = Dynarray.create () in
iter (Dynarray.add_last a) x;
heapify a
let iter_unordered =
Dynarray.iter
let fold_unordered =
Dynarray.fold_left
end
module type MinPoly =
sig
type 'a t
type 'a elt
val create: unit ->'a t
val length: 'a t -> int
val is_empty: 'a t -> bool
val add: 'a t -> 'a elt -> unit
val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit
val min_elt: 'a t -> 'a elt option
val get_min_elt: 'a t -> 'a elt
val pop_min: 'a t -> 'a elt option
val remove_min: 'a t -> unit
val clear: 'a t -> unit
val copy: 'a t -> 'a t
val of_array: 'a elt array -> 'a t
val of_list: 'a elt list -> 'a t
val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t
val iter_unordered: ('a elt -> unit) -> 'a t -> unit
val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc
end
module type MaxPoly =
sig
type 'a t
type 'a elt
val create: unit -> 'a t
val length: 'a t -> int
val is_empty: 'a t -> bool
val add: 'a t -> 'a elt -> unit
val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit
val max_elt: 'a t -> 'a elt option
val get_max_elt: 'a t -> 'a elt
val pop_max: 'a t -> 'a elt option
val remove_max: 'a t -> unit
val clear: 'a t -> unit
val copy: 'a t -> 'a t
val of_array: 'a elt array -> 'a t
val of_list: 'a elt list -> 'a t
val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t
val iter_unordered: ('a elt -> unit) -> 'a t -> unit
val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc
end
module MakeMaxPoly(E: OrderedPolyType)
: MaxPoly with type 'a elt = 'a E.t =
struct
include MakeMinPoly(struct
type 'a t = 'a E.t
let compare x y = E.compare y x
end)
(* renaming a few functions... *)
let max_elt = min_elt
let get_max_elt = get_min_elt
let pop_max = pop_min
let remove_max = remove_min
end
(* Monomorphic priority queues *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type Min =
sig
type t
type elt
val create: unit ->t
val length: t -> int
val is_empty: t -> bool
val add: t -> elt -> unit
val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit
val min_elt: t -> elt option
val get_min_elt: t -> elt
val pop_min: t -> elt option
val remove_min: t -> unit
val clear: t -> unit
val copy: t -> t
val of_array: elt array -> t
val of_list: elt list -> t
val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t
val iter_unordered: (elt -> unit) -> t -> unit
val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc
end
module MakeMin(E: OrderedType) =
struct
include MakeMinPoly(struct type 'a t = E.t
let compare = E.compare end)
type t = E.t Dynarray.t
end
module type Max =
sig
type t
type elt
val create: unit ->t
val length: t -> int
val is_empty: t -> bool
val add: t -> elt -> unit
val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit
val max_elt: t -> elt option
val get_max_elt: t -> elt
val pop_max: t -> elt option
val remove_max: t -> unit
val clear: t -> unit
val copy: t -> t
val of_array: elt array -> t
val of_list: elt list -> t
val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t
val iter_unordered: (elt -> unit) -> t -> unit
val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc
end
module MakeMax(E: OrderedType) =
struct
include MakeMinPoly(struct type 'a t = E.t
let compare x y = E.compare y x end)
type t = E.t Dynarray.t
let max_elt = min_elt
let get_max_elt = get_min_elt
let pop_max = pop_min
let remove_max = remove_min
end
|