1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Insertion of moves to suggest possible spilling / reloading points
before register allocation. *)
open Reg
open Mach
(* We say that a register is "destroyed" if it is live across a construct
that potentially destroys all physical registers: function calls or
try...with constructs.
The "destroyed" registers must therefore reside in the stack during
these instructions.. We will insert spills (stores) just after they
are defined, and reloads just before their first use following a
"destroying" construct.
Instructions with more live registers than actual registers also
"destroy" registers: we mark as "destroyed" the registers live
across the instruction that haven't been used for the longest time.
These registers will be spilled and reloaded as described above. *)
(* Association of spill registers to registers *)
type reload_data = {
spill_env : Reg.t Reg.Map.t ref;
mutable use_date : int Reg.Map.t;
(* Record the position of last use of registers *)
mutable current_date : int;
mutable destroyed_at_fork : (instruction * Reg.Set.t) list;
(* A-list recording what is destroyed at if-then-else points. *)
reload_at_exit : (int, Reg.Set.t) Hashtbl.t;
}
type spill_data = {
spill_env : Reg.t Reg.Map.t ref;
destroyed_at_fork : (instruction * Reg.Set.t) list;
(* A-list recording what is destroyed at if-then-else points. *)
mutable spill_at_raise : Reg.Set.t;
mutable inside_arm : bool;
mutable inside_catch : bool;
spill_at_exit : (int, Reg.Set.t) Hashtbl.t;
}
let create_reload () = {
spill_env = ref Reg.Map.empty;
use_date = Reg.Map.empty;
current_date = 0;
destroyed_at_fork = [];
reload_at_exit = Hashtbl.create 20;
}
let create_spill (reload : reload_data) = {
spill_env = reload.spill_env;
destroyed_at_fork = reload.destroyed_at_fork;
spill_at_raise = Reg.Set.empty;
inside_arm = false;
inside_catch = false;
spill_at_exit = Hashtbl.create 20;
}
let spill_reg spill_env r =
try
Reg.Map.find r !spill_env
with Not_found ->
let spill_r = Reg.create r.typ in
spill_r.spill <- true;
if not (Reg.anonymous r) then spill_r.raw_name <- r.raw_name;
spill_env := Reg.Map.add r spill_r !spill_env;
spill_r
let record_use t regv =
for i = 0 to Array.length regv - 1 do
let r = regv.(i) in
let prev_date = try Reg.Map.find r t.use_date with Not_found -> 0 in
if t.current_date > prev_date then
t.use_date <- Reg.Map.add r t.current_date t.use_date
done
(* Check if the register pressure overflows the maximum pressure allowed
at that point. If so, spill enough registers to lower the pressure. *)
let add_superpressure_regs t op live_regs res_regs spilled =
let max_pressure = Proc.max_register_pressure op in
let regs = Reg.add_set_array live_regs res_regs in
(* Compute the pressure in each register class *)
let pressure = Array.make Proc.num_register_classes 0 in
Reg.Set.iter
(fun r ->
if Reg.Set.mem r spilled then () else begin
match r.loc with
Stack _ -> ()
| _ -> let c = Proc.register_class r in
pressure.(c) <- pressure.(c) + 1
end)
regs;
(* Check if pressure is exceeded for each class. *)
let rec check_pressure cl spilled =
if cl >= Proc.num_register_classes then
spilled
else if pressure.(cl) <= max_pressure.(cl) then
check_pressure (cl+1) spilled
else begin
(* Find the least recently used, unspilled, unallocated, live register
in the class *)
let lru_date = ref 1000000 and lru_reg = ref Reg.dummy in
Reg.Set.iter
(fun r ->
if Proc.register_class r = cl &&
not (Reg.Set.mem r spilled) &&
r.loc = Unknown
then begin
try
let d = Reg.Map.find r t.use_date in
if d < !lru_date then begin
lru_date := d;
lru_reg := r
end
with Not_found -> (* Should not happen *)
()
end)
live_regs;
if !lru_reg != Reg.dummy then begin
pressure.(cl) <- pressure.(cl) - 1;
check_pressure cl (Reg.Set.add !lru_reg spilled)
end else
(* Couldn't find any spillable register, give up for this class *)
check_pressure (cl+1) spilled
end in
check_pressure 0 spilled
(* First pass: insert reload instructions based on an approximation of
what is destroyed at pressure points. *)
let add_reloads spill_env regset i =
Reg.Set.fold
(fun r i -> instr_cons (Iop Ireload) [|spill_reg spill_env r|] [|r|] i)
regset i
let get_reload_at_exit t k =
match Hashtbl.find_opt t.reload_at_exit k with
| None -> Reg.Set.empty
| Some s -> s
let set_reload_at_exit t k s =
Hashtbl.replace t.reload_at_exit k s
let rec reload (t : reload_data) i before =
t.current_date <- succ t.current_date;
record_use t i.arg;
record_use t i.res;
match i.desc with
Iend ->
(i, before)
| Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) ->
(add_reloads t.spill_env (Reg.inter_set_array before i.arg) i,
Reg.Set.empty)
| Iop(Icall_ind | Icall_imm _ | Iextcall { alloc = true; }) ->
(* All regs live across must be spilled *)
let (new_next, finally) = reload t i.next i.live in
(add_reloads t.spill_env (Reg.inter_set_array before i.arg)
(instr_cons_debug i.desc i.arg i.res i.dbg new_next),
finally)
| Iop op ->
let new_before =
(* Quick check to see if the register pressure is below the maximum *)
if !Clflags.use_linscan ||
(Reg.Set.cardinal i.live + Array.length i.res <=
Proc.safe_register_pressure op)
then before
else add_superpressure_regs t op i.live i.res before in
let after =
Reg.diff_set_array (Reg.diff_set_array new_before i.arg) i.res in
let (new_next, finally) = reload t i.next after in
(add_reloads t.spill_env (Reg.inter_set_array new_before i.arg)
(instr_cons_debug i.desc i.arg i.res i.dbg new_next),
finally)
| Iifthenelse(test, ifso, ifnot) ->
let at_fork = Reg.diff_set_array before i.arg in
let date_fork = t.current_date in
let (new_ifso, after_ifso) = reload t ifso at_fork in
let date_ifso = t.current_date in
t.current_date <- date_fork;
let (new_ifnot, after_ifnot) = reload t ifnot at_fork in
t.current_date <- Int.max date_ifso t.current_date;
let (new_next, finally) =
reload t i.next (Reg.Set.union after_ifso after_ifnot) in
let new_i =
instr_cons (Iifthenelse(test, new_ifso, new_ifnot))
i.arg i.res new_next in
t.destroyed_at_fork <- (new_i, at_fork) :: t.destroyed_at_fork;
(add_reloads t.spill_env (Reg.inter_set_array before i.arg) new_i,
finally)
| Iswitch(index, cases) ->
let at_fork = Reg.diff_set_array before i.arg in
let date_fork = t.current_date in
let date_join = ref 0 in
let after_cases = ref Reg.Set.empty in
let new_cases =
Array.map
(fun c ->
t.current_date <- date_fork;
let (new_c, after_c) = reload t c at_fork in
after_cases := Reg.Set.union !after_cases after_c;
date_join := Int.max !date_join t.current_date;
new_c)
cases in
t.current_date <- !date_join;
let (new_next, finally) = reload t i.next !after_cases in
(add_reloads t.spill_env (Reg.inter_set_array before i.arg)
(instr_cons (Iswitch(index, new_cases))
i.arg i.res new_next),
finally)
| Icatch(rec_flag, handlers, body) ->
let (new_body, after_body) = reload t body before in
let rec fixpoint () =
let at_exits =
List.map (fun (nfail, _) -> (nfail, get_reload_at_exit t nfail))
handlers in
let res =
List.map2
(fun (nfail', handler) (nfail, at_exit) ->
assert(nfail = nfail');
reload t handler at_exit)
handlers at_exits in
match rec_flag with
| Cmm.Nonrecursive ->
res
| Cmm.Recursive ->
let equal =
List.for_all2
(fun (nfail', _) (nfail, at_exit) ->
assert(nfail = nfail');
Reg.Set.equal at_exit (get_reload_at_exit t nfail))
handlers at_exits in
if equal
then res
else fixpoint ()
in
let res = fixpoint () in
let union = List.fold_left
(fun acc (_, after_handler) -> Reg.Set.union acc after_handler)
after_body res in
let (new_next, finally) = reload t i.next union in
let new_handlers = List.map2
(fun (nfail, _) (new_handler, _) -> nfail, new_handler)
handlers res in
(instr_cons
(Icatch(rec_flag, new_handlers, new_body)) i.arg i.res new_next,
finally)
| Iexit nfail ->
set_reload_at_exit t nfail
(Reg.Set.union (get_reload_at_exit t nfail) before);
(i, Reg.Set.empty)
| Itrywith(body, handler) ->
let (new_body, after_body) = reload t body before in
(* All registers live at the beginning of the handler are destroyed,
except the exception bucket *)
let before_handler =
Reg.Set.remove Proc.loc_exn_bucket
(Reg.add_set_array handler.live handler.arg) in
let (new_handler, after_handler) = reload t handler before_handler in
let (new_next, finally) =
reload t i.next (Reg.Set.union after_body after_handler) in
(instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next,
finally)
| Iraise _ ->
(add_reloads
t.spill_env (Reg.inter_set_array before i.arg) i, Reg.Set.empty)
(* Second pass: add spill instructions based on what we've decided to reload.
That is, any register that may be reloaded in the future must be spilled
just after its definition. *)
(*
As an optimization, if a register needs to be spilled in one branch of
a conditional but not in the other, then we spill it late on entrance
in the branch that needs it spilled.
NB: This strategy is turned off in loops, as it may prevent a spill from
being lifted up all the way out of the loop.
NB again: This strategy is also off in switch arms
as it generates many useless spills inside switch arms
NB ter: is it the same thing for catch bodies ?
*)
let get_spill_at_exit t k =
match Hashtbl.find_opt t.spill_at_exit k with
| None -> Reg.Set.empty
| Some s -> s
let set_spill_at_exit t k s =
Hashtbl.replace t.spill_at_exit k s
let add_spills t regset i =
Reg.Set.fold
(fun r i -> instr_cons (Iop Ispill) [|r|] [|spill_reg t r|] i)
regset i
let rec spill (t : spill_data) i finally =
match i.desc with
Iend ->
(i, finally)
| Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) ->
(i, Reg.Set.empty)
| Iop Ireload ->
let (new_next, after) = spill t i.next finally in
let before1 = Reg.diff_set_array after i.res in
(instr_cons i.desc i.arg i.res new_next,
Reg.add_set_array before1 i.res)
| Iop op ->
let (new_next, after) = spill t i.next finally in
let before1 = Reg.diff_set_array after i.res in
let before =
if operation_can_raise op
then Reg.Set.union before1 t.spill_at_raise
else before1 in
(instr_cons_debug i.desc i.arg i.res i.dbg
(add_spills t.spill_env (Reg.inter_set_array after i.res) new_next),
before)
| Iifthenelse(test, ifso, ifnot) ->
let (new_next, at_join) = spill t i.next finally in
let (new_ifso, before_ifso) = spill t ifso at_join in
let (new_ifnot, before_ifnot) = spill t ifnot at_join in
if
t.inside_arm || t.inside_catch
then
(instr_cons (Iifthenelse(test, new_ifso, new_ifnot))
i.arg i.res new_next,
Reg.Set.union before_ifso before_ifnot)
else begin
let destroyed = List.assq i t.destroyed_at_fork in
let spill_ifso_branch =
Reg.Set.diff (Reg.Set.diff before_ifso before_ifnot) destroyed
and spill_ifnot_branch =
Reg.Set.diff (Reg.Set.diff before_ifnot before_ifso) destroyed in
(instr_cons
(Iifthenelse(test,
add_spills t.spill_env spill_ifso_branch new_ifso,
add_spills t.spill_env spill_ifnot_branch new_ifnot))
i.arg i.res new_next,
Reg.Set.diff (Reg.Set.diff (Reg.Set.union before_ifso before_ifnot)
spill_ifso_branch)
spill_ifnot_branch)
end
| Iswitch(index, cases) ->
let (new_next, at_join) = spill t i.next finally in
let saved_inside_arm = t.inside_arm in
t.inside_arm <- true ;
let before = ref Reg.Set.empty in
let new_cases =
Array.map
(fun c ->
let (new_c, before_c) = spill t c at_join in
before := Reg.Set.union !before before_c;
new_c)
cases in
t.inside_arm <- saved_inside_arm ;
(instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next,
!before)
| Icatch(rec_flag, handlers, body) ->
let (new_next, at_join) = spill t i.next finally in
let saved_inside_catch = t.inside_catch in
t.inside_catch <- true ;
let rec fixpoint () =
let res =
List.map (fun (_, handler) -> spill t handler at_join) handlers in
let update changed (k, _handler) (_new_handler, before_handler) =
if Reg.Set.equal before_handler (get_spill_at_exit t k)
then changed
else (set_spill_at_exit t k before_handler; true) in
let changed =
List.fold_left2 update false handlers res in
if rec_flag = Cmm.Recursive && changed
then fixpoint ()
else res
in
let res = fixpoint () in
t.inside_catch <- saved_inside_catch ;
let (new_body, before) = spill t body at_join in
let new_handlers = List.map2
(fun (nfail, _) (new_handler, _) -> (nfail, new_handler))
handlers res in
(instr_cons (Icatch(rec_flag, new_handlers, new_body))
i.arg i.res new_next,
before)
| Iexit nfail ->
(i, get_spill_at_exit t nfail)
| Itrywith(body, handler) ->
let (new_next, at_join) = spill t i.next finally in
let (new_handler, before_handler) = spill t handler at_join in
let saved_spill_at_raise = t.spill_at_raise in
t.spill_at_raise <- before_handler;
let (new_body, before_body) = spill t body at_join in
t.spill_at_raise <- saved_spill_at_raise;
(instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next,
before_body)
| Iraise _ ->
(i, t.spill_at_raise)
(* Entry point *)
let fundecl f =
let reload_data = create_reload () in
let (body1, _) = reload reload_data f.fun_body Reg.Set.empty in
let spill_data = create_spill reload_data in
let (body2, tospill_at_entry) = spill spill_data body1 Reg.Set.empty in
let new_body =
add_spills
spill_data.spill_env
(Reg.inter_set_array tospill_at_entry f.fun_args)
body2
in
{ f with fun_body = new_body }
|