1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Translation of string matching from closed lambda to C-- *)
open Lambda
open Cmm
module V = Backend_var
module VP = Backend_var.With_provenance
module type I = sig
val string_block_length : Cmm.expression -> Cmm.expression
val transl_switch :
Debuginfo.t -> Cmm.expression -> int -> int ->
(int * Cmm.expression) list -> Cmm.expression ->
Cmm.expression
end
module Make(I:I) = struct
(* Debug *)
let dbg = false
let mask =
let open Nativeint in
sub (shift_left one 8) one
let pat_as_string p =
let rec digits k n p =
if n <= 0 then k
else
let d = Nativeint.to_int (Nativeint.logand mask p) in
let d = Char.escaped (Char.chr d) in
digits (d::k) (n-1) (Nativeint.shift_right_logical p 8) in
let ds = digits [] Arch.size_addr p in
let ds =
if Arch.big_endian then ds else List.rev ds in
String.concat "" ds
let do_pp_cases chan cases =
List.iter
(fun (ps,_) ->
Printf.fprintf chan " [%s]\n"
(String.concat "; " (List.map pat_as_string ps)))
cases
let pp_cases chan tag cases =
Printf.eprintf "%s:\n" tag ;
do_pp_cases chan cases
let pp_match chan tag idxs cases =
Printf.eprintf
"%s: idx=[%s]\n" tag
(String.concat "; " (List.map Int.to_string idxs)) ;
do_pp_cases chan cases
(* Utilities *)
let gen_cell_id () = V.create_local "cell"
let gen_size_id () = V.create_local "size"
let mk_let_cell id str ind body =
let dbg = Debuginfo.none in
let cell =
Cop(Cload {memory_chunk=Word_int;
mutability=Asttypes.Mutable;
is_atomic=false},
[Cop(Cadda,[str;Cconst_int(Arch.size_int*ind, dbg)], dbg)],
dbg) in
Clet(id, cell, body)
let mk_let_size id str body =
let size = I.string_block_length str in
Clet(id, size, body)
let mk_cmp_gen cmp_op id nat ifso ifnot =
let dbg = Debuginfo.none in
let test =
Cop (Ccmpi cmp_op, [ Cvar id; Cconst_natint (nat, dbg) ], dbg)
in
Cifthenelse (test, dbg, ifso, dbg, ifnot, dbg)
let mk_lt = mk_cmp_gen Clt
let mk_eq = mk_cmp_gen Ceq
module IntArg =
struct
type t = int
let compare (x:int) (y:int) =
if x < y then -1
else if x > y then 1
else 0
end
let interval m0 n =
let rec do_rec m =
if m >= n then []
else m::do_rec (m+1) in
do_rec m0
(*****************************************************)
(* Compile strings to a lists of words [native ints] *)
(*****************************************************)
let pat_of_string str =
let len = String.length str in
let n = len / Arch.size_addr + 1 in
let get_byte i =
if i < len then int_of_char str.[i]
else if i < n * Arch.size_addr - 1 then 0
else n * Arch.size_addr - 1 - len in
let mk_word ind =
let w = ref 0n in
let imin = ind * Arch.size_addr
and imax = (ind + 1) * Arch.size_addr - 1 in
if Arch.big_endian then
for i = imin to imax do
w := Nativeint.logor (Nativeint.shift_left !w 8)
(Nativeint.of_int (get_byte i));
done
else
for i = imax downto imin do
w := Nativeint.logor (Nativeint.shift_left !w 8)
(Nativeint.of_int (get_byte i));
done;
!w in
let rec mk_words ind =
if ind >= n then []
else mk_word ind::mk_words (ind+1) in
mk_words 0
(*****************************)
(* Discriminating heuristics *)
(*****************************)
module IntSet = Set.Make(IntArg)
module NativeSet = Set.Make(Nativeint)
let rec add_one sets ps = match sets,ps with
| [],[] -> []
| set::sets,p::ps ->
let sets = add_one sets ps in
NativeSet.add p set::sets
| _,_ -> assert false
let count_arities cases = match cases with
| [] -> assert false
| (ps,_)::_ ->
let sets =
List.fold_left
(fun sets (ps,_) -> add_one sets ps)
(List.map (fun _ -> NativeSet.empty) ps) cases in
List.map NativeSet.cardinal sets
let count_arities_first cases =
let set =
List.fold_left
(fun set case -> match case with
| (p::_,_) -> NativeSet.add p set
| _ -> assert false)
NativeSet.empty cases in
NativeSet.cardinal set
let count_arities_length cases =
let set =
List.fold_left
(fun set (ps,_) -> IntSet.add (List.length ps) set)
IntSet.empty cases in
IntSet.cardinal set
let best_col =
let rec do_rec kbest best k = function
| [] -> kbest
| x::xs ->
if x < best then
do_rec k x (k+1) xs
else
do_rec kbest best (k+1) xs in
let smallest = do_rec (-1) max_int 0 in
fun cases ->
let ars = count_arities cases in
smallest ars
let swap_list =
let rec do_rec k xs = match xs with
| [] -> assert false
| x::xs ->
if k <= 0 then [],x,xs
else
let xs,mid,ys = do_rec (k-1) xs in
x::xs,mid,ys in
fun k xs ->
let xs,x,ys = do_rec k xs in
x::xs @ ys
let swap k idxs cases =
if k = 0 then idxs,cases
else
let idxs = swap_list k idxs
and cases =
List.map
(fun (ps,act) -> swap_list k ps,act)
cases in
if dbg then begin
pp_match stderr "SWAP" idxs cases
end ;
idxs,cases
let best_first idxs cases = match idxs with
| []|[_] -> idxs,cases (* optimisation: one column only *)
| _ ->
let k = best_col cases in
swap k idxs cases
(************************************)
(* Divide according to first column *)
(************************************)
module Divide(O:Set.OrderedType) = struct
module OMap = Map.Make(O)
let divide cases =
let env =
List.fold_left
(fun env (p,psact) ->
let old =
try OMap.find p env
with Not_found -> [] in
OMap.add p ((psact)::old) env)
OMap.empty cases in
let r = OMap.fold (fun key v k -> (key,v)::k) env [] in
List.rev r (* Now sorted *)
end
(***************)
(* Compilation *)
(***************)
(* Group by cell *)
module DivideNative = Divide(Nativeint)
let by_cell cases =
DivideNative.divide
(List.map
(fun case -> match case with
| (p::ps),act -> p,(ps,act)
| [],_ -> assert false)
cases)
(* Split into two halves *)
let rec do_split idx env = match env with
| [] -> assert false
| (midkey,_ as x)::rem ->
if idx <= 0 then [],midkey,env
else
let lt,midkey,ge = do_split (idx-1) rem in
x::lt,midkey,ge
let split_env len env = do_split (len/2) env
(* Switch according to one cell *)
(*
Emit the switch, here as a comparison tree.
Argument compile_rec is to be called to compile the rest of patterns,
as match_on_cell can be called in two different contexts :
from do_compile_pats and top_compile below.
*)
let match_oncell compile_rec str default idx env =
let id = gen_cell_id () in
let rec comp_rec env =
let len = List.length env in
if len <= 3 then
List.fold_right
(fun (key,cases) ifnot ->
mk_eq id key
(compile_rec str default cases)
ifnot)
env default
else
let lt,midkey,ge = split_env len env in
mk_lt id midkey (comp_rec lt) (comp_rec ge) in
mk_let_cell (VP.create id) str idx (comp_rec env)
(*
Recursive 'list of cells' compile function:
- choose the matched cell and switch on it
- notice: patterns (and idx) all have the same length
*)
let rec do_compile_pats idxs str default cases =
if dbg then begin
pp_match stderr "COMPILE" idxs cases
end ;
match idxs with
| [] ->
begin match cases with
| [] -> default
| (_,e)::_ -> e
end
| _::_ ->
let idxs,cases = best_first idxs cases in
begin match idxs with
| [] -> assert false
| idx::idxs ->
match_oncell
(do_compile_pats idxs) str default idx (by_cell cases)
end
(* Group by size *)
module DivideInt = Divide(IntArg)
let by_size cases =
DivideInt.divide
(List.map
(fun (ps,_ as case) -> List.length ps,case)
cases)
(*
Switch according to pattern size
Argument from_ind is the starting index, it can be zero
or one (when the switch on the cell 0 has already been performed.
In that latter case pattern len is string length-1 and is corrected.
*)
let compile_by_size dbg from_ind str default cases =
let size_cases =
List.map
(fun (len,cases) ->
let len = len+from_ind in
let act =
do_compile_pats
(interval from_ind len)
str default cases in
(len,act))
(by_size cases) in
let id = gen_size_id () in
let switch = I.transl_switch dbg (Cvar id) 1 max_int size_cases default in
mk_let_size (VP.create id) str switch
(*
Compilation entry point: we choose to switch
either on size or on first cell, using the
'least discriminant' heuristics.
*)
let top_compile debuginfo str default cases =
let a_len = count_arities_length cases
and a_fst = count_arities_first cases in
if a_len <= a_fst then begin
if dbg then pp_cases stderr "SIZE" cases ;
compile_by_size debuginfo 0 str default cases
end else begin
if dbg then pp_cases stderr "FIRST COL" cases ;
let compile_size_rest str default cases =
compile_by_size debuginfo 1 str default cases in
match_oncell compile_size_rest str default 0 (by_cell cases)
end
(* Module entry point *)
let catch dbg arg k = match arg with
| Cexit (_e,[]) -> k arg
| _ ->
let e = next_raise_count () in
ccatch (e,[],k (Cexit (e,[])),arg,dbg)
let compile dbg str default cases =
(* We do not attempt to really optimise default=None *)
let cases,default = match cases,default with
| (_,e)::cases,None
| cases,Some e -> cases,e
| [],None -> assert false in
let cases =
List.rev_map
(fun (s,act) -> pat_of_string s,act)
cases in
catch dbg default (fun default -> top_compile dbg str default cases)
end
|