1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Gallium, INRIA Rocquencourt *)
(* *)
(* Copyright 2014 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Common subexpression elimination by value numbering over extended
basic blocks. *)
open Mach
type valnum = int
(* Classification of operations *)
type op_class =
| Op_pure (* pure arithmetic, produce one or several result *)
| Op_checkbound (* checkbound-style: no result, can raise an exn *)
| Op_load of Asttypes.mutable_flag (* memory load *)
| Op_store of bool (* memory store, false = init, true = assign *)
| Op_other (* anything else that does not allocate nor store in memory *)
(* We maintain sets of equations of the form
valnums = operation(valnums)
plus a mapping from registers to valnums (value numbers). *)
type rhs = operation * valnum array
module Equations = struct
module Rhs_map =
Map.Make(struct type t = rhs let compare = Stdlib.compare end)
type 'a t =
{ mutable_load_equations : 'a Rhs_map.t;
other_equations : 'a Rhs_map.t }
let empty =
{ mutable_load_equations = Rhs_map.empty;
other_equations = Rhs_map.empty }
let add op_class op v m =
match op_class with
| Op_load Mutable ->
{ m with mutable_load_equations =
Rhs_map.add op v m.mutable_load_equations }
| _ ->
{ m with other_equations = Rhs_map.add op v m.other_equations }
let find op_class op m =
match op_class with
| Op_load Mutable ->
Rhs_map.find op m.mutable_load_equations
| _ ->
Rhs_map.find op m.other_equations
let remove_mutable_loads m =
{ mutable_load_equations = Rhs_map.empty;
other_equations = m.other_equations }
end
type numbering =
{ num_next: int; (* next fresh value number *)
num_eqs: valnum array Equations.t; (* mapping rhs -> valnums *)
num_reg: valnum Reg.Map.t } (* mapping register -> valnum *)
let empty_numbering =
{ num_next = 0; num_eqs = Equations.empty; num_reg = Reg.Map.empty }
(** Generate a fresh value number [v] and associate it to register [r].
Returns a pair [(n',v)] with the updated value numbering [n']. *)
let fresh_valnum_reg n r =
let v = n.num_next in
({n with num_next = v + 1; num_reg = Reg.Map.add r v n.num_reg}, v)
(* Same, for a set of registers [rs]. *)
let array_fold_transf (f: numbering -> 'a -> numbering * 'b) n (a: 'a array)
: numbering * 'b array =
match Array.length a with
| 0 -> (n, [||])
| 1 -> let (n', b) = f n a.(0) in (n', [|b|])
| l -> let b = Array.make l 0 and n = ref n in
for i = 0 to l - 1 do
let (n', x) = f !n a.(i) in
b.(i) <- x; n := n'
done;
(!n, b)
let fresh_valnum_regs n rs =
array_fold_transf fresh_valnum_reg n rs
(** [valnum_reg n r] returns the value number for the contents of
register [r]. If none exists, a fresh value number is returned
and associated with register [r]. The possibly updated numbering
is also returned. [valnum_regs] is similar, but for an array of
registers. *)
let valnum_reg n r =
try
(n, Reg.Map.find r n.num_reg)
with Not_found ->
fresh_valnum_reg n r
let valnum_regs n rs =
array_fold_transf valnum_reg n rs
(* Look up the set of equations for an equation with the given rhs.
Return [Some res] if there is one, where [res] is the lhs. *)
let find_equation op_class n rhs =
try
Some(Equations.find op_class rhs n.num_eqs)
with Not_found ->
None
(* Find a register containing the given value number. *)
let find_reg_containing n v =
Reg.Map.fold (fun r v' res -> if v' = v then Some r else res)
n.num_reg None
(* Find a set of registers containing the given value numbers. *)
let find_regs_containing n vs =
match Array.length vs with
| 0 -> Some [||]
| 1 -> begin match find_reg_containing n vs.(0) with
| None -> None
| Some r -> Some [|r|]
end
| l -> let rs = Array.make l Reg.dummy in
begin try
for i = 0 to l - 1 do
match find_reg_containing n vs.(i) with
| None -> raise Exit
| Some r -> rs.(i) <- r
done;
Some rs
with Exit ->
None
end
(* Associate the given value number to the given result register,
without adding new equations. *)
let set_known_reg n r v =
{ n with num_reg = Reg.Map.add r v n.num_reg }
(* Associate the given value numbers to the given result registers,
without adding new equations. *)
let array_fold2 f n a1 a2 =
let l = Array.length a1 in
assert (l = Array.length a2);
let n = ref n in
for i = 0 to l - 1 do n := f !n a1.(i) a2.(i) done;
!n
let set_known_regs n rs vs =
array_fold2 set_known_reg n rs vs
(* Record the effect of a move: no new equations, but the result reg
maps to the same value number as the argument reg. *)
let set_move n src dst =
let (n1, v) = valnum_reg n src in
{ n1 with num_reg = Reg.Map.add dst v n1.num_reg }
(* Record the equation [fresh valnums = rhs] and associate the given
result registers [rs] to [fresh valnums]. *)
let set_fresh_regs n rs rhs op_class =
let (n1, vs) = fresh_valnum_regs n rs in
{ n1 with num_eqs = Equations.add op_class rhs vs n.num_eqs }
(* Forget everything we know about the given result registers,
which are receiving unpredictable values at run-time. *)
let set_unknown_regs n rs =
{ n with num_reg = Array.fold_right Reg.Map.remove rs n.num_reg }
(* Keep only the equations satisfying the given predicate. *)
let remove_mutable_load_numbering n =
{ n with num_eqs = Equations.remove_mutable_loads n.num_eqs }
(* Forget everything we know about registers of type [Addr]. *)
let kill_addr_regs n =
{ n with num_reg =
Reg.Map.filter (fun r _n -> r.Reg.typ <> Cmm.Addr) n.num_reg }
(* Prepend a set of moves before [i] to assign [srcs] to [dsts]. *)
let insert_single_move i src dst = instr_cons (Iop Imove) [|src|] [|dst|] i
let insert_move srcs dsts i =
match Array.length srcs with
| 0 -> i
| 1 -> instr_cons (Iop Imove) srcs dsts i
| _ -> (* Parallel move: first copy srcs into tmps one by one,
then copy tmps into dsts one by one *)
let tmps = Reg.createv_like srcs in
let i1 = array_fold2 insert_single_move i tmps dsts in
array_fold2 insert_single_move i1 srcs tmps
class cse_generic = object (self)
(* Default classification of operations. Can be overridden in
processor-specific files to classify specific operations better. *)
method class_of_operation op =
match op with
| Imove | Ispill | Ireload -> assert false (* treated specially *)
| Iconst_int _ | Iconst_float _ | Iconst_symbol _ -> Op_pure
| Icall_ind | Icall_imm _ | Itailcall_ind | Itailcall_imm _
| Iextcall _ | Iopaque -> assert false (* treated specially *)
| Istackoffset _ -> Op_other
| Iload { mutability; is_atomic } ->
(* #12173: disable CSE for atomic loads.
#12825: atomic loads cannot be treated as Op_other
because they update our view / the frontier of the
non-atomic locations, so past non-atomic (mutable) loads
may be not be valid anymore.
We conservatively tread them as non-initializing stores.
*)
if is_atomic then Op_store true
else Op_load mutability
| Istore(_,_,asg) -> Op_store asg
| Ialloc _ | Ipoll _ -> assert false (* treated specially *)
| Iintop(Icheckbound) -> Op_checkbound
| Iintop _ -> Op_pure
| Iintop_imm(Icheckbound, _) -> Op_checkbound
| Iintop_imm(_, _) -> Op_pure
| Icompf _ | Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf
| Ifloatofint | Iintoffloat -> Op_pure
| Ispecific _ -> Op_other
| Idls_get -> Op_load Mutable
| Ireturn_addr -> Op_load Immutable
(* Operations that are so cheap that it isn't worth factoring them. *)
method is_cheap_operation op =
match op with
| Iconst_int _ -> true
| _ -> false
(* Forget all equations involving mutable memory loads.
Performed after a non-initializing store *)
method private kill_loads n =
remove_mutable_load_numbering n
(* Perform CSE on the given instruction [i] and its successors.
[n] is the value numbering current at the beginning of [i]. *)
method private cse n i =
match i.desc with
| Iend | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _)
| Iexit _ | Iraise _ ->
i
| Iop (Imove | Ispill | Ireload) ->
(* For moves, we associate the same value number to the result reg
as to the argument reg. *)
let n1 = set_move n i.arg.(0) i.res.(0) in
{i with next = self#cse n1 i.next}
| Iop (Icall_ind | Icall_imm _ | Iextcall _) ->
(* For function calls, we should at least forget:
- equations involving memory loads, since the callee can
perform arbitrary memory stores;
- equations involving arithmetic operations that can
produce [Addr]-typed derived pointers into the heap
(see below for Ialloc);
- mappings from hardware registers to value numbers,
since the callee does not preserve these registers.
That doesn't leave much usable information: checkbounds
could be kept, but won't be usable for CSE as one of their
arguments is always a memory load. For simplicity, we
just forget everything. *)
{i with next = self#cse empty_numbering i.next}
| Iop Iopaque ->
(* Assume arbitrary side effects from Iopaque *)
{i with next = self#cse empty_numbering i.next}
| Iop (Ialloc _) | Iop (Ipoll _) ->
(* For allocations, we must avoid extending the live range of a
pseudoregister across the allocation if this pseudoreg
is a derived heap pointer (a pointer into the heap that does
not point to the beginning of a Caml block). PR#6484 is an
example of this situation. Such pseudoregs have type [Addr].
Pseudoregs with types other than [Addr] can be kept.
Moreover, allocations and polls can trigger the asynchronous execution
of arbitrary Caml code (finalizer, signal handler, context
switch), which can contain non-initializing stores.
Hence, all equations over mutable loads must be removed. *)
let n1 = kill_addr_regs (self#kill_loads n) in
let n2 = set_unknown_regs n1 i.res in
{i with next = self#cse n2 i.next}
| Iop op ->
begin match self#class_of_operation op with
| (Op_pure | Op_checkbound | Op_load _) as op_class ->
let (n1, varg) = valnum_regs n i.arg in
let n2 = set_unknown_regs n1 (Proc.destroyed_at_oper i.desc) in
begin match find_equation op_class n1 (op, varg) with
| Some vres ->
(* This operation was computed earlier. *)
(* Are there registers that hold the results computed earlier? *)
begin match find_regs_containing n1 vres with
| Some res when (not (self#is_cheap_operation op)) ->
(* We can replace res <- op args with r <- move res,
provided res are stable (non-volatile) registers.
If the operation is very cheap to compute, e.g.
an integer constant, don't bother. *)
let n3 = set_known_regs n1 i.res vres in
(* This is n1 above and not n2 because the move
does not destroy any regs *)
insert_move res i.res (self#cse n3 i.next)
| _ ->
(* We already computed the operation but lost its
results. Associate the result registers to
the result valnums of the previous operation. *)
let n3 = set_known_regs n2 i.res vres in
{i with next = self#cse n3 i.next}
end
| None ->
(* This operation produces a result we haven't seen earlier. *)
let n3 = set_fresh_regs n2 i.res (op, varg) op_class in
{i with next = self#cse n3 i.next}
end
| Op_store false | Op_other ->
(* An initializing store or an "other" operation do not invalidate
any equations, but we do not know anything about the results. *)
let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in
let n2 = set_unknown_regs n1 i.res in
{i with next = self#cse n2 i.next}
| Op_store true ->
(* A non-initializing store can invalidate
anything we know about prior mutable loads. *)
let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in
let n2 = set_unknown_regs n1 i.res in
let n3 = self#kill_loads n2 in
{i with next = self#cse n3 i.next}
end
(* For control structures, we set the numbering to empty at every
join point, but propagate the current numbering across fork points. *)
| Iifthenelse(test, ifso, ifnot) ->
let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in
{i with desc = Iifthenelse(test, self#cse n1 ifso, self#cse n1 ifnot);
next = self#cse empty_numbering i.next}
| Iswitch(index, cases) ->
let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in
{i with desc = Iswitch(index, Array.map (self#cse n1) cases);
next = self#cse empty_numbering i.next}
| Icatch(rec_flag, handlers, body) ->
let aux (nfail, handler) =
nfail, self#cse empty_numbering handler
in
{i with desc = Icatch(rec_flag, List.map aux handlers, self#cse n body);
next = self#cse empty_numbering i.next}
| Itrywith(body, handler) ->
{i with desc = Itrywith(self#cse n body,
self#cse empty_numbering handler);
next = self#cse empty_numbering i.next}
method fundecl f =
(* CSE can trigger bad register allocation behaviors, see MPR#7630 *)
if List.mem Cmm.No_CSE f.fun_codegen_options then
f
else
{f with fun_body = self#cse empty_numbering f.fun_body }
end
|