1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Jean-Christophe Filliâtre *)
(* *)
(* Copyright 2023 CNRS *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Priority queues.
The {!Pqueue} module implements a data structure of priority queues,
given a totally ordered type for elements. This is a mutable
data structure. Both min- and max-priority queues are provided.
The implementation uses a heap stored in a dynamic array, and is
therefore reasonably efficient: accessing the minimum
(resp. maximum) element takes constant time, and insertion and
removal take time logarithmic in the size of the priority
queue. Note that [of_array] runs in linear time (and thus must be
preferred to repeated insertions with [add]).
It is fine to have several elements with the same priority.
Nothing is guaranteed regarding the order in which they will be
popped. However, it is guaranteed that the element returned by
[min_elt] (or [get_min_elt]) is the one that is removed from the
priority queue by [pop_min] (or [remove_min]). This is important
in many algorithms, (e.g. when peeking at several priority queues
and then selecting one to remove from).
@since 5.4
*)
module type OrderedType =
sig
type t
(** The type of elements. *)
val compare : t -> t -> int
(** A total ordering function to compare elements.
This is a two-argument function [f] such that [f e1 e2] is
zero if the elements [e1] and [e2] are equal, [f e1 e2] is
strictly negative if [e1] is smaller than [e2], and [f e1
e2] is strictly positive if [e1] is greater than [e2].
The generic structural comparison function {!Stdlib.compare}
is a suitable ordering function for element types such as
[int] or [string]. *)
end
(** Input signature of the functors {!MakeMin} and {!MakeMax}. *)
module type Min =
sig
(** {1:pqueue Min-priority queues} *)
type t
(** The type of priority queues. *)
type elt
(** The type of priority queue elements. *)
val create: unit -> t
(** Return a new priority queue, initially empty. *)
val length: t -> int
(** Return the number of elements in a priority queue. *)
val is_empty: t -> bool
(** [is_empty q] is [true] iff [q] is empty, that is, iff [length q = 0]. *)
val add: t -> elt -> unit
(** [add q x] adds the element [x] in the priority queue [q]. *)
val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit
(** [add_iter q iter x] adds each element of [x] to the end of [q].
This is [iter (add q) x]. *)
val min_elt: t -> elt option
(** [min_elt q] is an element of [q] with minimal priority or
[None] if the queue is empty. The queue is not modified. *)
val get_min_elt: t -> elt
(** [get_min_elt q] returns an element of [q] with minimal
priority, or raises {!Stdlib.Invalid_argument} if the queue is
empty. The queue is not modified. *)
val pop_min: t -> elt option
(** [pop_min q] removes and returns an element in queue [q] with
minimal priority, or returns [None] if the queue is empty. *)
val remove_min: t -> unit
(** [remove_min q] removes an element in queue [q] with minimal
priority. It does nothing if [q] is empty. *)
val clear: t -> unit
(** [clear q] removes all elements from [q]. *)
val copy: t -> t
(** [copy q] is a new priority queue with the same elements [q] has. *)
(** {1:conversions Conversions from other data structures} *)
val of_array: elt array -> t
(** [of_array a] returns a new priority queue containing the
elements of array [a]. Runs in linear time. *)
val of_list: elt list -> t
(** [of_list l] returns a new priority queue containing the
elements of list [l]. Runs in linear time. *)
val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t
(** [of_iter iter x] returns a new priority queue containing the
elements of [x], obtained from [iter].
For example, [of_iter Seq.iter s] returns a new priority queue
containing all the elements of the sequence [s] (provided it
is finite).
Runs in linear time (excluding the time spent in [iter]). *)
(** {1:iteration Iteration}
The order in which the elements of a priority queue are
traversed is unspecified.
It is a programming error to mutate a priority queue (by
adding or removing elements) during an iteration of the queue.
Such an error may be detected and signaled by the backing dynamic
array implementation, but this is not guaranteed. *)
val iter_unordered: (elt -> unit) -> t -> unit
(** [iter_unordered f q] applies [f] to all elements in [q]. The
order in which the elements are passed to [f] is unspecified.
The behavior is not specified if the priority queue is modified
by [f] during the iteration. *)
val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc
(** [fold_unordered f accu q] is [(f (... (f (f accu x1) x2) ...)
xn)] where [x1,x2,...,xn] are the elements of [q]. The order
in which the elements are passed to [f] is unspecified.
The behavior is not specified if the priority queue is modified
by [f] during the iteration. *)
end
(** Output signature of the functor {!MakeMin}. *)
module MakeMin(E: OrderedType) : Min with type elt := E.t
(** Functor building an implementation of the min-priority queue
structure given a totally ordered type for elements. *)
module type Max =
sig
type t
type elt
val create: unit -> t
val length: t -> int
val is_empty: t -> bool
val add: t -> elt -> unit
val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit
val max_elt: t -> elt option
val get_max_elt: t -> elt
val pop_max: t -> elt option
val remove_max: t -> unit
val clear: t -> unit
val copy: t -> t
val of_array: elt array -> t
val of_list: elt list -> t
val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t
val iter_unordered: (elt -> unit) -> t -> unit
val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc
end
(** Output signature of the functor {!MakeMax}. *)
module MakeMax(E: OrderedType) : Max with type elt := E.t
(** Functor building an implementation of the max-priority queue
structure given a totally ordered type for elements. *)
(** {1 Polymorphic priority queues}
The following, more complex functors create polymorphic queues of
type ['a t], just like other polymorphic containers (lists,
arrays...). They require a notion of "polymorphic elements" ['a
elt] that can be compared without depending on the values of ['a].
One usage scenario is when the user wants to pass priorities
separately from the value stored in the queue. This is done by
using pairs [priority * 'a] as elements.
{[
module Prio : OrderedType = ...
module PrioQueue = Pqueue.MakeMinPoly(struct
type 'a t = Prio.t * 'a
let compare (p1, _) (p2, _) = Prio.compare p1 p2
end)
(* for example, we now have: *)
PrioQueue.add: 'a PrioQueue.t -> Prio.t * 'a -> unit
PrioQueue.min_elt: 'a PrioQueue.t -> (Prio.t * 'a) option
]}
*)
module type OrderedPolyType =
sig
type 'a t
(** The polymorphic type of elements. *)
val compare : 'a t -> 'b t -> int
(** [compare] is a total order on values of type {!t}. *)
end
(** Input signature of the functors {!MakeMinPoly} and {!MakeMaxPoly}. *)
module type MinPoly =
sig
type 'a t
type 'a elt
val create: unit ->'a t
val length: 'a t -> int
val is_empty: 'a t -> bool
val add: 'a t -> 'a elt -> unit
val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit
val min_elt: 'a t -> 'a elt option
val get_min_elt: 'a t -> 'a elt
val pop_min: 'a t -> 'a elt option
val remove_min: 'a t -> unit
val clear: 'a t -> unit
val copy: 'a t -> 'a t
val of_array: 'a elt array -> 'a t
val of_list: 'a elt list -> 'a t
val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t
val iter_unordered: ('a elt -> unit) -> 'a t -> unit
val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc
end
(** Output signature of the functor {!MakeMinPoly}. *)
module MakeMinPoly (E : OrderedPolyType) :
MinPoly with type 'a elt := 'a E.t
(** Functor building an implementation of min-priority queues
given a totally ordered type for the elements. *)
module type MaxPoly =
sig
type 'a t
type 'a elt
val create: unit -> 'a t
val length: 'a t -> int
val is_empty: 'a t -> bool
val add: 'a t -> 'a elt -> unit
val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit
val max_elt: 'a t -> 'a elt option
val get_max_elt: 'a t -> 'a elt
val pop_max: 'a t -> 'a elt option
val remove_max: 'a t -> unit
val clear: 'a t -> unit
val copy: 'a t -> 'a t
val of_array: 'a elt array -> 'a t
val of_list: 'a elt list -> 'a t
val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t
val iter_unordered: ('a elt -> unit) -> 'a t -> unit
val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc
end
(** Output signature of the functor {!MakeMaxPoly}. *)
module MakeMaxPoly (E : OrderedPolyType) :
MaxPoly with type 'a elt := 'a E.t
(** Functor building an implementation of max-priority queues
given a totally ordered type for the elements. *)
|