1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-40-41-42-44-45"]
module V = Backend_var
module VP = Backend_var.With_provenance
open Cmm
open Arch
(* Local binding of complex expressions *)
let bind name arg fn =
match arg with
Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _ -> fn arg
| _ -> let id = V.create_local name in Clet(VP.create id, arg, fn (Cvar id))
let bind_load name arg fn =
match arg with
| Cop(Cload _, [Cvar _], _) -> fn arg
| _ -> bind name arg fn
let caml_black = Nativeint.shift_left (Nativeint.of_int 3) 8
(* cf. runtime/caml/gc.h *)
(* Loads *)
let mk_load_immut memory_chunk =
Cload {memory_chunk; mutability=Immutable; is_atomic=false}
let mk_load_mut memory_chunk =
Cload {memory_chunk; mutability=Mutable; is_atomic=false}
let mk_load_atomic memory_chunk =
Cload {memory_chunk; mutability=Mutable; is_atomic=true}
(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)
let floatarray_tag dbg = Cconst_int (Obj.double_array_tag, dbg)
let block_header tag sz =
Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
(Nativeint.of_int tag)
(* Static data corresponding to "value"s must be marked black in case we are
in no-naked-pointers mode. See [caml_darken] and the code below that emits
structured constants and static module definitions. *)
let black_block_header tag sz = Nativeint.logor (block_header tag sz) caml_black
let white_closure_header sz = block_header Obj.closure_tag sz
let black_closure_header sz = black_block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
(* Zero-sized float arrays have tag zero for consistency with
[caml_alloc_float_array]. *)
assert (len >= 0);
if len = 0 then block_header 0 0
else block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint32_header = block_header Obj.custom_tag 2
let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr)
let boxedintnat_header = block_header Obj.custom_tag 2
let caml_nativeint_ops = "caml_nativeint_ops"
let caml_int32_ops = "caml_int32_ops"
let caml_int64_ops = "caml_int64_ops"
let pos_arity_in_closinfo = 8 * size_addr - 8
(* arity = the top 8 bits of the closinfo word *)
let closure_info ~arity ~startenv =
assert (-128 <= arity && arity <= 127);
assert (0 <= startenv && startenv < 1 lsl (pos_arity_in_closinfo - 1));
Nativeint.(add (shift_left (of_int arity) pos_arity_in_closinfo)
(add (shift_left (of_int startenv) 1)
1n))
let alloc_float_header dbg = Cconst_natint (float_header, dbg)
let alloc_floatarray_header len dbg = Cconst_natint (floatarray_header len, dbg)
let alloc_closure_header sz dbg = Cconst_natint (white_closure_header sz, dbg)
let alloc_infix_header ofs dbg = Cconst_natint (infix_header ofs, dbg)
let alloc_closure_info ~arity ~startenv dbg =
Cconst_natint (closure_info ~arity ~startenv, dbg)
let alloc_boxedint32_header dbg = Cconst_natint (boxedint32_header, dbg)
let alloc_boxedint64_header dbg = Cconst_natint (boxedint64_header, dbg)
let alloc_boxedintnat_header dbg = Cconst_natint (boxedintnat_header, dbg)
(* Integers *)
let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1
let tag_const (n : int) : nativeint =
Nativeint.(add (shift_left (of_int n) 1) 1n)
let untag_const (n : nativeint) : int =
if Nativeint.(logand n 1n <> 1n) then
Misc.fatal_error
"Cmm_helpers.untag_const was called on an non-tagged constant";
Nativeint.(to_int (shift_right n 1))
let int_const dbg n =
if n <= max_repr_int && n >= min_repr_int
then Cconst_int((n lsl 1) + 1, dbg)
else Cconst_natint (tag_const n, dbg)
let natint_const_untagged dbg n =
if n > Nativeint.of_int max_int
|| n < Nativeint.of_int min_int
then Cconst_natint (n,dbg)
else Cconst_int (Nativeint.to_int n, dbg)
let cint_const n =
Cint(tag_const n)
let targetint_const n =
Targetint.add (Targetint.shift_left (Targetint.of_int n) 1)
Targetint.one
let add_no_overflow n x c dbg =
let d = n + x in
if d = 0 then c else Cop(Caddi, [c; Cconst_int (d, dbg)], dbg)
let rec add_const c n dbg =
if n = 0 then c
else match c with
| Cconst_int (x, _) when Misc.no_overflow_add x n -> Cconst_int (x + n, dbg)
| Cop(Caddi, [Cconst_int (x, _); c], _)
when Misc.no_overflow_add n x ->
add_no_overflow n x c dbg
| Cop(Caddi, [c; Cconst_int (x, _)], _)
when Misc.no_overflow_add n x ->
add_no_overflow n x c dbg
| Cop(Csubi, [Cconst_int (x, _); c], _) when Misc.no_overflow_add n x ->
Cop(Csubi, [Cconst_int (n + x, dbg); c], dbg)
| Cop(Csubi, [c; Cconst_int (x, _)], _) when Misc.no_overflow_sub n x ->
add_const c (n - x) dbg
| c -> Cop(Caddi, [c; Cconst_int (n, dbg)], dbg)
let incr_int c dbg = add_const c 1 dbg
let decr_int c dbg = add_const c (-1) dbg
let rec add_int c1 c2 dbg =
match (c1, c2) with
| (Cconst_int (n, _), c) | (c, Cconst_int (n, _)) ->
add_const c n dbg
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
add_const (add_int c1 c2 dbg) n1 dbg
| (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) ->
add_const (add_int c1 c2 dbg) n2 dbg
| (_, _) ->
Cop(Caddi, [c1; c2], dbg)
let rec sub_int c1 c2 dbg =
match (c1, c2) with
| (c1, Cconst_int (n2, _)) when n2 <> min_int ->
add_const c1 (-n2) dbg
| (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) when n2 <> min_int ->
add_const (sub_int c1 c2 dbg) (-n2) dbg
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
add_const (sub_int c1 c2 dbg) n1 dbg
| (c1, c2) ->
Cop(Csubi, [c1; c2], dbg)
let rec lsl_int c1 c2 dbg =
match (c1, c2) with
| (Cop(Clsl, [c; Cconst_int (n1, _)], _), Cconst_int (n2, _))
when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
Cop(Clsl, [c; Cconst_int (n1 + n2, dbg)], dbg)
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), Cconst_int (n2, _))
when Misc.no_overflow_lsl n1 n2 ->
add_const (lsl_int c1 c2 dbg) (n1 lsl n2) dbg
| (_, _) ->
Cop(Clsl, [c1; c2], dbg)
let is_power2 n = n = 1 lsl Misc.log2 n
and mult_power2 c n dbg = lsl_int c (Cconst_int (Misc.log2 n, dbg)) dbg
let rec mul_int c1 c2 dbg =
match (c1, c2) with
| (c, Cconst_int (0, _)) | (Cconst_int (0, _), c) ->
Csequence (c, Cconst_int (0, dbg))
| (c, Cconst_int (1, _)) | (Cconst_int (1, _), c) ->
c
| (c, Cconst_int(-1, _)) | (Cconst_int(-1, _), c) ->
sub_int (Cconst_int (0, dbg)) c dbg
| (c, Cconst_int (n, _)) when is_power2 n -> mult_power2 c n dbg
| (Cconst_int (n, _), c) when is_power2 n -> mult_power2 c n dbg
| (Cop(Caddi, [c; Cconst_int (n, _)], _), Cconst_int (k, _)) |
(Cconst_int (k, _), Cop(Caddi, [c; Cconst_int (n, _)], _))
when Misc.no_overflow_mul n k ->
add_const (mul_int c (Cconst_int (k, dbg)) dbg) (n * k) dbg
| (c1, c2) ->
Cop(Cmuli, [c1; c2], dbg)
let ignore_low_bit_int = function
Cop(Caddi,
[(Cop(Clsl, [_; Cconst_int (n, _)], _) as c); Cconst_int (1, _)], _)
when n > 0
-> c
| Cop(Cor, [c; Cconst_int (1, _)], _) -> c
| c -> c
(* removes the 1-bit sign-extension left by untag_int (tag_int c) *)
let ignore_high_bit_int = function
Cop(Casr,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) -> c
| c -> c
let lsr_int c1 c2 dbg =
match c2 with
Cconst_int (0, _) ->
c1
| Cconst_int (n, _) when n > 0 ->
Cop(Clsr, [ignore_low_bit_int c1; c2], dbg)
| _ ->
Cop(Clsr, [c1; c2], dbg)
let asr_int c1 c2 dbg =
match c2 with
Cconst_int (0, _) ->
c1
| Cconst_int (n, _) when n > 0 ->
Cop(Casr, [ignore_low_bit_int c1; c2], dbg)
| _ ->
Cop(Casr, [c1; c2], dbg)
let tag_int i dbg =
match i with
Cconst_int (n, _) ->
int_const dbg n
| Cop(Casr, [c; Cconst_int (n, _)], _) when n > 0 ->
Cop(Cor,
[asr_int c (Cconst_int (n - 1, dbg)) dbg; Cconst_int (1, dbg)],
dbg)
| c ->
incr_int (lsl_int c (Cconst_int (1, dbg)) dbg) dbg
let untag_int i dbg =
match i with
Cconst_int (n, _) -> Cconst_int(n asr 1, dbg)
| Cop(Cor, [Cop(Casr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
when n > 0 && n < size_int * 8 ->
Cop(Casr, [c; Cconst_int (n+1, dbg)], dbg)
| Cop(Cor, [Cop(Clsr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
when n > 0 && n < size_int * 8 ->
Cop(Clsr, [c; Cconst_int (n+1, dbg)], dbg)
| c -> asr_int c (Cconst_int (1, dbg)) dbg
let mk_if_then_else dbg cond ifso_dbg ifso ifnot_dbg ifnot =
match cond with
| Cconst_int (0, _) -> ifnot
| Cconst_int (1, _) -> ifso
| _ ->
Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg)
let mk_not dbg cmm =
match cmm with
| Cop(Caddi,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
begin
match c with
| Cop(Ccmpi cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpi (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
| Cop(Ccmpa cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpa (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
| Cop(Ccmpf cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpf (negate_float_comparison cmp), [c1; c2], dbg'')) dbg'
| _ ->
(* 0 -> 3, 1 -> 1 *)
Cop(Csubi,
[Cconst_int (3, dbg); Cop(Clsl, [c; Cconst_int (1, dbg)], dbg)],
dbg)
end
| Cconst_int (3, _) -> Cconst_int (1, dbg)
| Cconst_int (1, _) -> Cconst_int (3, dbg)
| c ->
(* 1 -> 3, 3 -> 1 *)
Cop(Csubi, [Cconst_int (4, dbg); c], dbg)
let mk_compare_ints dbg a1 a2 =
match (a1,a2) with
| Cconst_int (c1, _), Cconst_int (c2, _) ->
int_const dbg (Int.compare c1 c2)
| Cconst_natint (c1, _), Cconst_natint (c2, _) ->
int_const dbg (Nativeint.compare c1 c2)
| Cconst_int (c1, _), Cconst_natint (c2, _) ->
int_const dbg Nativeint.(compare (of_int c1) c2)
| Cconst_natint (c1, _), Cconst_int (c2, _) ->
int_const dbg Nativeint.(compare c1 (of_int c2))
| a1, a2 -> begin
bind "int_cmp" a2 (fun a2 ->
bind "int_cmp" a1 (fun a1 ->
let op1 = Cop(Ccmpi(Cgt), [a1; a2], dbg) in
let op2 = Cop(Ccmpi(Clt), [a1; a2], dbg) in
tag_int(sub_int op1 op2 dbg) dbg))
end
let mk_compare_floats dbg a1 a2 =
bind "float_cmp" a2 (fun a2 ->
bind "float_cmp" a1 (fun a1 ->
let op1 = Cop(Ccmpf(CFgt), [a1; a2], dbg) in
let op2 = Cop(Ccmpf(CFlt), [a1; a2], dbg) in
let op3 = Cop(Ccmpf(CFeq), [a1; a1], dbg) in
let op4 = Cop(Ccmpf(CFeq), [a2; a2], dbg) in
(* If both operands a1 and a2 are not NaN, then op3 = op4 = 1,
and the result is op1 - op2.
If at least one of the operands is NaN,
then op1 = op2 = 0, and the result is op3 - op4,
which orders NaN before other values.
To detect if the operand is NaN, we use the property:
for all x, NaN is not equal to x, even if x is NaN.
Therefore, op3 is 0 if and only if a1 is NaN,
and op4 is 0 if and only if a2 is NaN.
See also caml_float_compare_unboxed in runtime/floats.c *)
tag_int (add_int (sub_int op1 op2 dbg) (sub_int op3 op4 dbg) dbg) dbg))
let create_loop body dbg =
let cont = Lambda.next_raise_count () in
let call_cont = Cexit (cont, []) in
let body = Csequence (body, call_cont) in
Ccatch (Recursive, [cont, [], body, dbg], call_cont)
(* Turning integer divisions into multiply-high then shift.
The [division_parameters] function is used in module Emit for
those target platforms that support this optimization. *)
(* Unsigned comparison between native integers. *)
let ucompare x y = Nativeint.(compare (add x min_int) (add y min_int))
(* Unsigned division and modulus at type nativeint.
Algorithm: Hacker's Delight section 9.3 *)
let udivmod n d = Nativeint.(
if d < 0n then
if ucompare n d < 0 then (0n, n) else (1n, sub n d)
else begin
let q = shift_left (div (shift_right_logical n 1) d) 1 in
let r = sub n (mul q d) in
if ucompare r d >= 0 then (succ q, sub r d) else (q, r)
end)
(* Compute division parameters.
Algorithm: Hacker's Delight chapter 10, fig 10-1. *)
let divimm_parameters d = Nativeint.(
assert (d > 0n);
let twopsm1 = min_int in (* 2^31 for 32-bit archs, 2^63 for 64-bit archs *)
let nc = sub (pred twopsm1) (snd (udivmod twopsm1 d)) in
let rec loop p (q1, r1) (q2, r2) =
let p = p + 1 in
let q1 = shift_left q1 1 and r1 = shift_left r1 1 in
let (q1, r1) =
if ucompare r1 nc >= 0 then (succ q1, sub r1 nc) else (q1, r1) in
let q2 = shift_left q2 1 and r2 = shift_left r2 1 in
let (q2, r2) =
if ucompare r2 d >= 0 then (succ q2, sub r2 d) else (q2, r2) in
let delta = sub d r2 in
if ucompare q1 delta < 0 || (q1 = delta && r1 = 0n)
then loop p (q1, r1) (q2, r2)
else (succ q2, p - size)
in loop (size - 1) (udivmod twopsm1 nc) (udivmod twopsm1 d))
(* The result [(m, p)] of [divimm_parameters d] satisfies the following
inequality:
2^(wordsize + p) < m * d <= 2^(wordsize + p) + 2^(p + 1) (i)
from which it follows that
floor(n / d) = floor(n * m / 2^(wordsize+p))
if 0 <= n < 2^(wordsize-1)
ceil(n / d) = floor(n * m / 2^(wordsize+p)) + 1
if -2^(wordsize-1) <= n < 0
The correctness condition (i) above can be checked by the code below.
It was exhaustively tested for values of d from 2 to 10^9 in the
wordsize = 64 case.
let add2 (xh, xl) (yh, yl) =
let zl = add xl yl and zh = add xh yh in
((if ucompare zl xl < 0 then succ zh else zh), zl)
let shl2 (xh, xl) n =
assert (0 < n && n < size + size);
if n < size
then (logor (shift_left xh n) (shift_right_logical xl (size - n)),
shift_left xl n)
else (shift_left xl (n - size), 0n)
let mul2 x y =
let halfsize = size / 2 in
let halfmask = pred (shift_left 1n halfsize) in
let xl = logand x halfmask and xh = shift_right_logical x halfsize in
let yl = logand y halfmask and yh = shift_right_logical y halfsize in
add2 (mul xh yh, 0n)
(add2 (shl2 (0n, mul xl yh) halfsize)
(add2 (shl2 (0n, mul xh yl) halfsize)
(0n, mul xl yl)))
let ucompare2 (xh, xl) (yh, yl) =
let c = ucompare xh yh in if c = 0 then ucompare xl yl else c
let validate d m p =
let md = mul2 m d in
let one2 = (0n, 1n) in
let twoszp = shl2 one2 (size + p) in
let twop1 = shl2 one2 (p + 1) in
ucompare2 twoszp md < 0 && ucompare2 md (add2 twoszp twop1) <= 0
*)
let raise_symbol dbg symb =
Cop(Craise Lambda.Raise_regular, [Cconst_symbol (symb, dbg)], dbg)
let rec div_int c1 c2 is_safe dbg =
match (c1, c2) with
(c1, Cconst_int (0, _)) ->
Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
| (c1, Cconst_int (1, _)) ->
c1
| (Cconst_int (n1, _), Cconst_int (n2, _)) ->
Cconst_int (n1 / n2, dbg)
| (c1, Cconst_int (n, _)) when n <> min_int ->
let l = Misc.log2 n in
if n = 1 lsl l then
(* Algorithm:
t = shift-right-signed(c1, l - 1)
t = shift-right(t, W - l)
t = c1 + t
res = shift-right-signed(c1 + t, l)
*)
Cop(Casr, [bind "dividend" c1 (fun c1 ->
let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
let t =
lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg
in
add_int c1 t dbg);
Cconst_int (l, dbg)], dbg)
else if n < 0 then
sub_int (Cconst_int (0, dbg))
(div_int c1 (Cconst_int (-n, dbg)) is_safe dbg)
dbg
else begin
let (m, p) = divimm_parameters (Nativeint.of_int n) in
(* Algorithm:
t = multiply-high-signed(c1, m)
if m < 0, t = t + c1
if p > 0, t = shift-right-signed(t, p)
res = t + sign-bit(c1)
*)
bind "dividend" c1 (fun c1 ->
let t = Cop(Cmulhi, [c1; natint_const_untagged dbg m], dbg) in
let t = if m < 0n then Cop(Caddi, [t; c1], dbg) else t in
let t =
if p > 0 then Cop(Casr, [t; Cconst_int (p, dbg)], dbg) else t
in
add_int t (lsr_int c1 (Cconst_int (Nativeint.size - 1, dbg)) dbg) dbg)
end
| (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
Cop(Cdivi, [c1; c2], dbg)
| (c1, c2) ->
bind "divisor" c2 (fun c2 ->
bind "dividend" c1 (fun c1 ->
Cifthenelse(c2,
dbg,
Cop(Cdivi, [c1; c2], dbg),
dbg,
raise_symbol dbg "caml_exn_Division_by_zero",
dbg)))
let mod_int c1 c2 is_safe dbg =
match (c1, c2) with
(c1, Cconst_int (0, _)) ->
Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
| (c1, Cconst_int ((1 | (-1)), _)) ->
Csequence(c1, Cconst_int (0, dbg))
| (Cconst_int (n1, _), Cconst_int (n2, _)) ->
Cconst_int (n1 mod n2, dbg)
| (c1, (Cconst_int (n, _) as c2)) when n <> min_int ->
let l = Misc.log2 n in
if n = 1 lsl l then
(* Algorithm:
t = shift-right-signed(c1, l - 1)
t = shift-right(t, W - l)
t = c1 + t
t = bit-and(t, -n)
res = c1 - t
*)
bind "dividend" c1 (fun c1 ->
let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
let t = lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg in
let t = add_int c1 t dbg in
let t = Cop(Cand, [t; Cconst_int (-n, dbg)], dbg) in
sub_int c1 t dbg)
else
bind "dividend" c1 (fun c1 ->
sub_int c1 (mul_int (div_int c1 c2 is_safe dbg) c2 dbg) dbg)
| (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
(* Flambda already generates that test *)
Cop(Cmodi, [c1; c2], dbg)
| (c1, c2) ->
bind "divisor" c2 (fun c2 ->
bind "dividend" c1 (fun c1 ->
Cifthenelse(c2,
dbg,
Cop(Cmodi, [c1; c2], dbg),
dbg,
raise_symbol dbg "caml_exn_Division_by_zero",
dbg)))
(* Division or modulo on boxed integers. The overflow case min_int / -1
can occur, in which case we force x / -1 = -x and x mod -1 = 0. (PR#5513). *)
let is_different_from x = function
Cconst_int (n, _) -> n <> x
| Cconst_natint (n, _) -> n <> Nativeint.of_int x
| _ -> false
let safe_divmod_bi mkop is_safe mkm1 c1 c2 bi dbg =
bind "divisor" c2 (fun c2 ->
bind "dividend" c1 (fun c1 ->
let c = mkop c1 c2 is_safe dbg in
if Arch.division_crashes_on_overflow
&& bi <> Primitive.Pint32
&& not (is_different_from (-1) c2)
then
Cifthenelse(Cop(Ccmpi Cne, [c2; Cconst_int (-1, dbg)], dbg),
dbg, c,
dbg, mkm1 c1 dbg,
dbg)
else
c))
let safe_div_bi is_safe =
safe_divmod_bi div_int is_safe
(fun c1 dbg -> Cop(Csubi, [Cconst_int (0, dbg); c1], dbg))
let safe_mod_bi is_safe =
safe_divmod_bi mod_int is_safe (fun _ dbg -> Cconst_int (0, dbg))
(* Bool *)
let test_bool dbg cmm =
match cmm with
| Cop(Caddi, [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) ->
c
| Cconst_int (n, dbg) ->
if n = 1 then
Cconst_int (0, dbg)
else
Cconst_int (1, dbg)
| c -> Cop(Ccmpi Cne, [c; Cconst_int (1, dbg)], dbg)
(* Float *)
let box_float dbg c = Cop(Calloc, [alloc_float_header dbg; c], dbg)
let unbox_float dbg =
map_tail
(function
| Cop(Calloc, [Cconst_natint (hdr, _); c], _)
when Nativeint.equal hdr float_header ->
c
| Cconst_symbol (s, _dbg) as cmm ->
begin match Cmmgen_state.structured_constant_of_sym s with
| Some (Uconst_float x) ->
Cconst_float (x, dbg) (* or keep _dbg? *)
| _ ->
Cop(mk_load_immut Double, [cmm], dbg)
end
| cmm -> Cop(mk_load_immut Double, [cmm], dbg)
)
(* Conversions for 16-bit floats *)
let float_of_float16 dbg c =
Cop(Cextcall("caml_double_of_float16", typ_float, [XInt], false), [c], dbg)
let float16_of_float dbg c =
Cop(Cextcall("caml_float16_of_double", typ_int, [XFloat], false), [c], dbg)
(* Complex *)
let box_complex dbg c_re c_im =
Cop(Calloc, [alloc_floatarray_header 2 dbg; c_re; c_im], dbg)
let complex_re c dbg =
Cop(mk_load_immut Double, [c], dbg)
let complex_im c dbg =
Cop(mk_load_immut Double,
[Cop(Cadda, [c; Cconst_int (size_float, dbg)], dbg)], dbg)
(* Unit *)
let return_unit dbg c = Csequence(c, Cconst_int (1, dbg))
let rec remove_unit = function
Cconst_int (1, _) -> Ctuple []
| Csequence(c, Cconst_int (1, _)) -> c
| Csequence(c1, c2) ->
Csequence(c1, remove_unit c2)
| Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg) ->
Cifthenelse(cond,
ifso_dbg, remove_unit ifso,
ifnot_dbg,
remove_unit ifnot, dbg)
| Cswitch(sel, index, cases, dbg) ->
Cswitch(sel, index,
Array.map (fun (case, dbg) -> remove_unit case, dbg) cases,
dbg)
| Ccatch(rec_flag, handlers, body) ->
let map_h (n, ids, handler, dbg) = (n, ids, remove_unit handler, dbg) in
Ccatch(rec_flag, List.map map_h handlers, remove_unit body)
| Ctrywith(body, exn, handler, dbg) ->
Ctrywith(remove_unit body, exn, remove_unit handler, dbg)
| Clet(id, c1, c2) ->
Clet(id, c1, remove_unit c2)
| Cop(Capply _mty, args, dbg) ->
Cop(Capply typ_void, args, dbg)
| Cop(Cextcall(proc, _ty_res, ty_args, alloc), args, dbg) ->
Cop(Cextcall(proc, typ_void, ty_args, alloc), args, dbg)
| Cexit (_,_) as c -> c
| Ctuple [] as c -> c
| c -> Csequence(c, Ctuple [])
let field_address ptr n dbg =
if n = 0
then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_addr, dbg)], dbg)
let get_field_gen ?(memory_chunk=Word_val) mutability ptr n dbg =
Cop(Cload {memory_chunk; mutability; is_atomic=false},
[field_address ptr n dbg], dbg)
let get_field_codepointer mutability ptr n dbg =
Cop(Cload {memory_chunk=Word_int; mutability; is_atomic=false},
[field_address ptr n dbg], dbg)
let set_field ptr n newval init dbg =
Cop(Cstore (Word_val, init), [field_address ptr n dbg; newval], dbg)
let get_header ptr dbg =
(* Headers can be mutated when forcing a lazy value. However, for all
purposes that the mutability tag currently serves in the compiler, header
loads can be marked as [Immutable], since the runtime should ensure that
there is no data race on headers. This saves performance with
ThreadSanitizer instrumentation by avoiding to instrument header loads. *)
Cop(
mk_load_immut Word_int,
[Cop(Cadda, [ptr; Cconst_int(-size_int, dbg)], dbg)], dbg)
let get_header_masked ptr dbg =
if Config.reserved_header_bits > 0 then
let header_mask = (1 lsl (64 - Config.reserved_header_bits)) - 1
in Cop(Cand, [get_header ptr dbg; Cconst_int (header_mask, dbg)], dbg)
else
get_header ptr dbg
let tag_offset =
if big_endian then -1 else -size_int
let get_tag ptr dbg =
(* Same comment as [get_header] above *)
Cop(
mk_load_immut Byte_unsigned,
[Cop(Cadda, [ptr; Cconst_int(tag_offset, dbg)], dbg)], dbg)
let get_size ptr dbg =
Cop(Clsr, [get_header_masked ptr dbg; Cconst_int (10, dbg)], dbg)
(* Array indexing *)
let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float
let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr
let is_addr_array_hdr hdr dbg =
Cop(Ccmpi Cne,
[Cop(Cand, [hdr; Cconst_int (255, dbg)], dbg); floatarray_tag dbg],
dbg)
let is_addr_array_ptr ptr dbg =
Cop(Ccmpi Cne, [get_tag ptr dbg; floatarray_tag dbg], dbg)
let addr_array_length_shifted hdr dbg =
Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
let float_array_length_shifted hdr dbg =
Cop(Clsr, [hdr; Cconst_int (numfloat_shift, dbg)], dbg)
let lsl_const c n dbg =
if n = 0 then c
else Cop(Clsl, [c; Cconst_int (n, dbg)], dbg)
(* Produces a pointer to the element of the array [ptr] on the position [ofs]
with the given element [log2size] log2 element size. [ofs] is given as a
tagged int expression.
The optional ?typ argument is the C-- type of the result.
By default, it is Addr, meaning we are constructing a derived pointer
into the heap. If we know the pointer is outside the heap
(this is the case for bigarray indexing), we give type Int instead. *)
let array_indexing ?typ log2size ptr ofs dbg =
let add =
match typ with
| None | Some Addr -> Cadda
| Some Int -> Caddi
| _ -> assert false in
match ofs with
| Cconst_int (n, _) ->
let i = n asr 1 in
if i = 0 then ptr
else Cop(add, [ptr; Cconst_int(i lsl log2size, dbg)], dbg)
| Cop(Caddi,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
Cop(add, [ptr; lsl_const c log2size dbg], dbg')
| Cop(Caddi, [c; Cconst_int (n, _)], dbg') when log2size = 0 ->
Cop(add,
[Cop(add, [ptr; untag_int c dbg], dbg); Cconst_int (n asr 1, dbg)],
dbg')
| Cop(Caddi, [c; Cconst_int (n, _)], _) ->
Cop(add, [Cop(add, [ptr; lsl_const c (log2size - 1) dbg], dbg);
Cconst_int((n-1) lsl (log2size - 1), dbg)], dbg)
| _ when log2size = 0 ->
Cop(add, [ptr; untag_int ofs dbg], dbg)
| _ ->
Cop(add, [Cop(add, [ptr; lsl_const ofs (log2size - 1) dbg], dbg);
Cconst_int((-1) lsl (log2size - 1), dbg)], dbg)
let field_address_computed ptr ofs dbg =
array_indexing log2_size_addr ptr ofs dbg
let addr_array_ref arr ofs dbg =
Cop(mk_load_mut Word_val,
[array_indexing log2_size_addr arr ofs dbg], dbg)
let int_array_ref arr ofs dbg =
Cop(mk_load_mut Word_int,
[array_indexing log2_size_addr arr ofs dbg], dbg)
let unboxed_float_array_ref arr ofs dbg =
Cop(mk_load_mut Double,
[array_indexing log2_size_float arr ofs dbg], dbg)
let float_array_ref arr ofs dbg =
box_float dbg (unboxed_float_array_ref arr ofs dbg)
let addr_array_set arr ofs newval dbg =
Cop(Cextcall("caml_modify", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let addr_array_initialize arr ofs newval dbg =
Cop(Cextcall("caml_initialize", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let int_array_set arr ofs newval dbg =
Cop(Cstore (Word_int, Lambda.Assignment),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let float_array_set arr ofs newval dbg =
Cop(Cstore (Double, Lambda.Assignment),
[array_indexing log2_size_float arr ofs dbg; newval], dbg)
(* String length *)
(* Length of string block *)
let string_length exp dbg =
bind "str" exp (fun str ->
let tmp_var = V.create_local "tmp" in
Clet(VP.create tmp_var,
Cop(Csubi,
[Cop(Clsl,
[get_size str dbg;
Cconst_int (log2_size_addr, dbg)],
dbg);
Cconst_int (1, dbg)],
dbg),
Cop(Csubi,
[Cvar tmp_var;
Cop(mk_load_mut Byte_unsigned,
[Cop(Cadda, [str; Cvar tmp_var], dbg)], dbg)], dbg)))
let bigstring_length ba dbg =
Cop(mk_load_mut Word_int, [field_address ba 5 dbg], dbg)
(* Message sending *)
let lookup_tag obj tag dbg =
bind "tag" tag (fun tag ->
Cop(Cextcall("caml_get_public_method", typ_val, [], false),
[obj; tag],
dbg))
let lookup_label obj lab dbg =
bind "lab" lab (fun lab ->
let table = Cop (mk_load_mut Word_val, [obj], dbg) in
addr_array_ref table lab dbg)
let call_cached_method obj tag cache pos args dbg =
let arity = List.length args in
let cache = array_indexing log2_size_addr cache pos dbg in
Compilenv.need_send_fun arity;
Cop(Capply typ_val,
Cconst_symbol("caml_send" ^ Int.to_string arity, dbg) ::
obj :: tag :: cache :: args,
dbg)
(* Allocation *)
let make_alloc_generic set_fn dbg tag wordsize args =
if wordsize <= Config.max_young_wosize then
Cop(Calloc, Cconst_natint(block_header tag wordsize, dbg) :: args, dbg)
else begin
let id = V.create_local "*alloc*" in
let rec fill_fields idx = function
[] -> Cvar id
| e1::el -> Csequence(set_fn (Cvar id) (Cconst_int (idx, dbg)) e1 dbg,
fill_fields (idx + 2) el) in
Clet(VP.create id,
Cop(Cextcall("caml_alloc_shr_check_gc", typ_val, [], true),
[Cconst_int (wordsize, dbg); Cconst_int (tag, dbg)], dbg),
fill_fields 1 args)
end
let make_alloc dbg tag args =
let addr_array_init arr ofs newval dbg =
Cop(Cextcall("caml_initialize", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
in
make_alloc_generic addr_array_init dbg tag (List.length args) args
let make_float_alloc dbg tag args =
make_alloc_generic float_array_set dbg tag
(List.length args * size_float / size_addr) args
(* Bounds checking *)
let make_checkbound dbg = function
| [Cop(Clsr, [a1; Cconst_int (n, _)], _); Cconst_int (m, _)]
when (m lsl n) > n ->
Cop(Ccheckbound, [a1; Cconst_int(m lsl n + 1 lsl n - 1, dbg)], dbg)
| args ->
Cop(Ccheckbound, args, dbg)
(* Record application and currying functions *)
let apply_function_sym n =
Compilenv.need_apply_fun n; "caml_apply" ^ Int.to_string n
let curry_function_sym n =
Compilenv.need_curry_fun n;
if n >= 0
then "caml_curry" ^ Int.to_string n
else "caml_tuplify" ^ Int.to_string (-n)
(* Big arrays *)
let bigarray_elt_size : Lambda.bigarray_kind -> int = function
Pbigarray_unknown -> assert false
| Pbigarray_float16 -> 2
| Pbigarray_float32 -> 4
| Pbigarray_float64 -> 8
| Pbigarray_sint8 -> 1
| Pbigarray_uint8 -> 1
| Pbigarray_sint16 -> 2
| Pbigarray_uint16 -> 2
| Pbigarray_int32 -> 4
| Pbigarray_int64 -> 8
| Pbigarray_caml_int -> size_int
| Pbigarray_native_int -> size_int
| Pbigarray_complex32 -> 8
| Pbigarray_complex64 -> 16
(* Produces a pointer to the element of the bigarray [b] on the position
[args]. [args] is given as a list of tagged int expressions, one per array
dimension. *)
let bigarray_indexing unsafe elt_kind layout b args dbg =
let check_ba_bound bound idx v =
Csequence(make_checkbound dbg [bound;idx], v) in
(* Validates the given multidimensional offset against the array bounds and
transforms it into a one dimensional offset. The offsets are expressions
evaluating to tagged int. *)
let rec ba_indexing dim_ofs delta_ofs = function
[] -> assert false
| [arg] ->
if unsafe then arg
else
bind "idx" arg (fun idx ->
(* Load the untagged int bound for the given dimension *)
let bound =
Cop(mk_load_mut Word_int,
[field_address b dim_ofs dbg], dbg)
in
let idxn = untag_int idx dbg in
check_ba_bound bound idxn idx)
| arg1 :: argl ->
(* The remainder of the list is transformed into a one dimensional offset
*)
let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
(* Load the untagged int bound for the given dimension *)
let bound =
Cop(mk_load_mut Word_int,
[field_address b dim_ofs dbg], dbg)
in
if unsafe then add_int (mul_int (decr_int rem dbg) bound dbg) arg1 dbg
else
bind "idx" arg1 (fun idx ->
bind "bound" bound (fun bound ->
let idxn = untag_int idx dbg in
(* [offset = rem * (tag_int bound) + idx] *)
let offset =
add_int (mul_int (decr_int rem dbg) bound dbg) idx dbg
in
check_ba_bound bound idxn offset)) in
(* The offset as an expression evaluating to int *)
let offset =
match (layout : Lambda.bigarray_layout) with
Pbigarray_unknown_layout ->
assert false
| Pbigarray_c_layout ->
ba_indexing (4 + List.length args) (-1) (List.rev args)
| Pbigarray_fortran_layout ->
ba_indexing 5 1
(List.map (fun idx -> sub_int idx (Cconst_int (2, dbg)) dbg) args)
and elt_size =
bigarray_elt_size elt_kind in
(* [array_indexing] can simplify the given expressions *)
array_indexing ~typ:Addr (Misc.log2 elt_size)
(Cop(mk_load_mut Word_int,
[field_address b 1 dbg], dbg)) offset dbg
let bigarray_word_kind : Lambda.bigarray_kind -> memory_chunk = function
Pbigarray_unknown -> assert false
| Pbigarray_float16 -> Sixteen_unsigned
| Pbigarray_float32 -> Single
| Pbigarray_float64 -> Double
| Pbigarray_sint8 -> Byte_signed
| Pbigarray_uint8 -> Byte_unsigned
| Pbigarray_sint16 -> Sixteen_signed
| Pbigarray_uint16 -> Sixteen_unsigned
| Pbigarray_int32 -> Thirtytwo_signed
| Pbigarray_int64 -> Sixtyfour
| Pbigarray_caml_int -> Sixtyfour
| Pbigarray_native_int -> Sixtyfour
| Pbigarray_complex32 -> Single
| Pbigarray_complex64 -> Double
let bigarray_get unsafe elt_kind layout b args dbg =
bind "ba" b (fun b ->
match (elt_kind : Lambda.bigarray_kind) with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "addr"
(bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr ->
bind "reval"
(Cop(mk_load_mut kind, [addr], dbg)) (fun reval ->
bind "imval"
(Cop(mk_load_mut kind,
[Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg)], dbg))
(fun imval -> box_complex dbg reval imval)))
| _ ->
Cop(mk_load_mut (bigarray_word_kind elt_kind),
[bigarray_indexing unsafe elt_kind layout b args dbg],
dbg))
let bigarray_set unsafe elt_kind layout b args newval dbg =
bind "ba" b (fun b ->
match (elt_kind : Lambda.bigarray_kind) with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "newval" newval (fun newv ->
bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg)
(fun addr ->
Csequence(
Cop(Cstore (kind, Assignment), [addr; complex_re newv dbg], dbg),
Cop(Cstore (kind, Assignment),
[Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg);
complex_im newv dbg],
dbg))))
| _ ->
Cop(Cstore (bigarray_word_kind elt_kind, Assignment),
[bigarray_indexing unsafe elt_kind layout b args dbg; newval],
dbg))
(* the three functions below assume 64-bit words *)
let () = assert (size_int = 8)
(* low_32 x is a value which agrees with x on at least the low 32 bits *)
let rec low_32 dbg = function
(* Ignore sign and zero extensions, which do not affect the low bits *)
| Cop(Casr, [Cop(Clsl, [x; Cconst_int (32, _)], _);
Cconst_int (32, _)], _)
| Cop(Cand, [x; Cconst_natint (0xFFFFFFFFn, _)], _) ->
low_32 dbg x
| Clet(id, e, body) ->
Clet(id, e, low_32 dbg body)
| x -> x
(* sign_extend_32 sign-extends values from 32 bits to the word size. *)
let sign_extend_32 dbg e =
Cop(Casr, [Cop(Clsl, [low_32 dbg e; Cconst_int(32, dbg)], dbg);
Cconst_int(32, dbg)], dbg)
(* zero_extend_32 zero-extends values from 32 bits to the word size. *)
let zero_extend_32 dbg e =
Cop(Cand, [low_32 dbg e; natint_const_untagged dbg 0xFFFFFFFFn], dbg)
(* Boxed integers *)
let operations_boxed_int (bi : Primitive.boxed_integer) =
match bi with
Pnativeint -> caml_nativeint_ops
| Pint32 -> caml_int32_ops
| Pint64 -> caml_int64_ops
let alloc_header_boxed_int (bi : Primitive.boxed_integer) =
match bi with
Pnativeint -> alloc_boxedintnat_header
| Pint32 -> alloc_boxedint32_header
| Pint64 -> alloc_boxedint64_header
let box_int_gen dbg (bi : Primitive.boxed_integer) arg =
let arg' =
if bi = Primitive.Pint32 then
if big_endian
then Cop(Clsl, [arg; Cconst_int (32, dbg)], dbg)
else sign_extend_32 dbg arg
else arg
in
Cop(Calloc, [alloc_header_boxed_int bi dbg;
Cconst_symbol(operations_boxed_int bi, dbg);
arg'], dbg)
let alloc_matches_boxed_int bi ~hdr ~ops =
match (bi : Primitive.boxed_integer), hdr, ops with
| Pnativeint, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedintnat_header
&& String.equal sym caml_nativeint_ops
| Pint32, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedint32_header
&& String.equal sym caml_int32_ops
| Pint64, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedint64_header
&& String.equal sym caml_int64_ops
| (Pnativeint | Pint32 | Pint64), _, _ -> false
let unbox_int dbg bi =
let default arg =
let memory_chunk = if bi = Primitive.Pint32
then Thirtytwo_signed else Word_int
in
Cop(
mk_load_immut memory_chunk,
[Cop(Cadda, [arg; Cconst_int (size_addr, dbg)], dbg)], dbg)
in
map_tail
(function
| Cop(Calloc,
[hdr; ops;
Cop(Clsl, [contents; Cconst_int (32, _)], _dbg')], _dbg)
when bi = Primitive.Pint32 && big_endian
&& alloc_matches_boxed_int bi ~hdr ~ops ->
(* Force sign-extension of low 32 bits *)
sign_extend_32 dbg contents
| Cop(Calloc,
[hdr; ops; contents], _dbg)
when bi = Primitive.Pint32 && not big_endian
&& alloc_matches_boxed_int bi ~hdr ~ops ->
(* Force sign-extension of low 32 bits *)
sign_extend_32 dbg contents
| Cop(Calloc, [hdr; ops; contents], _dbg)
when alloc_matches_boxed_int bi ~hdr ~ops ->
contents
| Cconst_symbol (s, _dbg) as cmm ->
begin match Cmmgen_state.structured_constant_of_sym s, bi with
| Some (Uconst_nativeint n), Primitive.Pnativeint ->
natint_const_untagged dbg n
| Some (Uconst_int32 n), Primitive.Pint32 ->
natint_const_untagged dbg (Nativeint.of_int32 n)
| Some (Uconst_int64 n), Primitive.Pint64 ->
natint_const_untagged dbg (Int64.to_nativeint n)
| _ ->
default cmm
end
| cmm ->
default cmm
)
let make_unsigned_int bi arg dbg =
if bi = Primitive.Pint32
then zero_extend_32 dbg arg
else arg
let unaligned_load_16 ptr idx dbg =
if Arch.allow_unaligned_access
then Cop(mk_load_mut Sixteen_unsigned, [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
let v2 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
Cop(Cor, [lsl_int b1 (cconst_int 8) dbg; b2], dbg)
let unaligned_set_16 ptr idx newval dbg =
if Arch.allow_unaligned_access
then
Cop(Cstore (Sixteen_unsigned, Assignment),
[add_int ptr idx dbg; newval], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg);
cconst_int 0xFF], dbg)
in
let v2 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
Csequence(
Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx dbg; b1], dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2], dbg))
let unaligned_load_32 ptr idx dbg =
if Arch.allow_unaligned_access
then Cop(mk_load_mut Thirtytwo_unsigned, [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
let v2 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg)
in
let v3 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg)
in
let v4 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg)
in
let b1, b2, b3, b4 =
if Arch.big_endian
then v1, v2, v3, v4
else v4, v3, v2, v1 in
Cop(Cor,
[Cop(Cor, [lsl_int b1 (cconst_int 24) dbg;
lsl_int b2 (cconst_int 16) dbg], dbg);
Cop(Cor, [lsl_int b3 (cconst_int 8) dbg; b4], dbg)],
dbg)
let unaligned_set_32 ptr idx newval dbg =
if Arch.allow_unaligned_access
then
Cop(Cstore (Thirtytwo_unsigned, Assignment), [add_int ptr idx dbg; newval],
dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 24], dbg); cconst_int 0xFF], dbg)
in
let v2 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 16], dbg); cconst_int 0xFF], dbg)
in
let v3 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF], dbg)
in
let v4 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2, b3, b4 =
if Arch.big_endian
then v1, v2, v3, v4
else v4, v3, v2, v1 in
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int ptr idx dbg; b1], dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
dbg)))
let unaligned_load_64 ptr idx dbg =
if Arch.allow_unaligned_access
then Cop(mk_load_mut Sixtyfour, [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
let v2 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
let v3 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg) in
let v4 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg) in
let v5 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 4) dbg], dbg) in
let v6 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 5) dbg], dbg) in
let v7 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 6) dbg], dbg) in
let v8 = Cop(mk_load_mut Byte_unsigned,
[add_int (add_int ptr idx dbg) (cconst_int 7) dbg], dbg) in
let b1, b2, b3, b4, b5, b6, b7, b8 =
if Arch.big_endian
then v1, v2, v3, v4, v5, v6, v7, v8
else v8, v7, v6, v5, v4, v3, v2, v1 in
Cop(Cor,
[Cop(Cor,
[Cop(Cor, [lsl_int b1 (cconst_int (8*7)) dbg;
lsl_int b2 (cconst_int (8*6)) dbg], dbg);
Cop(Cor, [lsl_int b3 (cconst_int (8*5)) dbg;
lsl_int b4 (cconst_int (8*4)) dbg], dbg)],
dbg);
Cop(Cor,
[Cop(Cor, [lsl_int b5 (cconst_int (8*3)) dbg;
lsl_int b6 (cconst_int (8*2)) dbg], dbg);
Cop(Cor, [lsl_int b7 (cconst_int 8) dbg;
b8], dbg)],
dbg)], dbg)
let unaligned_set_64 ptr idx newval dbg =
if Arch.allow_unaligned_access
then Cop(Cstore (Sixtyfour, Assignment), [add_int ptr idx dbg; newval], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*7)], dbg); cconst_int 0xFF],
dbg)
in
let v2 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*6)], dbg); cconst_int 0xFF],
dbg)
in
let v3 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*5)], dbg); cconst_int 0xFF],
dbg)
in
let v4 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*4)], dbg); cconst_int 0xFF],
dbg)
in
let v5 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*3)], dbg); cconst_int 0xFF],
dbg)
in
let v6 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*2)], dbg); cconst_int 0xFF],
dbg)
in
let v7 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF],
dbg)
in
let v8 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2, b3, b4, b5, b6, b7, b8 =
if Arch.big_endian
then v1, v2, v3, v4, v5, v6, v7, v8
else v8, v7, v6, v5, v4, v3, v2, v1 in
Csequence(
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int ptr idx dbg; b1],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
dbg))),
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 4) dbg; b5],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 5) dbg; b6],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 6) dbg; b7],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 7) dbg; b8],
dbg))))
let max_or_zero a dbg =
bind "size" a (fun a ->
(* equivalent to
Cifthenelse(Cop(Ccmpi Cle, [a; cconst_int 0]), cconst_int 0, a)
if a is positive, sign is 0 hence sign_negation is full of 1
so sign_negation&a = a
if a is negative, sign is full of 1 hence sign_negation is 0
so sign_negation&a = 0 *)
let sign = Cop(Casr, [a; Cconst_int (size_int * 8 - 1, dbg)], dbg) in
let sign_negation = Cop(Cxor, [sign; Cconst_int (-1, dbg)], dbg) in
Cop(Cand, [sign_negation; a], dbg))
let check_bound safety access_size dbg length a2 k =
match (safety : Lambda.is_safe) with
| Unsafe -> k
| Safe ->
let offset =
match (access_size : Clambda_primitives.memory_access_size) with
| Sixteen -> 1
| Thirty_two -> 3
| Sixty_four -> 7
in
let a1 =
sub_int length (Cconst_int (offset, dbg)) dbg
in
Csequence(make_checkbound dbg [max_or_zero a1 dbg; a2], k)
let opaque e dbg =
Cop(Copaque, [e], dbg)
let unaligned_set size ptr idx newval dbg =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> unaligned_set_16 ptr idx newval dbg
| Thirty_two -> unaligned_set_32 ptr idx newval dbg
| Sixty_four -> unaligned_set_64 ptr idx newval dbg
let unaligned_load size ptr idx dbg =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> unaligned_load_16 ptr idx dbg
| Thirty_two -> unaligned_load_32 ptr idx dbg
| Sixty_four -> unaligned_load_64 ptr idx dbg
let box_sized size dbg exp =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> tag_int exp dbg
| Thirty_two -> box_int_gen dbg Pint32 exp
| Sixty_four -> box_int_gen dbg Pint64 exp
(* Simplification of some primitives into C calls *)
let default_prim name =
Primitive.simple ~name ~arity:0(*ignored*) ~alloc:true
let simplif_primitive p : Clambda_primitives.primitive =
match (p : Clambda_primitives.primitive) with
| Pduprecord _ ->
Pccall (default_prim "caml_obj_dup")
| Pbigarrayref(_unsafe, n, Pbigarray_unknown, _layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(_unsafe, n, Pbigarray_unknown, _layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| Pbigarrayref(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| p ->
p
(* Build switchers both for constants and blocks *)
let transl_isout h arg dbg = tag_int (Cop(Ccmpa Clt, [h ; arg], dbg)) dbg
(* Operations on OCaml values *)
let add_int_caml arg1 arg2 dbg =
decr_int (add_int arg1 arg2 dbg) dbg
(* Unary primitive delayed to reuse add_int_caml *)
let offsetint n arg dbg =
if Misc.no_overflow_lsl n 1 then
add_const arg (n lsl 1) dbg
else
add_int_caml arg (int_const dbg n) dbg
let sub_int_caml arg1 arg2 dbg =
incr_int (sub_int arg1 arg2 dbg) dbg
let mul_int_caml arg1 arg2 dbg =
(* decrementing the non-constant part helps when the multiplication is
followed by an addition;
for example, using this trick compiles (100 * a + 7) into
(+ ( * a 100) -85)
rather than
(+ ( * 200 (>>s a 1)) 15)
*)
match arg1, arg2 with
| Cconst_int _ as c1, c2 ->
incr_int (mul_int (untag_int c1 dbg) (decr_int c2 dbg) dbg) dbg
| c1, c2 ->
incr_int (mul_int (decr_int c1 dbg) (untag_int c2 dbg) dbg) dbg
let div_int_caml is_safe arg1 arg2 dbg =
tag_int(div_int (untag_int arg1 dbg)
(untag_int arg2 dbg) is_safe dbg) dbg
let mod_int_caml is_safe arg1 arg2 dbg =
tag_int(mod_int (untag_int arg1 dbg)
(untag_int arg2 dbg) is_safe dbg) dbg
let and_int_caml arg1 arg2 dbg =
Cop(Cand, [arg1; arg2], dbg)
let or_int_caml arg1 arg2 dbg =
Cop(Cor, [arg1; arg2], dbg)
let xor_int_caml arg1 arg2 dbg =
Cop(Cor, [Cop(Cxor, [ignore_low_bit_int arg1;
ignore_low_bit_int arg2], dbg);
Cconst_int (1, dbg)], dbg)
let lsl_int_caml arg1 arg2 dbg =
incr_int(lsl_int (decr_int arg1 dbg)
(untag_int arg2 dbg) dbg) dbg
let lsr_int_caml arg1 arg2 dbg =
Cop(Cor, [lsr_int arg1 (untag_int arg2 dbg) dbg;
Cconst_int (1, dbg)], dbg)
let asr_int_caml arg1 arg2 dbg =
Cop(Cor, [asr_int arg1 (untag_int arg2 dbg) dbg;
Cconst_int (1, dbg)], dbg)
let int_comp_caml cmp arg1 arg2 dbg =
tag_int(Cop(Ccmpi cmp,
[arg1; arg2], dbg)) dbg
(* Build an actual switch (ie jump table) *)
type switch_arg = Tagged of expression | Untagged of expression
(** This function takes a switch on immedate values,
for example:
int 0: 1
int 1: 3
int 2: 5
It tries to perform two optimizations:
- If the switch implements an affine function [x -> a*x + b],
produce the affine expression [a * arg + b]. In particular, when
a=1 and b=0, return the argument [arg] unchanged.
- If the switch only has constant right-hand-sides (but is not an
affine function), produce a table lookup.
*)
let make_switch arg cases actions dbg =
(* We only apply those optimizations if the right-hand-side is
made of valid OCaml constants. In particular, if all machine
integers appearing in the right-hand-side are tagged (least bit 1). *)
let extract_uconstant =
function
| Cconst_int (n, _), _dbg when (n land 1) = 1 ->
Some (Cint (Nativeint.of_int n))
| Cconst_natint (n, _), _dbg
when Nativeint.(to_int (logand n one) = 1) ->
Some (Cint n)
| Cconst_symbol (s,_), _dbg ->
Some (Csymbol_address s)
| _ -> None
in
let extract_affine ~cases ~const_actions =
let length = Array.length cases in
if length >= 2
then begin
match const_actions.(cases.(0)), const_actions.(cases.(1)) with
| Cint n0, Cint n1 ->
(* The right-hand-sides are tagged, so we can translate them
back to OCaml integers without loss of information, to
compute the offset and slope on OCaml integers.
For example, consider the identity function on OCaml integers
0 -> 0
1 -> 1
2 -> 2
If we computed the slope with native integers on the
right-hand-side, we would see
0 -> 1n
1 -> 3n
2 -> 5n
and compute offset=1n, slope=2n.
We want offset=0, slope=1 instead.
*)
let v0, v1 = untag_const n0, untag_const n1 in
let slope = v1 - v0 in
let check i = function
| Cint n -> untag_const n = (slope * i + v0)
| _ -> false
in
if Misc.Stdlib.Array.for_alli
(fun i idx -> check i const_actions.(idx)) cases
then Some (v0, slope)
else None
| _, _ ->
None
end
else None
in
let make_switch ~arg_untagged ~cases ~actions =
(* We need an untagged argument here. *)
Cswitch (arg_untagged, cases, actions, dbg)
in
let make_table_lookup ~arg_tagged ~cases ~const_actions =
(* We need a tagged argument here, to call a [*_array_ref] helper. *)
let table = Compilenv.new_const_symbol () in
Cmmgen_state.add_constant table (Const_table (Local,
Array.to_list (Array.map (fun act ->
const_actions.(act)) cases)));
(* Constant integers loaded from a table are tagged,
so that Cload never produces untagged integers. *)
addr_array_ref (Cconst_symbol (table, dbg)) arg_tagged dbg
in
let make_affine_computation ~arg_tagged ~offset ~slope =
(* Asking for a tagged argument here does not introduce extra tagging,
as any (tag_int ..) logic around the argument will be undone by
[mul_int_caml]. *)
add_int_caml
(mul_int_caml (int_const dbg slope) arg_tagged dbg)
(int_const dbg offset) dbg
in
let arg_tagged, arg_untagged =
match arg with
| Tagged arg_tagged -> arg_tagged, untag_int arg_tagged dbg
| Untagged arg_untagged -> tag_int arg_untagged dbg, arg_untagged
in
match Misc.Stdlib.Array.all_somes (Array.map extract_uconstant actions) with
| None ->
make_switch ~arg_untagged ~cases ~actions
| Some const_actions ->
match extract_affine ~cases ~const_actions with
| Some (offset, slope) ->
make_affine_computation ~arg_tagged ~offset ~slope
| None ->
make_table_lookup ~arg_tagged ~cases ~const_actions
module SArgBlocks =
struct
type primitive = operation
let eqint = Ccmpi Ceq
let neint = Ccmpi Cne
let leint = Ccmpi Cle
let ltint = Ccmpi Clt
let geint = Ccmpi Cge
let gtint = Ccmpi Cgt
type loc = Debuginfo.t
type arg = expression
type test = expression
type act = expression
(* CR mshinwell: GPR#2294 will fix the Debuginfo here *)
let make_const i = Cconst_int (i, Debuginfo.none)
let make_prim p args = Cop (p,args, Debuginfo.none)
let make_offset arg n = add_const arg n Debuginfo.none
let make_isout h arg = Cop (Ccmpa Clt, [h ; arg], Debuginfo.none)
let make_isin h arg = Cop (Ccmpa Cge, [h ; arg], Debuginfo.none)
let make_is_nonzero arg = arg
let arg_as_test arg = arg
let make_if cond ifso ifnot =
Cifthenelse (cond, Debuginfo.none, ifso, Debuginfo.none, ifnot,
Debuginfo.none)
let make_switch dbg arg cases actions =
let actions = Array.map (fun expr -> expr, dbg) actions in
make_switch (Untagged arg) cases actions dbg
let bind arg body = bind "switcher" arg body
let make_catch handler = match handler with
| Cexit (i,[]) -> i,fun e -> e
| _ ->
let dbg = Debuginfo.none in
let i = Lambda.next_raise_count () in
(*
Printf.eprintf "SHARE CMM: %i\n" i ;
Printcmm.expression Format.str_formatter handler ;
Printf.eprintf "%s\n" (Format.flush_str_formatter ()) ;
*)
i,
(fun body -> match body with
| Cexit (j,_) ->
if i=j then handler
else body
| _ -> ccatch (i,[],body,handler, dbg))
let make_exit i = Cexit (i,[])
end
(* cmm store, as sharing as normally been detected in previous
phases, we only share exits *)
(* Some specific patterns can lead to switches where several cases
point to the same action, but this action is not an exit (see GPR#1370).
The addition of the index in the action array as context allows to
share them correctly without duplication. *)
module StoreExpForSwitch =
Switch.CtxStore
(struct
type t = expression
type key = int option * int
type context = int
let make_key index expr =
let continuation =
match expr with
| Cexit (i,[]) -> Some i
| _ -> None
in
Some (continuation, index)
let compare_key (cont, index) (cont', index') =
match cont, cont' with
| Some i, Some i' when i = i' -> 0
| _, _ -> Stdlib.compare index index'
end)
(* For string switches, we can use a generic store *)
module StoreExp =
Switch.Store
(struct
type t = expression
type key = int
let make_key = function
| Cexit (i,[]) -> Some i
| _ -> None
let compare_key = Stdlib.compare
end)
module SwitcherBlocks = Switch.Make(SArgBlocks)
(* Int switcher, arg in [low..high],
cases is list of individual cases, and is sorted by first component *)
let transl_int_switch dbg arg low high cases default = match cases with
| [] -> assert false
| _::_ ->
let store = StoreExp.mk_store () in
assert (store.Switch.act_store () default = 0) ;
let cases =
List.map
(fun (i,act) -> i,store.Switch.act_store () act)
cases in
let rec inters plow phigh pact = function
| [] ->
if phigh = high then [plow,phigh,pact]
else [(plow,phigh,pact); (phigh+1,high,0) ]
| (i,act)::rem ->
if i = phigh+1 then
if pact = act then
inters plow i pact rem
else
(plow,phigh,pact)::inters i i act rem
else (* insert default *)
if pact = 0 then
if act = 0 then
inters plow i 0 rem
else
(plow,i-1,pact)::
inters i i act rem
else (* pact <> 0 *)
(plow,phigh,pact)::
begin
if act = 0 then inters (phigh+1) i 0 rem
else (phigh+1,i-1,0)::inters i i act rem
end in
let inters = match cases with
| [] -> assert false
| (k0,act0)::rem ->
if k0 = low then inters k0 k0 act0 rem
else inters low (k0-1) 0 cases in
bind "switcher" arg
(fun a ->
SwitcherBlocks.zyva
dbg
(low,high)
a
(Array.of_list inters) store)
let transl_switch_clambda loc arg index cases =
let store = StoreExpForSwitch.mk_store () in
let index =
Array.map
(fun j -> store.Switch.act_store j cases.(j))
index in
let n_index = Array.length index in
let inters = ref []
and this_high = ref (n_index-1)
and this_low = ref (n_index-1)
and this_act = ref index.(n_index-1) in
for i = n_index-2 downto 0 do
let act = index.(i) in
if act = !this_act then
decr this_low
else begin
inters := (!this_low, !this_high, !this_act) :: !inters ;
this_high := i ;
this_low := i ;
this_act := act
end
done ;
inters := (0, !this_high, !this_act) :: !inters ;
match !inters with
| [_] -> cases.(0)
| inters ->
bind "switcher" arg
(fun a ->
SwitcherBlocks.zyva
loc
(0,n_index-1)
a
(Array.of_list inters) store)
let strmatch_compile =
let module S =
Strmatch.Make
(struct
let string_block_length ptr = get_size ptr Debuginfo.none
let transl_switch = transl_int_switch
end) in
S.compile
let ptr_offset ptr offset dbg =
if offset = 0
then ptr
else Cop(Caddv, [ptr; Cconst_int(offset * size_addr, dbg)], dbg)
let direct_apply lbl args dbg =
Cop(Capply typ_val, Cconst_symbol (lbl, dbg) :: args, dbg)
let generic_apply mut clos args dbg =
match args with
| [arg] ->
bind "fun" clos (fun clos ->
Cop(Capply typ_val, [get_field_codepointer mut clos 0 dbg; arg; clos],
dbg))
| _ ->
let arity = List.length args in
let cargs =
Cconst_symbol(apply_function_sym arity, dbg) :: args @ [clos]
in
Cop(Capply typ_val, cargs, dbg)
let send kind met obj args dbg =
let call_met obj args clos =
(* met is never a simple expression, so it never gets turned into an
Immutable load *)
generic_apply Asttypes.Mutable clos (obj :: args) dbg
in
bind "obj" obj (fun obj ->
match (kind : Lambda.meth_kind), args with
Self, _ ->
bind "met" (lookup_label obj met dbg)
(call_met obj args)
| Cached, cache :: pos :: args ->
call_cached_method obj met cache pos args dbg
| _ ->
bind "met" (lookup_tag obj met dbg)
(call_met obj args))
(*
CAMLprim value caml_cache_public_method (value meths, value tag, value *cache)
{
int li = 3, hi = Field(meths,0), mi;
while (li < hi) { // no need to check the 1st time
mi = ((li+hi) >> 1) | 1;
if (tag < Field(meths,mi)) hi = mi-2;
else li = mi;
}
*cache = (li-3)*sizeof(value)+1;
return Field (meths, li-1);
}
*)
let cache_public_method meths tag cache dbg =
let raise_num = Lambda.next_raise_count () in
let cconst_int i = Cconst_int (i, dbg) in
let li = V.create_local "*li*" and hi = V.create_local "*hi*"
and mi = V.create_local "*mi*" and tagged = V.create_local "*tagged*" in
Clet_mut (
VP.create li, typ_int, cconst_int 3,
Clet_mut (
VP.create hi, typ_int, Cop(mk_load_mut Word_int, [meths], dbg),
Csequence(
ccatch
(raise_num, [],
create_loop
(Clet(
VP.create mi,
Cop(Cor,
[Cop(Clsr, [Cop(Caddi, [Cvar_mut li; Cvar_mut hi], dbg);
cconst_int 1],
dbg);
cconst_int 1],
dbg),
Csequence(
Cifthenelse
(Cop (Ccmpi Clt,
[tag;
Cop(mk_load_mut Word_int,
[Cop(Cadda,
[meths; lsl_const (Cvar mi) log2_size_addr dbg],
dbg)],
dbg)], dbg),
dbg, Cassign(hi, Cop(Csubi, [Cvar mi; cconst_int 2], dbg)),
dbg, Cassign(li, Cvar mi),
dbg),
Cifthenelse
(Cop(Ccmpi Cge, [Cvar_mut li; Cvar_mut hi], dbg),
dbg, Cexit (raise_num, []),
dbg, Ctuple [],
dbg))))
dbg,
Ctuple [],
dbg),
Clet (
VP.create tagged,
Cop(Caddi, [lsl_const (Cvar_mut li) log2_size_addr dbg;
cconst_int(1 - 3 * size_addr)], dbg),
Csequence(Cop (Cstore (Word_int, Assignment), [cache; Cvar tagged], dbg),
Cvar tagged)))))
(* CR mshinwell: These will be filled in by later pull requests. *)
let placeholder_dbg () = Debuginfo.none
let placeholder_fun_dbg ~human_name:_ = Debuginfo.none
(* Generate an application function:
(defun caml_applyN (a1 ... aN clos)
(if (= clos.arity N)
(app clos.direct a1 ... aN clos)
(let (clos1 (app clos.code a1 clos)
clos2 (app clos1.code a2 clos)
...
closN-1 (app closN-2.code aN-1 closN-2))
(app closN-1.code aN closN-1))))
*)
let apply_function_body arity =
let dbg = placeholder_dbg in
let arg = Array.make arity (V.create_local "arg") in
for i = 1 to arity - 1 do arg.(i) <- V.create_local "arg" done;
let clos = V.create_local "clos" in
let rec app_fun clos n =
if n = arity-1 then
Cop(Capply typ_val,
[get_field_codepointer Asttypes.Mutable (Cvar clos) 0 (dbg ());
Cvar arg.(n);
Cvar clos],
dbg ())
else begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
Cop(Capply typ_val,
[get_field_codepointer Asttypes.Mutable (Cvar clos) 0 (dbg ());
Cvar arg.(n); Cvar clos], dbg ()),
app_fun newclos (n+1))
end in
let args = Array.to_list arg in
let all_args = args @ [clos] in
(args, clos,
if arity = 1 then app_fun clos 0 else
Cifthenelse(
Cop(Ccmpi Ceq, [Cop(Casr,
[get_field_gen Asttypes.Mutable (Cvar clos) 1 (dbg());
Cconst_int(pos_arity_in_closinfo, dbg())], dbg());
Cconst_int(arity, dbg())], dbg()),
dbg (),
Cop(Capply typ_val,
get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: List.map (fun s -> Cvar s) all_args,
dbg ()),
dbg (),
app_fun clos 0,
dbg ()))
let send_function arity =
let dbg = placeholder_dbg in
let cconst_int i = Cconst_int (i, dbg ()) in
let (args, clos', body) = apply_function_body (1+arity) in
let cache = V.create_local "cache"
and obj = List.hd args
and tag = V.create_local "tag" in
let clos =
let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in
let meths = V.create_local "meths" and cached = V.create_local "cached" in
let real = V.create_local "real" in
let mask = get_field_gen Asttypes.Mutable (Cvar meths) 1 (dbg ()) in
let cached_pos = Cvar cached in
let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths], dbg ());
cconst_int(3*size_addr-1)], dbg ()) in
let tag' = Cop(mk_load_mut Word_int, [tag_pos], dbg ()) in
Clet (
VP.create meths, Cop(mk_load_mut Word_val, [obj], dbg ()),
Clet (
VP.create cached,
Cop(Cand, [Cop(mk_load_mut Word_int, [cache], dbg ()); mask],
dbg ()),
Clet (
VP.create real,
Cifthenelse(Cop(Ccmpa Cne, [tag'; tag], dbg ()),
dbg (),
cache_public_method (Cvar meths) tag cache (dbg ()),
dbg (),
cached_pos,
dbg ()),
Cop(mk_load_mut Word_val,
[Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths], dbg ());
cconst_int(2*size_addr-1)], dbg ())], dbg ()))))
in
let body = Clet(VP.create clos', clos, body) in
let cache = cache in
let fun_name = "caml_send" ^ Int.to_string arity in
let fun_args =
[obj, typ_val; tag, typ_int; cache, typ_addr]
@ List.map (fun id -> (id, typ_val)) (List.tl args) in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = List.map (fun (arg, ty) -> VP.create arg, ty) fun_args;
fun_body = body;
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
let apply_function arity =
let (args, clos, body) = apply_function_body arity in
let all_args = args @ [clos] in
let fun_name = "caml_apply" ^ Int.to_string arity in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = List.map (fun arg -> (VP.create arg, typ_val)) all_args;
fun_body = body;
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
(* Generate tuplifying functions:
(defun caml_tuplifyN (arg clos)
(app clos.direct #0(arg) ... #N-1(arg) clos)) *)
let tuplify_function arity =
let dbg = placeholder_dbg in
let arg = V.create_local "arg" in
let clos = V.create_local "clos" in
let rec access_components i =
if i >= arity
then []
else get_field_gen Asttypes.Mutable (Cvar arg) i (dbg ())
:: access_components(i+1)
in
let fun_name = "caml_tuplify" ^ Int.to_string arity in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
fun_body =
Cop(Capply typ_val,
get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: access_components 0 @ [Cvar clos],
(dbg ()));
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
(* Generate currying functions:
(defun caml_curryN (arg clos)
(alloc HDR caml_curryN_1 <arity (N-1)> caml_curry_N_1_app arg clos))
(defun caml_curryN_1 (arg clos)
(alloc HDR caml_curryN_2 <arity (N-2)> caml_curry_N_2_app arg clos))
...
(defun caml_curryN_N-1 (arg clos)
(let (closN-2 clos.vars[1]
closN-3 closN-2.vars[1]
...
clos1 clos2.vars[1]
clos clos1.vars[1])
(app clos.direct
clos1.vars[0] ... closN-2.vars[0] clos.vars[0] arg clos)))
Special "shortcut" functions are also generated to handle the
case where a partially applied function is applied to all remaining
arguments in one go. For instance:
(defun caml_curry_N_1_app (arg2 ... argN clos)
(let clos' clos.vars[1]
(app clos'.direct clos.vars[0] arg2 ... argN clos')))
Those shortcuts may lead to a quadratic number of application
primitives being generated in the worst case, which resulted in
linking time blowup in practice (PR#5933), so we only generate and
use them when below a fixed arity 'max_arity_optimized'.
*)
let max_arity_optimized = 15
let final_curry_function arity =
let dbg = placeholder_dbg in
let last_arg = V.create_local "arg" in
let last_clos = V.create_local "clos" in
let rec curry_fun args clos n =
if n = 0 then
Cop(Capply typ_val,
get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ()) ::
args @ [Cvar last_arg; Cvar clos],
dbg ())
else
if n = arity - 1 || arity > max_arity_optimized then
begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()),
curry_fun (get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: args)
newclos (n-1))
end else
begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
curry_fun
(get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()) :: args)
newclos (n-1))
end in
let fun_name =
"caml_curry" ^ Int.to_string arity ^ "_" ^ Int.to_string (arity-1)
in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = [VP.create last_arg, typ_val; VP.create last_clos, typ_val];
fun_body = curry_fun [] last_clos (arity-1);
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
let rec intermediate_curry_functions arity num =
let dbg = placeholder_dbg in
if num = arity - 1 then
[final_curry_function arity]
else begin
let name1 = "caml_curry" ^ Int.to_string arity in
let name2 = if num = 0 then name1 else name1 ^ "_" ^ Int.to_string num in
let arg = V.create_local "arg" and clos = V.create_local "clos" in
let fun_dbg = placeholder_fun_dbg ~human_name:name2 in
Cfunction
{fun_name = name2;
fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
fun_body =
if arity - num > 2 && arity <= max_arity_optimized then
Cop(Calloc,
[alloc_closure_header 5 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
alloc_closure_info ~arity:(arity - num - 1)
~startenv:3 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1) ^ "_app",
dbg ());
Cvar arg; Cvar clos],
dbg ())
else
Cop(Calloc,
[alloc_closure_header 4 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
alloc_closure_info ~arity:1 ~startenv:2 (dbg ());
Cvar arg; Cvar clos],
dbg ());
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
::
(if arity <= max_arity_optimized && arity - num > 2 then
let rec iter i =
if i <= arity then
let arg = V.create_local (Printf.sprintf "arg%d" i) in
(arg, typ_val) :: iter (i+1)
else []
in
let direct_args = iter (num+2) in
let rec iter i args clos =
if i = 0 then
Cop(Capply typ_val,
(get_field_codepointer
Asttypes.Mutable (Cvar clos) 2 (dbg ()))
:: args @ [Cvar clos],
dbg ())
else
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
iter (i-1)
(get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ())
:: args)
newclos)
in
let fun_args =
List.map (fun (arg, ty) -> VP.create arg, ty)
(direct_args @ [clos, typ_val])
in
let fun_name = name1 ^ "_" ^ Int.to_string (num+1) ^ "_app" in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
let cf =
Cfunction
{fun_name;
fun_args;
fun_body = iter (num+1)
(List.map (fun (arg,_) -> Cvar arg) direct_args) clos;
fun_codegen_options = [];
fun_poll = Default_poll;
fun_dbg;
}
in
cf :: intermediate_curry_functions arity (num+1)
else
intermediate_curry_functions arity (num+1))
end
let curry_function arity =
assert(arity <> 0);
(* Functions with arity = 0 does not have a curry_function *)
if arity > 0
then intermediate_curry_functions arity 0
else [tuplify_function (-arity)]
module Int = Numbers.Int
let default_apply = Int.Set.add 2 (Int.Set.add 3 Int.Set.empty)
(* These apply funs are always present in the main program because
the run-time system needs them (cf. runtime/<arch>.S) . *)
let generic_functions shared units =
let (apply,send,curry) =
List.fold_left
(fun (apply,send,curry) (ui : Cmx_format.unit_infos) ->
List.fold_right Int.Set.add ui.ui_apply_fun apply,
List.fold_right Int.Set.add ui.ui_send_fun send,
List.fold_right Int.Set.add ui.ui_curry_fun curry)
(Int.Set.empty,Int.Set.empty,Int.Set.empty)
units in
let apply = if shared then apply else Int.Set.union apply default_apply in
let accu = Int.Set.fold (fun n accu -> apply_function n :: accu) apply [] in
let accu = Int.Set.fold (fun n accu -> send_function n :: accu) send accu in
Int.Set.fold (fun n accu -> curry_function n @ accu) curry accu
(* Primitives *)
type unary_primitive = expression -> Debuginfo.t -> expression
let floatfield n ptr dbg =
Cop(mk_load_mut Double,
[if n = 0 then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_float, dbg)], dbg)],
dbg)
let int_as_pointer arg dbg =
Cop(Caddi, [arg; Cconst_int (-1, dbg)], dbg)
(* always a pointer outside the heap *)
let raise_prim raise_kind arg dbg =
if !Clflags.debug then
Cop (Craise raise_kind, [arg], dbg)
else
Cop (Craise Lambda.Raise_notrace, [arg], dbg)
let negint arg dbg =
Cop(Csubi, [Cconst_int (2, dbg); arg], dbg)
(* [offsetint] moved down to reuse add_int_caml *)
let offsetref n arg dbg =
return_unit dbg
(bind "ref" arg (fun arg ->
Cop(Cstore (Word_int, Assignment),
[arg;
add_const (Cop(mk_load_mut Word_int, [arg], dbg))
(n lsl 1) dbg],
dbg)))
let arraylength kind arg dbg =
let hdr = get_header_masked arg dbg in
match (kind : Lambda.array_kind) with
Pgenarray ->
let len =
if wordsize_shift = numfloat_shift then
Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
else
bind "header" hdr (fun hdr ->
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
Cop(Clsr,
[hdr; Cconst_int (wordsize_shift, dbg)], dbg),
dbg,
Cop(Clsr,
[hdr; Cconst_int (numfloat_shift, dbg)], dbg),
dbg))
in
Cop(Cor, [len; Cconst_int (1, dbg)], dbg)
| Paddrarray | Pintarray ->
Cop(Cor, [addr_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)
| Pfloatarray ->
Cop(Cor, [float_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)
let bbswap bi arg dbg =
let prim, tyarg = match (bi : Primitive.boxed_integer) with
| Pnativeint -> "nativeint", XInt
| Pint32 -> "int32", XInt32
| Pint64 -> "int64", XInt64
in
Cop(Cextcall(Printf.sprintf "caml_%s_direct_bswap" prim,
typ_int, [tyarg], false),
[arg],
dbg)
let bswap16 arg dbg =
(Cop(Cextcall("caml_bswap16_direct", typ_int, [], false),
[arg],
dbg))
type binary_primitive = expression -> expression -> Debuginfo.t -> expression
(* let pfield_computed = addr_array_ref *)
(* Helper for compilation of initialization and assignment operations *)
type assignment_kind = Caml_modify | Caml_initialize | Simple
let assignment_kind
(ptr: Lambda.immediate_or_pointer)
(init: Lambda.initialization_or_assignment) =
match init, ptr with
| Assignment, Pointer -> Caml_modify
| Heap_initialization, Pointer
| Root_initialization, Pointer -> Caml_initialize
| Assignment, Immediate
| Heap_initialization, Immediate
| Root_initialization, Immediate -> Simple
let setfield n ptr init arg1 arg2 dbg =
match assignment_kind ptr init with
| Caml_modify ->
return_unit dbg
(Cop(Cextcall("caml_modify", typ_void, [], false),
[field_address arg1 n dbg; arg2],
dbg))
| Caml_initialize ->
return_unit dbg
(Cop(Cextcall("caml_initialize", typ_void, [], false),
[field_address arg1 n dbg; arg2],
dbg))
| Simple ->
return_unit dbg (set_field arg1 n arg2 init dbg)
let setfloatfield n init arg1 arg2 dbg =
return_unit dbg (
Cop(Cstore (Double, init),
[if n = 0 then arg1
else Cop(Cadda, [arg1; Cconst_int(n * size_float, dbg)], dbg);
arg2], dbg))
let stringref_unsafe arg1 arg2 dbg =
tag_int(Cop(mk_load_mut Byte_unsigned,
[add_int arg1 (untag_int arg2 dbg) dbg],
dbg)) dbg
let stringref_safe arg1 arg2 dbg =
tag_int
(bind "index" (untag_int arg2 dbg) (fun idx ->
bind "str" arg1 (fun str ->
Csequence(
make_checkbound dbg [string_length str dbg; idx],
Cop(mk_load_mut Byte_unsigned,
[add_int str idx dbg], dbg))))) dbg
let string_load size unsafe arg1 arg2 dbg =
box_sized size dbg
(bind "index" (untag_int arg2 dbg) (fun idx ->
bind "str" arg1 (fun str ->
check_bound unsafe size dbg
(string_length str dbg)
idx (unaligned_load size str idx dbg))))
let bigstring_load size unsafe arg1 arg2 dbg =
box_sized size dbg
(bind "index" (untag_int arg2 dbg) (fun idx ->
bind "ba" arg1 (fun ba ->
bind "ba_data"
(Cop(mk_load_mut Word_int, [field_address ba 1 dbg], dbg))
(fun ba_data ->
check_bound unsafe size dbg
(bigstring_length ba dbg)
idx
(unaligned_load size ba_data idx dbg)))))
let arrayref_unsafe kind arg1 arg2 dbg =
match (kind : Lambda.array_kind) with
| Pgenarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Cifthenelse(is_addr_array_ptr arr dbg,
dbg,
addr_array_ref arr idx dbg,
dbg,
float_array_ref arr idx dbg,
dbg)))
| Paddrarray ->
addr_array_ref arg1 arg2 dbg
| Pintarray ->
(* CR mshinwell: for int/addr_array_ref move "dbg" to first arg *)
int_array_ref arg1 arg2 dbg
| Pfloatarray ->
float_array_ref arg1 arg2 dbg
let arrayref_safe kind arg1 arg2 dbg =
match (kind : Lambda.array_kind) with
| Pgenarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
bind "header" (get_header_masked arr dbg) (fun hdr ->
if wordsize_shift = numfloat_shift then
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
addr_array_ref arr idx dbg,
dbg,
float_array_ref arr idx dbg,
dbg))
else
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
addr_array_ref arr idx dbg),
dbg,
Csequence(
make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
float_array_ref arr idx dbg),
dbg))))
| Paddrarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_masked arr dbg) dbg; idx],
addr_array_ref arr idx dbg)))
| Pintarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_masked arr dbg) dbg; idx],
int_array_ref arr idx dbg)))
| Pfloatarray ->
box_float dbg (
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
float_array_length_shifted
(get_header_masked arr dbg) dbg;
idx],
unboxed_float_array_ref arr idx dbg))))
type ternary_primitive =
expression -> expression -> expression -> Debuginfo.t -> expression
let setfield_computed ptr init arg1 arg2 arg3 dbg =
match assignment_kind ptr init with
| Caml_modify ->
return_unit dbg (addr_array_set arg1 arg2 arg3 dbg)
| Caml_initialize ->
return_unit dbg (addr_array_initialize arg1 arg2 arg3 dbg)
| Simple ->
return_unit dbg (int_array_set arg1 arg2 arg3 dbg)
let bytesset_unsafe arg1 arg2 arg3 dbg =
return_unit dbg (Cop(Cstore (Byte_unsigned, Assignment),
[add_int arg1 (untag_int arg2 dbg) dbg;
ignore_high_bit_int (untag_int arg3 dbg)], dbg))
let bytesset_safe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "newval" (ignore_high_bit_int (untag_int arg3 dbg)) (fun newval ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "str" arg1 (fun str ->
Csequence(
make_checkbound dbg [string_length str dbg; idx],
Cop(Cstore (Byte_unsigned, Assignment),
[add_int str idx dbg; newval],
dbg))))))
let arrayset_unsafe kind arg1 arg2 arg3 dbg =
return_unit dbg (match (kind: Lambda.array_kind) with
| Pgenarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun index ->
bind "arr" arg1 (fun arr ->
Cifthenelse(is_addr_array_ptr arr dbg,
dbg,
addr_array_set arr index newval dbg,
dbg,
float_array_set arr index (unbox_float dbg newval)
dbg,
dbg))))
| Paddrarray ->
addr_array_set arg1 arg2 arg3 dbg
| Pintarray ->
int_array_set arg1 arg2 arg3 dbg
| Pfloatarray ->
float_array_set arg1 arg2 arg3 dbg
)
let arrayset_safe kind arg1 arg2 arg3 dbg =
return_unit dbg (match (kind: Lambda.array_kind) with
| Pgenarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
bind "header" (get_header_masked arr dbg) (fun hdr ->
if wordsize_shift = numfloat_shift then
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
addr_array_set arr idx newval dbg,
dbg,
float_array_set arr idx
(unbox_float dbg newval)
dbg,
dbg))
else
Cifthenelse(
is_addr_array_hdr hdr dbg,
dbg,
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
addr_array_set arr idx newval dbg),
dbg,
Csequence(
make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
float_array_set arr idx
(unbox_float dbg newval) dbg),
dbg)))))
| Paddrarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_masked arr dbg) dbg;
idx],
addr_array_set arr idx newval dbg))))
| Pintarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_masked arr dbg) dbg;
idx],
int_array_set arr idx newval dbg))))
| Pfloatarray ->
bind_load "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
float_array_length_shifted
(get_header_masked arr dbg) dbg;
idx],
float_array_set arr idx newval dbg))))
)
let bytes_set size unsafe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "newval" arg3 (fun newval ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "str" arg1 (fun str ->
check_bound unsafe size dbg (string_length str dbg)
idx (unaligned_set size str idx newval dbg)))))
let bigstring_set size unsafe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "newval" arg3 (fun newval ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "ba" arg1 (fun ba ->
bind "ba_data"
(Cop(mk_load_mut Word_int, [field_address ba 1 dbg], dbg))
(fun ba_data ->
check_bound unsafe size dbg (bigstring_length ba dbg)
idx (unaligned_set size ba_data idx newval dbg))))))
(* Symbols *)
let cdefine_symbol (symb, (global: Cmmgen_state.is_global)) =
match global with
| Global -> [Cglobal_symbol symb; Cdefine_symbol symb]
| Local -> [Cdefine_symbol symb]
let emit_block symb white_header cont =
(* Headers for structured constants must be marked black in case we
are in no-naked-pointers mode. See [caml_darken]. *)
let black_header = Nativeint.logor white_header caml_black in
Cint black_header :: cdefine_symbol symb @ cont
let emit_string_constant_fields s cont =
let n = size_int - 1 - (String.length s) mod size_int in
Cstring s :: Cskip n :: Cint8 n :: cont
let emit_boxed_int32_constant_fields n cont =
let n = Nativeint.of_int32 n in
Csymbol_address caml_int32_ops :: Cint32 n :: Cint32 0n :: cont
let emit_boxed_int64_constant_fields n cont =
let lo = Int64.to_nativeint n in
Csymbol_address caml_int64_ops :: Cint lo :: cont
let emit_boxed_nativeint_constant_fields n cont =
Csymbol_address caml_nativeint_ops :: Cint n :: cont
let emit_float_constant symb f cont =
emit_block symb float_header (Cdouble f :: cont)
let emit_string_constant symb s cont =
emit_block symb (string_header (String.length s))
(emit_string_constant_fields s cont)
let emit_int32_constant symb n cont =
emit_block symb boxedint32_header
(emit_boxed_int32_constant_fields n cont)
let emit_int64_constant symb n cont =
emit_block symb boxedint64_header
(emit_boxed_int64_constant_fields n cont)
let emit_nativeint_constant symb n cont =
emit_block symb boxedintnat_header
(emit_boxed_nativeint_constant_fields n cont)
let emit_float_array_constant symb fields cont =
emit_block symb (floatarray_header (List.length fields))
(Misc.map_end (fun f -> Cdouble f) fields cont)
(* Generate the entry point *)
let entry_point namelist =
let dbg = placeholder_dbg in
let cconst_int i = Cconst_int (i, dbg ()) in
let cconst_symbol sym = Cconst_symbol (sym, dbg ()) in
let incr_global_inited () =
Cop(Cstore (Word_int, Assignment),
[cconst_symbol "caml_globals_inited";
Cop(Caddi, [Cop(mk_load_mut Word_int,
[cconst_symbol "caml_globals_inited"], dbg ());
cconst_int 1], dbg ())], dbg ()) in
let body =
List.fold_right
(fun name next ->
let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in
Csequence(Cop(Capply typ_void,
[cconst_symbol entry_sym], dbg ()),
Csequence(incr_global_inited (), next)))
namelist (cconst_int 1) in
let fun_name = "caml_program" in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction {fun_name;
fun_args = [];
fun_body = body;
fun_codegen_options = [Reduce_code_size];
fun_poll = Default_poll;
fun_dbg;
}
(* Generate the table of globals *)
let cint_zero = Cint 0n
let global_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "gc_roots"))
in
Cdata(Cglobal_symbol "caml_globals" ::
Cdefine_symbol "caml_globals" ::
List.map mksym namelist @
[cint_zero])
let reference_symbols namelist =
let mksym name = Csymbol_address name in
Cdata(List.map mksym namelist)
let global_data name v =
Cdata(emit_string_constant (name, Global)
(Marshal.to_string v []) [])
let globals_map v = global_data "caml_globals_map" v
(* Generate the master table of frame descriptors *)
let frame_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable"))
in
Cdata(Cglobal_symbol "caml_frametable" ::
Cdefine_symbol "caml_frametable" ::
List.map mksym namelist
@ [cint_zero])
(* Generate the table of module data and code segments *)
let segment_table namelist symbol begname endname =
let addsyms name lst =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) ::
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) ::
lst
in
Cdata(Cglobal_symbol symbol ::
Cdefine_symbol symbol ::
List.fold_right addsyms namelist [cint_zero])
let data_segment_table namelist =
segment_table namelist "caml_data_segments" "data_begin" "data_end"
let code_segment_table namelist =
segment_table namelist "caml_code_segments" "code_begin" "code_end"
(* Initialize a predefined exception *)
let predef_exception i name =
let name_sym = Compilenv.new_const_symbol () in
let data_items =
emit_string_constant (name_sym, Local) name []
in
let exn_sym = "caml_exn_" ^ name in
let tag = Obj.object_tag in
let size = 2 in
let fields =
(Csymbol_address name_sym)
:: (cint_const (-i - 1))
:: data_items
in
let data_items =
emit_block (exn_sym, Global) (block_header tag size) fields
in
Cdata data_items
(* Header for a plugin *)
let plugin_header units =
let mk ((ui : Cmx_format.unit_infos),crc) : Cmxs_format.dynunit =
{ dynu_name = ui.ui_name;
dynu_crc = crc;
dynu_imports_cmi = ui.ui_imports_cmi;
dynu_imports_cmx = ui.ui_imports_cmx;
dynu_defines = ui.ui_defines
} in
global_data "caml_plugin_header"
({ dynu_magic = Config.cmxs_magic_number;
dynu_units = List.map mk units }
: Cmxs_format.dynheader)
(* To compile "let rec" over values *)
let fundecls_size fundecls =
let sz = ref (-1) in
List.iter
(fun (f : Clambda.ufunction) ->
let indirect_call_code_pointer_size =
match f.arity with
| 0 | 1 -> 0
(* arity 1 does not need an indirect call handler.
arity 0 cannot be indirect called *)
| _ -> 1
(* For other arities there is an indirect call handler.
if arity >= 2 it is caml_curry...
if arity < 0 it is caml_tuplify... *)
in
sz := !sz + 1 + 2 + indirect_call_code_pointer_size)
fundecls;
!sz
(* Emit constant closures *)
let emit_constant_closure ((_, global_symb) as symb) fundecls clos_vars cont =
let closure_symbol (f : Clambda.ufunction) =
if Config.flambda then
cdefine_symbol (f.label ^ "_closure", global_symb)
else
[]
in
match (fundecls : Clambda.ufunction list) with
[] ->
(* This should probably not happen: dead code has normally been
eliminated and a closure cannot be accessed without going through
a [Project_closure], which depends on the function. *)
assert (clos_vars = []);
cdefine_symbol symb @ clos_vars @ cont
| f1 :: remainder ->
let startenv = fundecls_size fundecls in
let rec emit_others pos = function
[] -> clos_vars @ cont
| (f2 : Clambda.ufunction) :: rem ->
if f2.arity = 1 || f2.arity = 0 then
Cint(infix_header pos) ::
(closure_symbol f2) @
Csymbol_address f2.label ::
Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
emit_others (pos + 3) rem
else
Cint(infix_header pos) ::
(closure_symbol f2) @
Csymbol_address(curry_function_sym f2.arity) ::
Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
Csymbol_address f2.label ::
emit_others (pos + 4) rem in
Cint(black_closure_header (fundecls_size fundecls
+ List.length clos_vars)) ::
cdefine_symbol symb @
(closure_symbol f1) @
if f1.arity = 1 || f1.arity = 0 then
Csymbol_address f1.label ::
Cint(closure_info ~arity:f1.arity ~startenv) ::
emit_others 3 remainder
else
Csymbol_address(curry_function_sym f1.arity) ::
Cint(closure_info ~arity:f1.arity ~startenv) ::
Csymbol_address f1.label ::
emit_others 4 remainder
(* Build the NULL terminated array of gc roots *)
let emit_gc_roots_table ~symbols cont =
let table_symbol = Compilenv.make_symbol (Some "gc_roots") in
Cdata(Cglobal_symbol table_symbol ::
Cdefine_symbol table_symbol ::
List.map (fun s -> Csymbol_address s) symbols @
[Cint 0n])
:: cont
(* Build preallocated blocks (used for Flambda [Initialize_symbol]
constructs, and Clambda global module) *)
let preallocate_block cont { Clambda.symbol; exported; tag; fields } =
let space =
(* These words will be registered as roots and as such must contain
valid values, in case we are in no-naked-pointers mode. Likewise
the block header must be black, below (see [caml_darken]), since
the overall record may be referenced. *)
List.map (fun field ->
match field with
| None ->
Cint (Nativeint.of_int 1 (* Val_unit *))
| Some (Clambda.Uconst_field_int n) ->
cint_const n
| Some (Clambda.Uconst_field_ref label) ->
Csymbol_address label)
fields
in
let global = Cmmgen_state.(if exported then Global else Local) in
let symb = (symbol, global) in
let data =
emit_block symb (block_header tag (List.length fields)) space
in
Cdata data :: cont
let emit_preallocated_blocks preallocated_blocks cont =
let symbols =
List.map (fun ({ Clambda.symbol }:Clambda.preallocated_block) -> symbol)
preallocated_blocks
in
let c1 = emit_gc_roots_table ~symbols cont in
List.fold_left preallocate_block c1 preallocated_blocks
|