1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# 2 "asmcomp/arm64/arch.ml"
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Gallium, INRIA Rocquencourt *)
(* Benedikt Meurer, University of Siegen *)
(* *)
(* Copyright 2013 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* Copyright 2012 Benedikt Meurer. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Specific operations for the ARM processor, 64-bit mode *)
open Format
let macosx = (Config.system = "macosx")
(* Machine-specific command-line options *)
let command_line_options = []
(* Addressing modes *)
type addressing_mode =
| Iindexed of int (* reg + displ *)
| Ibased of string * int (* global var + displ *)
(* We do not support the reg + shifted reg addressing mode, because
what we really need is reg + shifted reg + displ,
and this is decomposed in two instructions (reg + shifted reg -> tmp,
then addressing tmp + displ). *)
(* Specific operations *)
type cmm_label = int
(* Do not introduce a dependency to Cmm *)
type specific_operation =
| Ipoll_far of { return_label: cmm_label option }
| Ialloc_far of { bytes : int; dbginfo : Debuginfo.alloc_dbginfo }
| Icheckbound_far
| Icheckbound_imm_far of { bound : int; }
| Ishiftarith of arith_operation * int
| Ishiftcheckbound of { shift : int; }
| Ishiftcheckbound_far of { shift : int; }
| Imuladd (* multiply and add *)
| Imulsub (* multiply and subtract *)
| Inegmulf (* floating-point negate and multiply *)
| Imuladdf (* floating-point multiply and add *)
| Inegmuladdf (* floating-point negate, multiply and add *)
| Imulsubf (* floating-point multiply and subtract *)
| Inegmulsubf (* floating-point negate, multiply and subtract *)
| Isqrtf (* floating-point square root *)
| Ibswap of int (* endianness conversion *)
| Imove32 (* 32-bit integer move *)
| Isignext of int (* sign extension *)
and arith_operation =
Ishiftadd
| Ishiftsub
(* Sizes, endianness *)
let big_endian = false
let size_addr = 8
let size_int = 8
let size_float = 8
let allow_unaligned_access = true
(* Behavior of division *)
let division_crashes_on_overflow = false
(* Operations on addressing modes *)
let identity_addressing = Iindexed 0
let offset_addressing addr delta =
match addr with
| Iindexed n -> Iindexed(n + delta)
| Ibased(s, n) -> Ibased(s, n + delta)
(* Printing operations and addressing modes *)
let print_addressing printreg addr ppf arg =
match addr with
| Iindexed n ->
printreg ppf arg.(0);
if n <> 0 then fprintf ppf " + %i" n
| Ibased(s, 0) ->
fprintf ppf "\"%s\"" s
| Ibased(s, n) ->
fprintf ppf "\"%s\" + %i" s n
let print_specific_operation printreg op ppf arg =
match op with
| Ipoll_far _ ->
fprintf ppf "(far) poll"
| Ialloc_far { bytes; } ->
fprintf ppf "(far) alloc %i" bytes
| Icheckbound_far ->
fprintf ppf "%a (far) check > %a" printreg arg.(0) printreg arg.(1)
| Icheckbound_imm_far { bound; } ->
fprintf ppf "%a (far) check > %i" printreg arg.(0) bound
| Ishiftarith(op, shift) ->
let op_name = function
| Ishiftadd -> "+"
| Ishiftsub -> "-" in
let shift_mark =
if shift >= 0
then sprintf "<< %i" shift
else sprintf ">> %i" (-shift) in
fprintf ppf "%a %s %a %s"
printreg arg.(0) (op_name op) printreg arg.(1) shift_mark
| Ishiftcheckbound { shift; } ->
fprintf ppf "check %a >> %i > %a" printreg arg.(0) shift
printreg arg.(1)
| Ishiftcheckbound_far { shift; } ->
fprintf ppf
"(far) check %a >> %i > %a" printreg arg.(0) shift printreg arg.(1)
| Imuladd ->
fprintf ppf "(%a * %a) + %a"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Imulsub ->
fprintf ppf "-(%a * %a) + %a"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Inegmulf ->
fprintf ppf "-f (%a *f %a)"
printreg arg.(0)
printreg arg.(1)
| Imuladdf ->
fprintf ppf "%a +f (%a *f %a)"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Inegmuladdf ->
fprintf ppf "(-f %a) -f (%a *f %a)"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Imulsubf ->
fprintf ppf "%a -f (%a *f %a)"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Inegmulsubf ->
fprintf ppf "(-f %a) +f (%a *f %a)"
printreg arg.(0)
printreg arg.(1)
printreg arg.(2)
| Isqrtf ->
fprintf ppf "sqrtf %a"
printreg arg.(0)
| Ibswap n ->
fprintf ppf "bswap%i %a" n
printreg arg.(0)
| Imove32 ->
fprintf ppf "move32 %a"
printreg arg.(0)
| Isignext n ->
fprintf ppf "signext%d %a"
n printreg arg.(0)
(* Recognition of logical immediate arguments *)
(* An automaton to recognize ( 0+1+0* | 1+0+1* )
0 1 0
/ \ / \ / \
\ / \ / \ /
-0--> [1] --1--> [2] --0--> [3]
/
[0]
\
-1--> [4] --0--> [5] --1--> [6]
/ \ / \ / \
\ / \ / \ /
1 0 1
The accepting states are 2, 3, 5 and 6. *)
let auto_table = [| (* accepting?, next on 0, next on 1 *)
(* state 0 *) (false, 1, 4);
(* state 1 *) (false, 1, 2);
(* state 2 *) (true, 3, 2);
(* state 3 *) (true, 3, 7);
(* state 4 *) (false, 5, 4);
(* state 5 *) (true, 5, 6);
(* state 6 *) (true, 7, 6);
(* state 7 *) (false, 7, 7) (* error state *)
|]
let rec run_automata nbits state input =
let (acc, next0, next1) = auto_table.(state) in
if nbits <= 0
then acc
else run_automata (nbits - 1)
(if Nativeint.logand input 1n = 0n then next0 else next1)
(Nativeint.shift_right_logical input 1)
(* The following function determines a length [e]
such that [x] is a repetition [BB...B] of a bit pattern [B] of length [e].
[e] ranges over 64, 32, 16, 8, 4, 2. The smaller [e] the better. *)
let logical_imm_length x =
(* [test n] checks that the low [2n] bits of [x] are of the
form [BB], that is, two occurrences of the same [n] bits *)
let test n =
let mask = Nativeint.(sub (shift_left 1n n) 1n) in
let low_n_bits = Nativeint.(logand x mask) in
let next_n_bits = Nativeint.(logand (shift_right_logical x n) mask) in
low_n_bits = next_n_bits in
(* If [test n] fails, we know that the length [e] is
at least [2n]. Hence we test with decreasing values of [n]:
32, 16, 8, 4, 2. *)
if not (test 32) then 64
else if not (test 16) then 32
else if not (test 8) then 16
else if not (test 4) then 8
else if not (test 2) then 4
else 2
(* A valid logical immediate is
- neither [0] nor [-1];
- composed of a repetition [BBBBB] of a bit-pattern [B] of length [e]
- the low [e] bits of the number, that is, [B], match [0+1+0*] or [1+0+1*].
*)
let is_logical_immediate x =
x <> 0n && x <> -1n && run_automata (logical_imm_length x) 0 x
(* Specific operations that are pure *)
let operation_is_pure = function
| Ialloc_far _
| Icheckbound_far
| Icheckbound_imm_far _
| Ishiftcheckbound _
| Ishiftcheckbound_far _ -> false
| _ -> true
(* Specific operations that can raise *)
let operation_can_raise = function
| Ialloc_far _
| Icheckbound_far
| Icheckbound_imm_far _
| Ishiftcheckbound _
| Ishiftcheckbound_far _ -> true
| _ -> false
|