1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
|
(**************************************************************************)
(* *)
(* OCamlFormat *)
(* *)
(* Copyright (c) Facebook, Inc. and its affiliates. *)
(* *)
(* This source code is licensed under the MIT license found in *)
(* the LICENSE file in the root directory of this source tree. *)
(* *)
(**************************************************************************)
(** Abstract syntax tree term *)
open Migrate_ast
open Extended_ast
type cmt_checker =
{ cmts_before: Location.t -> bool
; cmts_within: Location.t -> bool
; cmts_after: Location.t -> bool }
let cmts_between s {cmts_before; cmts_after; _} loc1 loc2 =
(cmts_after loc1 && Source.ends_line s loc1) || cmts_before loc2
let ( init
, register_reset
, leading_nested_match_parens
, parens_ite
, ocaml_version
, ocp_indent_compat ) =
let l = ref [] in
let leading_nested_match_parens = ref false in
let parens_ite = ref false in
let ocaml_version = ref Ocaml_version.sys_version in
let ocp_indent_compat = ref false in
let register f = l := f :: !l in
let init (conf : Conf.t) =
leading_nested_match_parens :=
conf.fmt_opts.leading_nested_match_parens.v ;
parens_ite := conf.fmt_opts.parens_ite.v ;
ocaml_version := conf.opr_opts.ocaml_version.v ;
ocp_indent_compat := conf.fmt_opts.ocp_indent_compat.v ;
List.iter !l ~f:(fun f -> f ())
in
( init
, register
, leading_nested_match_parens
, parens_ite
, ocaml_version
, ocp_indent_compat )
(** [fit_margin c x] returns [true] if and only if [x] does not exceed 1/3 of
the margin. *)
let fit_margin (c : Conf.t) x = x * 3 < c.fmt_opts.margin.v
(** [longident_fit_margin c x] returns [true] if and only if [x] does not
exceed 2/3 of the margin. *)
let longident_fit_margin (c : Conf.t) x = x * 3 < c.fmt_opts.margin.v * 2
let longident_is_simple c x =
let rec length x =
match x with
| Longident.Lident x -> String.length x
| Ldot (x, y) -> length x + 1 + String.length y
| Lapply (x, y) -> length x + length y + 3
in
longident_fit_margin c (length x)
(** 'Classes' of expressions which are parenthesized differently. *)
type cls = Let_match | Match | Non_apply | Sequence | Then | ThenElse
(** Predicates recognizing special symbol identifiers. *)
module Token = struct
let is_infix = function
| Parser.AMPERAMPER | AMPERSAND | ANDOP _ | BAR | BARBAR | COLON
|COLONCOLON | COLONEQUAL | DOTDOT | DOTOP _ | EQUAL | GREATER
|HASHOP _ | INFIXOP0 _ | INFIXOP1 _ | INFIXOP2 _ | INFIXOP3 _
|INFIXOP4 _ | LESS | LESSMINUS | LETOP _ | MINUS | MINUSDOT
|MINUSGREATER | PERCENT | PLUS | PLUSDOT | PLUSEQ | SLASH | STAR ->
true
| _ -> false
end
module Attr = struct
module Key = struct
type t = Regular | Item | Floating
let to_string = function
| Regular -> "@"
| Item -> "@@"
| Floating -> "@@@"
end
let is_doc = function
| {attr_name= {Location.txt= "ocaml.doc" | "ocaml.text"; _}; _} -> true
| _ -> false
end
module Ext = struct
module Key = struct
type t = Regular | Item
let to_string = function Regular -> "%" | Item -> "%%"
end
end
module Ext_attrs = struct
let has_attrs = function
| {attrs_extension= _; attrs_before= []; attrs_after= []} -> false
| _ -> true
let has_doc ea =
List.exists ~f:Attr.is_doc ea.attrs_before
|| List.exists ~f:Attr.is_doc ea.attrs_after
end
module Exp = struct
let location x = x.pexp_loc
let test_id ~f = function
| {pexp_desc= Pexp_ident {txt= i; _}; _} -> f i
| _ -> false
let is_prefix = test_id ~f:Std_longident.is_prefix
let is_infix = test_id ~f:Std_longident.is_infix
let is_monadic_binding = test_id ~f:Std_longident.is_monadic_binding
let is_symbol = test_id ~f:Std_longident.is_symbol
let is_sequence exp =
match exp.pexp_desc with
| Pexp_sequence _ -> true
| Pexp_extension
( ext
, PStr
[ { pstr_desc=
Pstr_eval (({pexp_desc= Pexp_sequence _; _} as e), [])
; _ } ] )
when Source.extension_using_sugar ~name:ext ~payload:e.pexp_loc ->
true
| _ -> false
let has_trailing_attributes {pexp_desc; pexp_attributes; _} =
match pexp_desc with
| Pexp_function _ | Pexp_ifthenelse _ | Pexp_match _ | Pexp_try _ ->
false
| _ -> List.exists pexp_attributes ~f:(Fn.non Attr.is_doc)
let rec is_trivial exp =
match exp.pexp_desc with
| Pexp_constant {pconst_desc= Pconst_string (_, _, None); _} -> true
| Pexp_constant _ | Pexp_field _ | Pexp_ident _ | Pexp_send _ -> true
| Pexp_construct (_, exp) -> Option.for_all exp ~f:is_trivial
| Pexp_prefix (_, e) -> is_trivial e
| Pexp_apply
({pexp_desc= Pexp_ident {txt= Lident "not"; _}; _}, [(_, e1)]) ->
is_trivial e1
| Pexp_variant (_, None) -> true
| Pexp_array [] | Pexp_list [] -> true
| Pexp_array [x] | Pexp_list [x] -> is_trivial x
| _ -> false
let rec exposed_left e =
match e.pexp_desc with
| Pexp_prefix _ -> true
| Pexp_apply (op, _) -> exposed_left op
| Pexp_field (e, _) -> exposed_left e
| _ -> false
(** [mem_cls cls exp] holds if [exp] is in the named class of expressions
[cls]. *)
let mem_cls cls ast =
match (ast, cls) with
| {pexp_desc= Pexp_ifthenelse (_, None); _}, (Non_apply | ThenElse)
|{pexp_desc= Pexp_ifthenelse _; _}, Non_apply
|( {pexp_desc= Pexp_sequence _; _}
, (Non_apply | Sequence | Then | ThenElse) )
|( { pexp_desc=
( Pexp_function (_, Some _, _)
| Pexp_function (_, _, Pfunction_cases _)
| Pexp_match _ | Pexp_try _ )
; _ }
, (Match | Let_match | Non_apply) )
|( { pexp_desc=
( Pexp_function (_, _, Pfunction_body _)
| Pexp_let _ | Pexp_letop _ | Pexp_letexception _
| Pexp_letmodule _ | Pexp_open _ | Pexp_letopen _ )
; _ }
, (Let_match | Non_apply) ) ->
true
| _ -> false
end
module Pat = struct
let location x = x.ppat_loc
let is_any = function {ppat_desc= Ppat_any; _} -> true | _ -> false
let is_simple {ppat_desc; _} =
match ppat_desc with
| Ppat_any | Ppat_constant _ | Ppat_var _
|Ppat_variant (_, None)
|Ppat_construct (_, None) ->
true
| (Ppat_variant (_, Some p) | Ppat_construct (_, Some ([], p)))
when is_any p ->
true
| Ppat_cons pl when List.for_all pl ~f:is_any -> true
| _ -> false
let has_trailing_attributes {ppat_desc; ppat_attributes; _} =
match ppat_desc with
| Ppat_construct (_, None)
|Ppat_constant _ | Ppat_any | Ppat_var _
|Ppat_variant (_, None)
|Ppat_record _ | Ppat_array _ | Ppat_list _ | Ppat_type _
|Ppat_unpack _ | Ppat_extension _ | Ppat_open _ | Ppat_interval _ ->
false
| _ -> List.exists ppat_attributes ~f:(Fn.non Attr.is_doc)
end
let doc_atrs ?(acc = []) atrs =
let docs, rev_atrs =
List.fold atrs ~init:(acc, []) ~f:(fun (docs, rev_atrs) atr ->
let open Asttypes in
match atr with
| { attr_name=
{ txt= ("ocaml.doc" | "ocaml.text") as txt
; loc= {loc_ghost= true; _} }
; attr_payload=
PStr
[ { pstr_desc=
Pstr_eval
( { pexp_desc=
Pexp_constant
{pconst_desc= Pconst_string (doc, _, None); _}
; pexp_loc= loc
; pexp_attributes= []
; _ }
, [] )
; _ } ]
; _ } -> (
match (txt, docs) with
| "ocaml.doc", (_, false) :: _ ->
(* cannot put two doc comment next to each other *)
(docs, atr :: rev_atrs)
| _ ->
( ({txt= doc; loc}, String.equal "ocaml.text" txt) :: docs
, rev_atrs ) )
| _ -> (docs, atr :: rev_atrs) )
in
let docs = match docs with [] -> None | l -> Some (List.rev l) in
(docs, List.rev rev_atrs)
let rec mty_is_simple x =
match x.pmty_desc with
| Pmty_ident _ | Pmty_alias _ | Pmty_signature [] -> true
| Pmty_signature (_ :: _)
|Pmty_with (_, _ :: _ :: _)
|Pmty_extension _
|Pmty_functor (_, _, false) ->
false
| Pmty_functor (_, t, true) -> mty_is_simple t
| Pmty_typeof e -> mod_is_simple e
| Pmty_with (t, ([] | [_])) -> mty_is_simple t
and mod_is_simple x =
match x.pmod_desc with
| Pmod_ident _ | Pmod_unpack _ | Pmod_structure [] | Pmod_hole -> true
| Pmod_structure (_ :: _) | Pmod_extension _ | Pmod_functor (_, _) -> false
| Pmod_constraint (e, t) -> mod_is_simple e && mty_is_simple t
| Pmod_apply (a, b) -> mod_is_simple a && mod_is_simple b
| Pmod_apply_unit (a, _) -> mod_is_simple a
module Mty = struct
let is_simple = mty_is_simple
let has_trailing_attributes {pmty_attributes; _} =
List.exists pmty_attributes ~f:(Fn.non Attr.is_doc)
end
module Mod = struct
let is_simple = mod_is_simple
let has_trailing_attributes {pmod_attributes; _} =
List.exists pmod_attributes ~f:(Fn.non Attr.is_doc)
end
module Cty = struct
let rec is_simple x =
match x.pcty_desc with
| Pcty_constr _ | Pcty_signature {pcsig_fields= []; _} -> true
| Pcty_signature {pcsig_fields= _ :: _; _}
|Pcty_open _ | Pcty_extension _ ->
false
| Pcty_arrow (_, t) -> is_simple t
end
module Cl = struct
let rec is_simple x =
match x.pcl_desc with
| Pcl_constr _ | Pcl_structure {pcstr_fields= []; _} -> true
| Pcl_structure {pcstr_fields= _ :: _; _}
|Pcl_let _ | Pcl_open _ | Pcl_extension _ ->
false
| Pcl_apply (e, _) | Pcl_fun (_, e) -> is_simple e
| Pcl_constraint (e, t) -> is_simple e && Cty.is_simple t
(** [mem_cls cls cl] holds if [cl] is in the named class of expressions
[cls]. *)
let mem_cls cls ast =
match (ast, cls) with
| {pcl_desc= Pcl_fun _; _}, Non_apply -> true
| _ -> false
end
module Tyd = struct
let is_simple x =
match x.ptype_kind with
| Ptype_abstract | Ptype_open -> true
| Ptype_variant _ | Ptype_record _ -> false
end
module Structure_item = struct
let has_doc itm =
match itm.pstr_desc with
| Pstr_attribute atr -> Attr.is_doc atr
(* one attribute list *)
| Pstr_eval (_, atrs)
|Pstr_recmodule ({pmb_expr= {pmod_attributes= atrs; _}; _} :: _)
|Pstr_extension (_, atrs) ->
List.exists ~f:Attr.is_doc atrs
| Pstr_open {popen_attributes= ea; _}
|Pstr_class_type ({pci_attributes= ea; _} :: _)
|Pstr_class ({pci_attributes= ea; _} :: _)
|Pstr_modtype {pmtd_ext_attrs= ea; _}
|Pstr_type (_, {ptype_attributes= ea; _} :: _)
|Pstr_value {pvbs_bindings= {pvb_attributes= ea; _} :: _; _}
|Pstr_primitive {pval_attributes= ea; _}
|Pstr_typext {ptyext_attributes= ea; _} ->
Ext_attrs.has_doc ea
| Pstr_module
{pmb_ext_attrs= ea; pmb_expr= {pmod_attributes= attrs; _}; _}
|Pstr_include
{pincl_mod= {pmod_attributes= attrs; _}; pincl_attributes= ea; _}
|Pstr_exception
{ ptyexn_attributes= ea
; ptyexn_constructor= {pext_attributes= attrs; _}
; _ } ->
Ext_attrs.has_doc ea || List.exists ~f:Attr.is_doc attrs
| Pstr_value {pvbs_bindings= []; _}
|Pstr_type (_, [])
|Pstr_recmodule []
|Pstr_class_type []
|Pstr_class [] ->
false
let is_simple (itm, (c : Conf.t)) =
match c.fmt_opts.module_item_spacing.v with
| `Compact | `Preserve ->
Location.is_single_line itm.pstr_loc c.fmt_opts.margin.v
| `Sparse -> (
match itm.pstr_desc with
| Pstr_include {pincl_mod= me; _} | Pstr_module {pmb_expr= me; _} ->
let rec is_simple_mod me =
match me.pmod_desc with
| Pmod_apply (me1, me2) -> is_simple_mod me1 && is_simple_mod me2
| Pmod_functor (_, me) | Pmod_apply_unit (me, _) ->
is_simple_mod me
| Pmod_ident i -> longident_is_simple c i.txt
| _ -> false
in
is_simple_mod me
| Pstr_open {popen_expr= {pmod_desc= Pmod_ident i; _}; _} ->
longident_is_simple c i.txt
| _ -> false )
let rec allow_adjacent (itmI, cI) (itmJ, cJ) =
match
Conf.
(cI.fmt_opts.module_item_spacing.v, cJ.fmt_opts.module_item_spacing.v)
with
| `Compact, `Compact -> (
match (itmI.pstr_desc, itmJ.pstr_desc) with
| Pstr_eval _, Pstr_eval _
|Pstr_value _, Pstr_value _
|Pstr_primitive _, Pstr_primitive _
|(Pstr_type _ | Pstr_typext _), (Pstr_type _ | Pstr_typext _)
|Pstr_exception _, Pstr_exception _
|( (Pstr_module _ | Pstr_recmodule _ | Pstr_open _ | Pstr_include _)
, (Pstr_module _ | Pstr_recmodule _ | Pstr_open _ | Pstr_include _) )
|Pstr_modtype _, Pstr_modtype _
|Pstr_class _, Pstr_class _
|Pstr_class_type _, Pstr_class_type _
|Pstr_attribute _, Pstr_attribute _ ->
true
| ( Pstr_extension ((_, PStr [n1]), _attrs1)
, Pstr_extension ((_, PStr [n2]), _attrs2) ) ->
allow_adjacent (n1, cI) (n2, cJ)
| Pstr_extension _, Pstr_extension _ -> true
| _ -> false )
| _ -> true
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pstr_loc i2.pstr_loc
|| has_doc i1 || has_doc i2
||
match
Conf.
(c1.fmt_opts.module_item_spacing.v, c2.fmt_opts.module_item_spacing.v)
with
| `Preserve, `Preserve ->
Source.empty_line_between s i1.pstr_loc.loc_end i2.pstr_loc.loc_start
| _ ->
(not (is_simple (i1, c1)))
|| (not (is_simple (i2, c2)))
|| not (allow_adjacent (i1, c1) (i2, c2))
end
module Signature_item = struct
let has_doc itm =
match itm.psig_desc with
| Psig_attribute atr -> Attr.is_doc atr
| Psig_extension (_, atrs) -> List.exists ~f:Attr.is_doc atrs
| Psig_value {pval_attributes= ea; _}
|Psig_type (_, {ptype_attributes= ea; _} :: _)
|Psig_typesubst ({ptype_attributes= ea; _} :: _)
|Psig_typext {ptyext_attributes= ea; _}
|Psig_open {popen_attributes= ea; _}
|Psig_class_type ({pci_attributes= ea; _} :: _)
|Psig_class ({pci_attributes= ea; _} :: _)
|Psig_modtype {pmtd_ext_attrs= ea; _}
|Psig_modtypesubst {pmtd_ext_attrs= ea; _}
|Psig_modsubst {pms_ext_attrs= ea; _} ->
Ext_attrs.has_doc ea
| Psig_include
{pincl_mod= {pmty_attributes= atrs; _}; pincl_attributes= ea; _}
|Psig_exception
{ ptyexn_attributes= ea
; ptyexn_constructor= {pext_attributes= atrs; _}
; _ }
|Psig_recmodule
({pmd_type= {pmty_attributes= atrs; _}; pmd_ext_attrs= ea; _} :: _)
|Psig_module {pmd_ext_attrs= ea; pmd_type= {pmty_attributes= atrs; _}; _}
->
Ext_attrs.has_doc ea || (List.exists ~f:Attr.is_doc) atrs
| Psig_type (_, [])
|Psig_typesubst []
|Psig_recmodule []
|Psig_class_type []
|Psig_class [] ->
false
let is_simple (itm, (c : Conf.t)) =
match c.fmt_opts.module_item_spacing.v with
| `Compact | `Preserve ->
Location.is_single_line itm.psig_loc c.fmt_opts.margin.v
| `Sparse -> (
match itm.psig_desc with
| Psig_open {popen_expr= i; _}
|Psig_module {pmd_type= {pmty_desc= Pmty_alias i; _}; _}
|Psig_modsubst {pms_manifest= i; _} ->
longident_is_simple c i.txt
| _ -> false )
let allow_adjacent (itmI, cI) (itmJ, cJ) =
match
Conf.
(cI.fmt_opts.module_item_spacing.v, cJ.fmt_opts.module_item_spacing.v)
with
| `Compact, `Compact -> (
match (itmI.psig_desc, itmJ.psig_desc) with
| Psig_value _, Psig_value _
|( (Psig_type _ | Psig_typesubst _ | Psig_typext _)
, (Psig_type _ | Psig_typesubst _ | Psig_typext _) )
|Psig_exception _, Psig_exception _
|( ( Psig_module _ | Psig_modsubst _ | Psig_recmodule _ | Psig_open _
| Psig_include _ )
, ( Psig_module _ | Psig_modsubst _ | Psig_recmodule _ | Psig_open _
| Psig_include _ ) )
|Psig_modtype _, Psig_modtype _
|Psig_class _, Psig_class _
|Psig_class_type _, Psig_class_type _
|Psig_attribute _, Psig_attribute _
|Psig_extension _, Psig_extension _ ->
true
| _ -> false )
| _ -> true
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.psig_loc i2.psig_loc
|| has_doc i1 || has_doc i2
||
match
Conf.
(c1.fmt_opts.module_item_spacing.v, c2.fmt_opts.module_item_spacing.v)
with
| `Preserve, `Preserve ->
Source.empty_line_between s i1.psig_loc.loc_end i2.psig_loc.loc_start
| _ ->
(not (is_simple (i1, c1)))
|| (not (is_simple (i2, c2)))
|| not (allow_adjacent (i1, c1) (i2, c2))
end
module Lb = struct
let has_doc itm = Ext_attrs.has_doc itm.pvb_attributes
let is_simple (i, (c : Conf.t)) =
Poly.(c.fmt_opts.module_item_spacing.v = `Compact)
&& Location.is_single_line i.pvb_loc c.fmt_opts.margin.v
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pvb_loc i2.pvb_loc
|| has_doc i1 || has_doc i2
|| (not (is_simple (i1, c1)))
|| not (is_simple (i2, c2))
end
module Mb = struct
let has_doc itm = Ext_attrs.has_doc itm.pmb_ext_attrs
let is_simple (i, (c : Conf.t)) =
Poly.(c.fmt_opts.module_item_spacing.v = `Compact)
&& Location.is_single_line i.pmb_loc c.fmt_opts.margin.v
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pmb_loc i2.pmb_loc
|| has_doc i1 || has_doc i2
|| (not (is_simple (i1, c1)))
|| not (is_simple (i2, c2))
end
module Md = struct
let has_doc itm = Ext_attrs.has_doc itm.pmd_ext_attrs
let is_simple (i, (c : Conf.t)) =
Poly.(c.fmt_opts.module_item_spacing.v = `Compact)
&& Location.is_single_line i.pmd_loc c.fmt_opts.margin.v
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pmd_loc i2.pmd_loc
|| has_doc i1 || has_doc i2
|| (not (is_simple (i1, c1)))
|| not (is_simple (i2, c2))
end
module Td = struct
let has_doc itm = Ext_attrs.has_doc itm.ptype_attributes
let is_simple (i, (c : Conf.t)) =
match c.fmt_opts.module_item_spacing.v with
| `Compact | `Preserve ->
Location.is_single_line i.ptype_loc c.fmt_opts.margin.v
| `Sparse -> false
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.ptype_loc i2.ptype_loc
|| has_doc i1 || has_doc i2
||
match
Conf.
(c1.fmt_opts.module_item_spacing.v, c2.fmt_opts.module_item_spacing.v)
with
| `Preserve, `Preserve ->
Source.empty_line_between s i1.ptype_loc.loc_end
i2.ptype_loc.loc_start
| _ -> (not (is_simple (i1, c1))) || not (is_simple (i2, c2))
end
module Class_field = struct
let has_doc itm =
List.exists ~f:Attr.is_doc itm.pcf_attributes
||
match itm.pcf_desc with
| Pcf_attribute atr -> Attr.is_doc atr
| _ -> false
let is_simple (itm, (c : Conf.t)) =
match c.fmt_opts.module_item_spacing.v with
| `Compact | `Preserve ->
Location.is_single_line itm.pcf_loc c.fmt_opts.margin.v
| `Sparse -> false
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pcf_loc i2.pcf_loc
|| has_doc i1 || has_doc i2
||
match
Conf.
(c1.fmt_opts.module_item_spacing.v, c2.fmt_opts.module_item_spacing.v)
with
| `Preserve, `Preserve ->
Source.empty_line_between s i1.pcf_loc.loc_end i2.pcf_loc.loc_start
| _ -> (not (is_simple (i1, c1))) || not (is_simple (i2, c2))
end
module Class_type_field = struct
let has_doc itm =
List.exists ~f:Attr.is_doc itm.pctf_attributes
||
match itm.pctf_desc with
| Pctf_attribute atr -> Attr.is_doc atr
| _ -> false
let is_simple (itm, (c : Conf.t)) =
match c.fmt_opts.module_item_spacing.v with
| `Compact | `Preserve ->
Location.is_single_line itm.pctf_loc c.fmt_opts.margin.v
| `Sparse -> false
let break_between s cc (i1, c1) (i2, c2) =
cmts_between s cc i1.pctf_loc i2.pctf_loc
|| has_doc i1 || has_doc i2
||
match
Conf.
(c1.fmt_opts.module_item_spacing.v, c2.fmt_opts.module_item_spacing.v)
with
| `Preserve, `Preserve ->
Source.empty_line_between s i1.pctf_loc.loc_end i2.pctf_loc.loc_start
| _ -> (not (is_simple (i1, c1))) || not (is_simple (i2, c2))
end
type toplevel_item =
[`Item of structure_item | `Directive of toplevel_directive]
(** Ast terms of various forms. *)
module T = struct
type t =
| Pld of payload
| Typ of core_type
| Td of type_declaration
| Cty of class_type
| Cd of class_declaration
| Ctd of class_type_declaration
| Pat of pattern
| Exp of expression
| Fpe of expr_function_param
| Fpc of class_function_param
| Vc of value_constraint
| Lb of value_binding
| Bo of binding_op
| Mb of module_binding
| Md of module_declaration
| Cl of class_expr
| Mty of module_type
| Mod of module_expr
| Sig of signature_item
| Str of structure_item
| Clf of class_field
| Ctf of class_type_field
| Tli of toplevel_item
| Top
| Rep
let dump fs = function
| Pld l -> Format.fprintf fs "Pld:@\n%a" Printast.payload l
| Typ t -> Format.fprintf fs "Typ:@\n%a" Printast.core_type t
| Td t -> Format.fprintf fs "Td:@\n%a" Printast.type_declaration t
| Pat p -> Format.fprintf fs "Pat:@\n%a" Printast.pattern p
| Exp e -> Format.fprintf fs "Exp:@\n%a" Printast.expression e
| Fpe p -> Format.fprintf fs "Fpe:@\n%a" Printast.expr_function_param p
| Fpc p -> Format.fprintf fs "Fpc:@\n%a" Printast.class_function_param p
| Vc c -> Format.fprintf fs "Vc:@\n%a" Printast.value_constraint c
| Lb b -> Format.fprintf fs "Lb:@\n%a" Printast.value_binding b
| Bo b -> Format.fprintf fs "Bo:@\n%a" Printast.binding_op b
| Mb m -> Format.fprintf fs "Mb:@\n%a" Printast.module_binding m
| Md m -> Format.fprintf fs "Md:@\n%a" Printast.module_declaration m
| Cl cl -> Format.fprintf fs "Cl:@\n%a" Printast.class_expr cl
| Mty mt -> Format.fprintf fs "Mty:@\n%a" Printast.module_type mt
| Cty cty -> Format.fprintf fs "Cty:@\n%a" Printast.class_type cty
| Cd cd -> Format.fprintf fs "Cd:@\n%a" Printast.class_declaration cd
| Ctd ctd ->
Format.fprintf fs "Ctd:@\n%a" Printast.class_type_declaration ctd
| Mod m -> Format.fprintf fs "Mod:@\n%a" Printast.module_expr m
| Sig s -> Format.fprintf fs "Sig:@\n%a" Printast.signature_item s
| Str s | Tli (`Item s) ->
Format.fprintf fs "Str:@\n%a" Printast.structure_item s
| Clf clf -> Format.fprintf fs "Clf:@\n%a@\n" Printast.class_field clf
| Ctf ctf ->
Format.fprintf fs "Ctf:@\n%a@\n" Printast.class_type_field ctf
| Tli (`Directive d) ->
Format.fprintf fs "Dir:@\n%a" Printast.top_phrase (Ptop_dir d)
| Top -> Format.pp_print_string fs "Top"
| Rep -> Format.pp_print_string fs "Rep"
end
include T
let is_top = function Top -> true | _ -> false
let attrs_of_ext_attrs ea = ea.attrs_before @ ea.attrs_after
let attributes = function
| Pld _ -> []
| Typ x -> x.ptyp_attributes
| Td x -> attrs_of_ext_attrs x.ptype_attributes
| Cty x -> x.pcty_attributes
| Pat x -> x.ppat_attributes
| Exp x -> x.pexp_attributes
| Fpe _ | Fpc _ -> []
| Vc _ -> []
| Lb x -> attrs_of_ext_attrs x.pvb_attributes
| Bo _ -> []
| Mb x -> attrs_of_ext_attrs x.pmb_ext_attrs
| Md x -> attrs_of_ext_attrs x.pmd_ext_attrs
| Cl x -> x.pcl_attributes
| Cd x -> attrs_of_ext_attrs x.pci_attributes
| Ctd x -> attrs_of_ext_attrs x.pci_attributes
| Mty x -> x.pmty_attributes
| Mod x -> x.pmod_attributes
| Sig _ -> []
| Str _ -> []
| Clf x -> x.pcf_attributes
| Ctf x -> x.pctf_attributes
| Top -> []
| Tli _ -> []
| Rep -> []
let location = function
| Pld _ -> Location.none
| Typ x -> x.ptyp_loc
| Td x -> x.ptype_loc
| Cty x -> x.pcty_loc
| Pat x -> x.ppat_loc
| Exp x -> x.pexp_loc
| Fpe x -> x.pparam_loc
| Fpc x -> x.pparam_loc
| Vc _ -> Location.none
| Lb x -> x.pvb_loc
| Bo x -> x.pbop_loc
| Mb x -> x.pmb_loc
| Md x -> x.pmd_loc
| Cl x -> x.pcl_loc
| Cd x -> x.pci_loc
| Ctd x -> x.pci_loc
| Mty x -> x.pmty_loc
| Mod x -> x.pmod_loc
| Sig x -> x.psig_loc
| Str x -> x.pstr_loc
| Clf x -> x.pcf_loc
| Ctf x -> x.pctf_loc
| Tli (`Item x) -> x.pstr_loc
| Tli (`Directive x) -> x.pdir_loc
| Top -> Location.none
| Rep -> Location.none
let break_between_modules s cc (i1, c1) (i2, c2) =
let has_doc itm = List.exists ~f:Attr.is_doc (attributes itm) in
let is_simple (itm, (c : Conf.t)) =
Location.is_single_line (location itm) c.fmt_opts.margin.v
in
cmts_between s cc (location i1) (location i2)
|| has_doc i1 || has_doc i2
|| (not (is_simple (i1, c1)))
|| not (is_simple (i2, c2))
let break_between s cc (i1, c1) (i2, c2) =
match (i1, i2) with
| Str i1, Str i2 -> Structure_item.break_between s cc (i1, c1) (i2, c2)
| Sig i1, Sig i2 -> Signature_item.break_between s cc (i1, c1) (i2, c2)
| Lb i1, Lb i2 -> Lb.break_between s cc (i1, c1) (i2, c2)
| Mb i1, Mb i2 -> Mb.break_between s cc (i1, c1) (i2, c2)
| Md i1, Md i2 -> Md.break_between s cc (i1, c1) (i2, c2)
| Mty _, Mty _ -> break_between_modules s cc (i1, c1) (i2, c2)
| Mod _, Mod _ -> break_between_modules s cc (i1, c1) (i2, c2)
| Tli (`Item i1), Tli (`Item i2) ->
Structure_item.break_between s cc (i1, c1) (i2, c2)
| Tli (`Directive _), Tli (`Directive _) | Tli _, Tli _ ->
true (* always break between an item and a directive *)
| Clf i1, Clf i2 -> Class_field.break_between s cc (i1, c1) (i2, c2)
| Ctf i1, Ctf i2 -> Class_type_field.break_between s cc (i1, c1) (i2, c2)
| Td i1, Td i2 -> Td.break_between s cc (i1, c1) (i2, c2)
| _ -> assert false
(** Term-in-context, [{ctx; ast}] records that [ast] is (considered to be) an
immediate sub-term of [ctx] as assumed by the operations in
[Requires_sub_terms]. *)
module rec In_ctx : sig
type 'a xt = private {ctx: T.t; ast: 'a}
val sub_ast : ctx:T.t -> T.t -> T.t xt
val sub_typ : ctx:T.t -> core_type -> core_type xt
val sub_td : ctx:T.t -> type_declaration -> type_declaration xt
val sub_cty : ctx:T.t -> class_type -> class_type xt
val sub_pat : ctx:T.t -> pattern -> pattern xt
val sub_exp : ctx:T.t -> expression -> expression xt
val sub_cl : ctx:T.t -> class_expr -> class_expr xt
val sub_cf : ctx:T.t -> class_field -> class_field xt
val sub_ctf : ctx:t -> class_type_field -> class_type_field xt
val sub_mty : ctx:T.t -> module_type -> module_type xt
val sub_mod : ctx:T.t -> module_expr -> module_expr xt
val sub_md : ctx:T.t -> module_declaration -> module_declaration xt
val sub_mb : ctx:T.t -> module_binding -> module_binding xt
val sub_sig : ctx:T.t -> signature_item -> signature_item xt
val sub_str : ctx:T.t -> structure_item -> structure_item xt
val sub_fun_body : ctx:T.t -> function_body -> function_body xt
end = struct
open Requires_sub_terms
type 'a xt = {ctx: T.t; ast: 'a}
let sub_ast ~ctx ast = {ctx; ast}
let sub_typ ~ctx typ = check parenze_typ {ctx; ast= typ}
let sub_td ~ctx td = {ctx; ast= td}
let sub_cty ~ctx cty = {ctx; ast= cty}
let sub_pat ~ctx pat = check parenze_pat {ctx; ast= pat}
let sub_exp ~ctx exp = check parenze_exp {ctx; ast= exp}
let sub_cl ~ctx cl = {ctx; ast= cl}
let sub_cf ~ctx cf = {ctx; ast= cf}
let sub_ctf ~ctx ctf = {ctx; ast= ctf}
let sub_mty ~ctx mty = {ctx; ast= mty}
let sub_mod ~ctx mod_ = {ctx; ast= mod_}
let sub_md ~ctx md = {ctx; ast= md}
let sub_mb ~ctx mb = {ctx; ast= mb}
let sub_sig ~ctx sig_ = {ctx; ast= sig_}
let sub_str ~ctx str = {ctx; ast= str}
let sub_fun_body ~ctx ast = {ctx; ast}
end
(** Operations determining precedence and necessary parenthesization of terms
based on their super-terms. *)
and Requires_sub_terms : sig
val is_simple :
Conf.t -> (expression In_ctx.xt -> int) -> expression In_ctx.xt -> bool
val exposed_right_exp : cls -> expression -> bool
val prec_ast : T.t -> Prec.t option
val parenze_typ : core_type In_ctx.xt -> bool
val parenze_mty : module_type In_ctx.xt -> bool
val parenze_mod : module_expr In_ctx.xt -> bool
val parenze_cty : class_type In_ctx.xt -> bool
val parenze_cl : class_expr In_ctx.xt -> bool
val parenze_pat : pattern In_ctx.xt -> bool
val parenze_exp : expression In_ctx.xt -> bool
val parenze_nested_exp : expression In_ctx.xt -> bool
end = struct
open In_ctx
(* This module uses physical equality extensively to detect sub-terms. *)
let ( == ) = Base.phys_equal
let dump ctx ast fs =
Format.fprintf fs "ast: %a@\nctx: %a@\n" T.dump ast T.dump ctx
let assert_no_raise ~f ~dump x =
assert (
try
ignore (f x) ;
true
with exc ->
let bt = Stdlib.Printexc.get_backtrace () in
dump x Format.err_formatter ;
Format.eprintf "%s%!" bt ;
raise exc )
(** Predicates to check the claimed sub-term relation. *)
let check_typ {ctx; ast= typ} =
let f tI = typ == tI in
let fst_f (tI, _) = typ == tI in
let snd_f (_, tI) = typ == tI in
let check_cstr = function
| Pcstr_tuple t1N -> List.exists t1N ~f
| Pcstr_record (_, ld1N) ->
List.exists ld1N ~f:(fun {pld_type; _} -> typ == pld_type)
in
let check_ext {pext_kind; _} =
match pext_kind with
| Pext_decl (_, cstr, t0) -> check_cstr cstr || Option.exists t0 ~f
| _ -> false
in
let check_typext {ptyext_params; ptyext_constructors; _} =
List.exists ptyext_params ~f:fst_f
|| List.exists ptyext_constructors ~f:check_ext
in
let check_typexn {ptyexn_constructor; _} =
check_ext ptyexn_constructor
in
let check_class_type {pci_expr= {pcty_desc; _}; pci_params; _} =
List.exists pci_params ~f:(fun (t, _) -> t == typ)
||
match pcty_desc with
| Pcty_constr (_, l) -> List.exists l ~f:(fun x -> x == typ)
| Pcty_arrow (t, _) -> List.exists t ~f:(fun x -> x.pap_type == typ)
| _ -> false
in
let check_class_expr {pci_expr= {pcl_desc; _}; pci_params; _} =
List.exists pci_params ~f:(fun (t, _) -> t == typ)
||
match pcl_desc with
| Pcl_constr (_, l) -> List.exists l ~f:(fun x -> x == typ)
| _ -> false
in
let check_value_constraint = function
| Pvc_constraint {typ= typ'; _} -> typ' == typ
| Pvc_coercion {ground; coercion} ->
coercion == typ || Option.exists ground ~f:(fun x -> x == typ)
in
let check_pvb pvb =
Option.exists pvb.pvb_constraint ~f:check_value_constraint
in
let check_let_bindings lbs =
List.exists lbs.pvbs_bindings ~f:check_pvb
in
let check_type_constraint = function
| Pconstraint t -> f t
| Pcoerce (t1, t2) -> Option.exists t1 ~f || f t2
in
match ctx with
| Pld (PTyp t1) -> assert (typ == t1)
| Pld _ -> assert false
| Typ ctx -> (
match ctx.ptyp_desc with
| Ptyp_extension _ -> ()
| Ptyp_any | Ptyp_var _ -> assert false
| Ptyp_alias (t1, _) | Ptyp_poly (_, t1) -> assert (typ == t1)
| Ptyp_arrow (t, t2) ->
assert (List.exists t ~f:(fun x -> typ == x.pap_type) || typ == t2)
| Ptyp_tuple t1N | Ptyp_constr (_, t1N) -> assert (List.exists t1N ~f)
| Ptyp_variant (r1N, _, _) ->
assert (
List.exists r1N ~f:(function
| {prf_desc= Rtag (_, _, t1N); _} -> List.exists t1N ~f
| {prf_desc= Rinherit t1; _} -> typ == t1 ) )
| Ptyp_open (_, t1) -> assert (t1 == typ)
| Ptyp_package (_, it1N, _) -> assert (List.exists it1N ~f:snd_f)
| Ptyp_object (fields, _) ->
assert (
List.exists fields ~f:(function
| {pof_desc= Otag (_, t1); _} -> typ == t1
| {pof_desc= Oinherit t1; _} -> typ == t1 ) )
| Ptyp_class (_, l) -> assert (List.exists l ~f) )
| Td {ptype_params; ptype_cstrs; ptype_kind; ptype_manifest; _} ->
assert (
List.exists ptype_params ~f:fst_f
|| List.exists ptype_cstrs ~f:(fun (t1, t2, _) ->
typ == t1 || typ == t2 )
|| ( match ptype_kind with
| Ptype_variant cd1N ->
List.exists cd1N ~f:(fun {pcd_args; pcd_res; _} ->
check_cstr pcd_args || Option.exists pcd_res ~f )
| Ptype_record ld1N ->
List.exists ld1N ~f:(fun {pld_type; _} -> typ == pld_type)
| _ -> false )
|| Option.exists ptype_manifest ~f )
| Cty {pcty_desc; _} ->
assert (
match pcty_desc with
| Pcty_constr (_, l) -> List.exists l ~f
| Pcty_arrow (t, _) ->
List.exists t ~f:(fun x -> x.pap_type == typ)
| Pcty_open _ -> false
| Pcty_extension _ -> false
| Pcty_signature {pcsig_self; _} -> Option.exists pcsig_self ~f )
| Pat ctx -> (
match ctx.ppat_desc with
| Ppat_constraint (_, t1) -> assert (typ == t1)
| Ppat_extension (_, PTyp t) -> assert (typ == t)
| Ppat_unpack (_, Some (_, l, _)) ->
assert (List.exists l ~f:(fun (_, t) -> typ == t))
| Ppat_record (l, _) ->
assert (List.exists l ~f:(fun (_, t, _) -> Option.exists t ~f))
| _ -> assert false )
| Exp ctx -> (
match ctx.pexp_desc with
| Pexp_pack (_, Some (_, it1N, _)) -> assert (List.exists it1N ~f:snd_f)
| Pexp_constraint (_, t1)
|Pexp_coerce (_, None, t1)
|Pexp_extension (_, PTyp t1) ->
assert (typ == t1)
| Pexp_coerce (_, Some t1, t2) -> assert (typ == t1 || typ == t2)
| Pexp_letexception (ext, _) -> assert (check_ext ext)
| Pexp_object _ -> assert false
| Pexp_record (en1, _) ->
assert (
List.exists en1 ~f:(fun (_, c, _) ->
Option.exists c ~f:check_type_constraint ) )
| Pexp_let (lbs, _, _) -> assert (check_let_bindings lbs)
| Pexp_function (_, Some t1, _) -> assert (check_type_constraint t1)
| _ -> assert false )
| Fpe _ | Fpc _ -> assert false
| Vc c -> assert (check_value_constraint c)
| Lb _ -> assert false
| Bo _ -> assert false
| Mb _ -> assert false
| Md _ -> assert false
| Cl {pcl_desc; _} ->
assert (
match pcl_desc with
| Pcl_constr (_, l) -> List.exists l ~f
| Pcl_constraint _ -> false
| Pcl_let (lbs, _, _) -> check_let_bindings lbs
| Pcl_apply _ -> false
| Pcl_fun _ -> false
| Pcl_open _ -> false
| Pcl_extension _ -> false
| Pcl_structure _ -> false )
| Cd ctx -> assert (check_class_expr ctx)
| Ctd ctx -> assert (check_class_type ctx)
| Mty _ -> assert false
| Mod ctx -> (
match ctx.pmod_desc with
| Pmod_unpack (_, ty1, ty2) ->
let f (_, cstrs, _) = List.exists cstrs ~f:(fun (_, x) -> f x) in
assert (Option.exists ty1 ~f || Option.exists ty2 ~f)
| _ -> assert false )
| Sig ctx -> (
match ctx.psig_desc with
| Psig_value {pval_type= t1; _} -> assert (typ == t1)
| Psig_type (_, _) -> assert false
| Psig_typesubst _ -> assert false
| Psig_typext typext -> assert (check_typext typext)
| Psig_exception ext -> assert (check_typexn ext)
| _ -> assert false )
| Str ctx -> (
match ctx.pstr_desc with
| Pstr_primitive {pval_type= t1; _} -> assert (typ == t1)
| Pstr_type (_, _) -> assert false
| Pstr_typext typext -> assert (check_typext typext)
| Pstr_exception ext -> assert (check_typexn ext)
| Pstr_extension ((_, PTyp t), _) -> assert (t == typ)
| Pstr_extension (_, _) -> assert false
| Pstr_value {pvbs_bindings; _} ->
assert (List.exists pvbs_bindings ~f:check_pvb)
| _ -> assert false )
| Clf {pcf_desc; _} ->
assert (
match pcf_desc with
| Pcf_inherit (_, _, _) -> false
| Pcf_val (_, _, Cfk_virtual t) -> typ == t
| Pcf_val (_, _, Cfk_concrete (_, tc, _)) ->
Option.exists tc ~f:check_type_constraint
| Pcf_method (_, _, Cfk_virtual t) -> typ == t
| Pcf_method (_, _, Cfk_concrete (_, (_, t), _)) ->
Option.exists t ~f:check_value_constraint
| Pcf_constraint (t1, t2) -> t1 == typ || t2 == typ
| Pcf_initializer _ | Pcf_attribute _ | Pcf_extension _ -> false )
| Ctf {pctf_desc; _} ->
assert (
match pctf_desc with
| Pctf_constraint (t1, t2) -> t1 == typ || t2 == typ
| Pctf_val (_, _, t) -> t == typ
| Pctf_method (_, _, t) -> t == typ
| Pctf_inherit _ -> false
| Pctf_attribute _ -> false
| Pctf_extension _ -> false )
| Top | Tli _ | Rep -> assert false
let assert_check_typ xtyp =
let dump {ctx; ast= typ} = dump ctx (Typ typ) in
assert_no_raise ~f:check_typ ~dump xtyp
let check_cty {ctx; ast= cty} =
match (ctx : t) with
| Exp _ -> assert false
| Fpe _ | Fpc _ -> assert false
| Vc _ -> assert false
| Lb _ -> assert false
| Bo _ -> assert false
| Mb _ -> assert false
| Md _ -> assert false
| Pld _ -> assert false
| Str _ -> assert false
| Sig _ -> assert false
| Cty {pcty_desc; _} -> (
match pcty_desc with
| Pcty_arrow (_, t) -> assert (t == cty)
| Pcty_signature _ -> assert false
| Pcty_open (_, t) -> assert (t == cty)
| Pcty_constr _ -> assert false
| Pcty_extension _ -> assert false )
| Top -> assert false
| Tli _ -> assert false
| Typ _ -> assert false
| Td _ -> assert false
| Pat _ -> assert false
| Cl ctx ->
assert (
match ctx.pcl_desc with
| Pcl_fun _ -> false
| Pcl_constr _ -> false
| Pcl_structure _ -> false
| Pcl_apply _ -> false
| Pcl_let (_, _, _) -> false
| Pcl_constraint (_, x) -> x == cty
| Pcl_extension _ -> false
| Pcl_open _ -> false )
| Cd ctx ->
assert (Option.exists ctx.pci_constraint ~f:(fun x -> x == cty))
| Ctd ctx ->
assert (
Option.exists ctx.pci_constraint ~f:(fun x -> x == cty)
|| ctx.pci_expr == cty )
| Clf _ -> assert false
| Ctf {pctf_desc; _} ->
assert (
match pctf_desc with
| Pctf_inherit t -> t == cty
| Pctf_val _ -> false
| Pctf_method _ -> false
| Pctf_constraint _ -> false
| Pctf_attribute _ -> false
| Pctf_extension _ -> false )
| Mty _ -> assert false
| Mod _ -> assert false
| Rep -> assert false
let assert_check_cty xcty =
let dump {ctx; ast= cty} = dump ctx (Cty cty) in
assert_no_raise ~f:check_cty ~dump xcty
let check_cl {ctx; ast= cl} =
match (ctx : t) with
| Exp _ -> assert false
| Fpe _ | Fpc _ -> assert false
| Vc _ -> assert false
| Lb _ -> assert false
| Bo _ -> assert false
| Mb _ -> assert false
| Md _ -> assert false
| Pld _ -> assert false
| Str _ -> assert false
| Sig _ -> assert false
| Cty _ -> assert false
| Top -> assert false
| Tli _ -> assert false
| Typ _ -> assert false
| Td _ -> assert false
| Pat _ -> assert false
| Cl {pcl_desc; _} ->
assert (
match pcl_desc with
| Pcl_structure _ -> false
| Pcl_fun (_, x) -> x == cl
| Pcl_apply (x, _) -> x == cl
| Pcl_let (_, x, _) -> x == cl
| Pcl_constraint (x, _) -> x == cl
| Pcl_open (_, x) -> x == cl
| Pcl_constr _ -> false
| Pcl_extension _ -> false )
| Cd ctx -> assert (ctx.pci_expr == cl)
| Ctd _ -> assert false
| Clf {pcf_desc; _} ->
assert (
match pcf_desc with Pcf_inherit (_, x, _) -> x == cl | _ -> false )
| Ctf _ -> assert false
| Mty _ -> assert false
| Mod _ -> assert false
| Rep -> assert false
let assert_check_cl xcl =
let dump {ctx; ast= cl} = dump ctx (Cl cl) in
assert_no_raise ~f:check_cl ~dump xcl
let check_pat {ctx; ast= pat} =
let check_extensions = function PPat (p, _) -> p == pat | _ -> false in
let check_subpat ppat =
ppat == pat
||
match ppat.ppat_desc with
| Ppat_constraint (p, _) -> p == pat
| _ -> false
in
let check_cases = List.exists ~f:(fun c -> c.pc_lhs == pat) in
let check_binding {pvb_pat; pvb_body; _} =
check_subpat pvb_pat
||
match pvb_body with
| Pfunction_body _ -> false
| Pfunction_cases (cases, _, _) -> check_cases cases
in
let check_bindings l = List.exists l ~f:check_binding in
let check_param_val (_, _, p) = p == pat in
let check_expr_function_param param =
match param.pparam_desc with
| Pparam_val x -> check_param_val x
| Pparam_newtype _ -> false
in
let check_class_function_param param =
check_param_val param.pparam_desc
in
let check_class_function_params =
List.exists ~f:check_class_function_param
in
match ctx with
| Pld (PPat (p1, _)) -> assert (p1 == pat)
| Pld _ -> assert false
| Typ ctx -> (
match ctx.ptyp_desc with
| Ptyp_extension (_, ext) -> assert (check_extensions ext)
| _ -> assert false )
| Td _ -> assert false
| Pat ctx -> (
let f pI = pI == pat in
match ctx.ppat_desc with
| Ppat_array p1N | Ppat_list p1N | Ppat_tuple p1N | Ppat_cons p1N ->
assert (List.exists p1N ~f)
| Ppat_record (p1N, _) ->
assert (List.exists p1N ~f:(fun (_, _, x) -> Option.exists x ~f))
| Ppat_or l -> assert (List.exists ~f:(fun p -> p == pat) l)
| Ppat_alias (p1, _)
|Ppat_constraint (p1, _)
|Ppat_construct (_, Some (_, p1))
|Ppat_exception p1
|Ppat_lazy p1
|Ppat_open (_, p1)
|Ppat_variant (_, Some p1) ->
assert (p1 == pat)
| Ppat_effect (p1, p2) -> assert (p1 == pat || p2 == pat)
| Ppat_extension (_, ext) -> assert (check_extensions ext)
| Ppat_any | Ppat_constant _
|Ppat_construct (_, None)
|Ppat_interval _ | Ppat_type _ | Ppat_unpack _ | Ppat_var _
|Ppat_variant (_, None) ->
assert false )
| Exp ctx -> (
match ctx.pexp_desc with
| Pexp_apply _ | Pexp_array _ | Pexp_list _ | Pexp_assert _
|Pexp_coerce _ | Pexp_constant _ | Pexp_constraint _
|Pexp_construct _ | Pexp_field _ | Pexp_ident _ | Pexp_ifthenelse _
|Pexp_lazy _ | Pexp_letexception _ | Pexp_letmodule _ | Pexp_new _
|Pexp_open _ | Pexp_override _ | Pexp_pack _ | Pexp_record _
|Pexp_send _ | Pexp_sequence _ | Pexp_setfield _ | Pexp_setinstvar _
|Pexp_tuple _ | Pexp_unreachable | Pexp_variant _ | Pexp_while _
|Pexp_hole | Pexp_beginend _ | Pexp_parens _ | Pexp_cons _
|Pexp_letopen _ | Pexp_indexop_access _ | Pexp_prefix _ | Pexp_infix _
->
assert false
| Pexp_extension (_, ext) -> assert (check_extensions ext)
| Pexp_object {pcstr_self; _} ->
assert (Option.exists ~f:(fun self_ -> self_ == pat) pcstr_self)
| Pexp_let ({pvbs_bindings; _}, _, _) ->
assert (check_bindings pvbs_bindings)
| Pexp_letop {let_; ands; _} ->
let f {pbop_pat; _} = check_subpat pbop_pat in
assert (f let_ || List.exists ~f ands)
| Pexp_match (_, cases) | Pexp_try (_, cases) ->
assert (check_cases cases)
| Pexp_for (p, _, _, _, _) -> assert (p == pat)
| Pexp_function (params, _, body) ->
let check_body =
match body with
| Pfunction_body _ -> false
| Pfunction_cases (cases, _, _) -> check_cases cases
in
assert (
List.exists ~f:check_expr_function_param params || check_body ) )
| Fpe ctx -> assert (check_expr_function_param ctx)
| Fpc ctx -> assert (check_class_function_param ctx)
| Vc _ -> assert false
| Lb x -> assert (check_binding x)
| Bo x -> assert (x.pbop_pat == pat)
| Mb _ -> assert false
| Md _ -> assert false
| Cl ctx ->
assert (
match ctx.pcl_desc with
| Pcl_fun (p, _) -> check_class_function_params p
| Pcl_constr _ -> false
| Pcl_structure {pcstr_self; _} ->
Option.exists ~f:(fun self_ -> self_ == pat) pcstr_self
| Pcl_apply _ -> false
| Pcl_let ({pvbs_bindings; _}, _, _) ->
check_bindings pvbs_bindings
| Pcl_constraint _ -> false
| Pcl_extension (_, ext) -> check_extensions ext
| Pcl_open _ -> false )
| Cty _ -> assert false
| Cd _ -> assert false
| Ctd _ -> assert false
| Mty _ | Mod _ | Sig _ -> assert false
| Str str -> (
match str.pstr_desc with
| Pstr_value {pvbs_bindings; _} -> assert (check_bindings pvbs_bindings)
| Pstr_extension ((_, ext), _) -> assert (check_extensions ext)
| _ -> assert false )
| Clf {pcf_desc; _} ->
assert (
match pcf_desc with
| Pcf_initializer _ -> false
| Pcf_val (_, _, _) -> false
| Pcf_method (_, _, _) -> false
| Pcf_extension (_, PPat (p, _)) -> p == pat
| Pcf_extension (_, _) -> false
| Pcf_inherit _ -> false
| Pcf_constraint _ -> false
| Pcf_attribute _ -> false )
| Ctf _ -> assert false
| Top | Tli _ | Rep -> assert false
let assert_check_pat xpat =
let dump {ctx; ast= pat} = dump ctx (Pat pat) in
assert_no_raise ~f:check_pat ~dump xpat
let check_exp {ctx; ast= exp} =
let check_extensions = function
| PPat (_, Some e) -> e == exp
| PStr [{pstr_desc= Pstr_eval (e, _); _}] -> e == exp
| _ -> false
in
let check_param_val (_, e, _) = Option.exists e ~f:(fun x -> x == exp) in
let check_expr_function_param param =
match param.pparam_desc with
| Pparam_val x -> check_param_val x
| Pparam_newtype _ -> false
in
let check_class_function_param param =
check_param_val param.pparam_desc
in
let check_class_function_params =
List.exists ~f:check_class_function_param
in
let check_cases =
List.exists ~f:(function
| {pc_guard= Some g; _} when g == exp -> true
| {pc_rhs; _} when pc_rhs == exp -> true
| _ -> false )
in
let check_fun_body = function
| Pfunction_body body -> body == exp
| Pfunction_cases (cases, _, _) -> check_cases cases
in
match ctx with
| Pld (PPat (_, Some e1)) -> assert (e1 == exp)
| Pld _ -> assert false
| Exp ctx -> (
let f eI = eI == exp in
let snd_f (_, eI) = eI == exp in
match ctx.pexp_desc with
| Pexp_extension (_, ext) -> assert (check_extensions ext)
| Pexp_constant _ | Pexp_ident _ | Pexp_new _ | Pexp_pack _
|Pexp_unreachable | Pexp_hole ->
assert false
| Pexp_object _ -> assert false
| Pexp_let ({pvbs_bindings; _}, e, _) ->
assert (
List.exists pvbs_bindings ~f:(fun {pvb_body; _} ->
check_fun_body pvb_body )
|| e == exp )
| Pexp_letop {let_; ands; body; loc_in= _} ->
let f {pbop_exp; _} = pbop_exp == exp in
assert (f let_ || List.exists ~f ands || body == exp)
| (Pexp_match (e, _) | Pexp_try (e, _)) when e == exp -> ()
| Pexp_match (_, cases) | Pexp_try (_, cases) ->
assert (check_cases cases)
| Pexp_function (params, _, body) ->
assert (
List.exists ~f:check_expr_function_param params
|| check_fun_body body )
| Pexp_indexop_access {pia_lhs; pia_kind= Builtin idx; pia_rhs; _} ->
assert (
pia_lhs == exp || idx == exp
|| Option.value_map pia_rhs ~default:false ~f )
| Pexp_indexop_access
{pia_lhs; pia_kind= Dotop (_, _, idx); pia_rhs; _} ->
assert (
pia_lhs == exp || List.exists ~f idx
|| Option.value_map pia_rhs ~default:false ~f )
| Pexp_prefix (_, e) -> assert (f e)
| Pexp_infix (_, e1, e2) -> assert (f e1 || f e2)
| Pexp_apply (e0, e1N) ->
(* FAIL *)
assert (e0 == exp || List.exists e1N ~f:snd_f)
| Pexp_tuple e1N | Pexp_array e1N | Pexp_list e1N | Pexp_cons e1N ->
assert (List.exists e1N ~f)
| Pexp_construct (_, e) | Pexp_variant (_, e) ->
assert (Option.exists e ~f)
| Pexp_record (e1N, e0) ->
assert (
Option.exists e0 ~f
|| List.exists e1N ~f:(fun (_, _, e) -> Option.exists e ~f) )
| Pexp_assert e
|Pexp_beginend e
|Pexp_parens e
|Pexp_constraint (e, _)
|Pexp_coerce (e, _, _)
|Pexp_field (e, _)
|Pexp_lazy e
|Pexp_letexception (_, e)
|Pexp_letmodule (_, _, _, e)
|Pexp_open (_, e)
|Pexp_letopen (_, e)
|Pexp_send (e, _)
|Pexp_setinstvar (_, e) ->
assert (e == exp)
| Pexp_sequence (e1, e2) -> assert (e1 == exp || e2 == exp)
| Pexp_setfield (e1, _, e2) | Pexp_while (e1, e2) ->
assert (e1 == exp || e2 == exp)
| Pexp_ifthenelse (eN, e) ->
assert (
List.exists eN ~f:(fun x -> f x.if_cond || f x.if_body)
|| Option.exists e ~f:(fun (x, _) -> f x) )
| Pexp_for (_, e1, e2, _, e3) ->
assert (e1 == exp || e2 == exp || e3 == exp)
| Pexp_override e1N -> assert (List.exists e1N ~f:snd_f) )
| Fpe ctx -> assert (check_expr_function_param ctx)
| Fpc ctx -> assert (check_class_function_param ctx)
| Vc _ -> assert false
| Lb x -> assert (check_fun_body x.pvb_body)
| Bo x -> assert (x.pbop_exp == exp)
| Mb _ -> assert false
| Md _ -> assert false
| Str str -> (
match str.pstr_desc with
| Pstr_eval (e0, _) -> assert (e0 == exp)
| Pstr_value {pvbs_bindings; _} ->
assert (
List.exists pvbs_bindings ~f:(fun {pvb_body; _} ->
check_fun_body pvb_body ) )
| Pstr_extension ((_, ext), _) -> assert (check_extensions ext)
| Pstr_primitive _ | Pstr_type _ | Pstr_typext _ | Pstr_exception _
|Pstr_module _ | Pstr_recmodule _ | Pstr_modtype _ | Pstr_open _
|Pstr_class _ | Pstr_class_type _ | Pstr_include _ | Pstr_attribute _
->
assert false )
| Mod {pmod_desc= Pmod_unpack (e1, _, _); _} -> assert (e1 == exp)
| Cl ctx ->
let rec loop ctx =
match ctx.pcl_desc with
| Pcl_fun (param, e) -> check_class_function_params param || loop e
| Pcl_constr _ -> false
| Pcl_structure _ -> false
| Pcl_apply (_, l) -> List.exists l ~f:(fun (_, e) -> e == exp)
| Pcl_let ({pvbs_bindings; _}, _, _) ->
List.exists pvbs_bindings ~f:(fun {pvb_body; _} ->
check_fun_body pvb_body )
| Pcl_constraint _ -> false
| Pcl_extension _ -> false
| Pcl_open _ -> false
in
assert (loop ctx)
| Cty _ -> assert false
| Cd _ -> assert false
| Ctd _ -> assert false
| Ctf _ -> assert false
| Clf {pcf_desc; _} ->
assert (
let check_cfk = function
| Cfk_concrete (_, _, e) -> e == exp
| Cfk_virtual _ -> false
in
match pcf_desc with
| Pcf_initializer e -> e == exp
| Pcf_val (_, _, cfk) -> check_cfk cfk
| Pcf_method (_, _, cfk) -> check_cfk cfk
| Pcf_extension (_, ext) -> check_extensions ext
| Pcf_inherit _ -> false
| Pcf_constraint _ -> false
| Pcf_attribute _ -> false )
| Mod _ | Top | Tli _ | Typ _ | Pat _ | Mty _ | Sig _ | Td _ | Rep ->
assert false
let assert_check_exp xexp =
let dump {ctx; ast= exp} = dump ctx (Exp exp) in
assert_no_raise ~f:check_exp ~dump xexp
let rec is_simple (c : Conf.t) width ({ast= exp; _} as xexp) =
let ctx = Exp exp in
match exp.pexp_desc with
| Pexp_constant _ -> Exp.is_trivial exp
| Pexp_field _ | Pexp_ident _ | Pexp_send _
|Pexp_construct (_, None)
|Pexp_variant (_, None) ->
true
| Pexp_cons l ->
List.for_all l ~f:(fun e -> is_simple c width (sub_exp ~ctx e))
&& fit_margin c (width xexp)
| Pexp_construct (_, Some e0) | Pexp_variant (_, Some e0) ->
Exp.is_trivial e0
| Pexp_array e1N | Pexp_list e1N | Pexp_tuple e1N ->
List.for_all e1N ~f:Exp.is_trivial && fit_margin c (width xexp)
| Pexp_record (e1N, e0) ->
Option.for_all e0 ~f:Exp.is_trivial
&& List.for_all e1N ~f:(fun (_, c, eo) ->
Option.is_none c && Option.for_all eo ~f:Exp.is_trivial )
&& fit_margin c (width xexp)
| Pexp_indexop_access {pia_lhs; pia_kind; pia_rhs= None; _} ->
Exp.is_trivial pia_lhs
&& ( match pia_kind with
| Builtin idx -> Exp.is_trivial idx
| Dotop (_, _, idx) -> List.for_all idx ~f:Exp.is_trivial )
&& fit_margin c (width xexp)
| Pexp_prefix (_, e) -> Exp.is_trivial e && fit_margin c (width xexp)
| Pexp_infix ({txt= ":="; _}, _, _) -> false
| Pexp_infix (_, e1, e2) ->
Exp.is_trivial e1 && Exp.is_trivial e2 && fit_margin c (width xexp)
| Pexp_apply (e0, e1N) ->
Exp.is_trivial e0
&& List.for_all e1N ~f:(snd >> Exp.is_trivial)
&& fit_margin c (width xexp)
| Pexp_extension (_, PStr [{pstr_desc= Pstr_eval (e0, []); _}]) ->
is_simple c width (sub_exp ~ctx e0)
| Pexp_extension (_, (PStr [] | PTyp _)) -> true
| _ -> false
(** [prec_ctx {ctx; ast}] is the precedence of the context of [ast] within
[ctx], where [ast] is an immediate sub-term (modulo syntactic sugar) of
[ctx]. Also returns whether [ast] is the left, right, or neither child
of [ctx]. Meaningful for binary operators, otherwise returns [None]. *)
let prec_ctx ctx =
let open Prec in
let open Assoc in
let is_tuple_lvl1_in_constructor ty = function
| {pcd_args= Pcstr_tuple t1N; _} -> List.exists t1N ~f:(phys_equal ty)
| _ -> false
in
let is_tuple_lvl1_in_ext_constructor ty = function
| {pext_kind= Pext_decl (_, Pcstr_tuple t1N, _); _} ->
List.exists t1N ~f:(phys_equal ty)
| _ -> false
in
let constructor_cxt_prec_of_inner = function
| {ptyp_desc= Ptyp_arrow _; _} -> Some (Apply, Non)
| {ptyp_desc= Ptyp_tuple _; _} -> Some (InfixOp3, Non)
| _ -> None
in
match ctx with
| { ctx= Td {ptype_kind= Ptype_variant v; _}
; ast= Typ ({ptyp_desc= Ptyp_arrow _ | Ptyp_tuple _; _} as typ) }
when List.exists v ~f:(is_tuple_lvl1_in_constructor typ) ->
constructor_cxt_prec_of_inner typ
| { ctx=
( Str {pstr_desc= Pstr_typext {ptyext_constructors= l; _}; _}
| Sig {psig_desc= Psig_typext {ptyext_constructors= l; _}; _} )
; ast= Typ ({ptyp_desc= Ptyp_arrow _ | Ptyp_tuple _; _} as typ)
; _ }
when List.exists l ~f:(is_tuple_lvl1_in_ext_constructor typ) ->
constructor_cxt_prec_of_inner typ
| { ctx=
( Str {pstr_desc= Pstr_exception {ptyexn_constructor= constr; _}; _}
| Sig {psig_desc= Psig_exception {ptyexn_constructor= constr; _}; _}
| Exp {pexp_desc= Pexp_letexception (constr, _); _} )
; ast= Typ ({ptyp_desc= Ptyp_tuple _ | Ptyp_arrow _; _} as typ) }
when is_tuple_lvl1_in_ext_constructor typ constr ->
constructor_cxt_prec_of_inner typ
| {ctx= Str _; ast= Typ _; _} -> None
| {ctx= Typ {ptyp_desc; _}; ast= Typ typ; _} -> (
match ptyp_desc with
| Ptyp_arrow (t, _) ->
let assoc =
if List.exists t ~f:(fun x -> x.pap_type == typ) then Left
else Right
in
Some (MinusGreater, assoc)
| Ptyp_tuple _ -> Some (InfixOp3, Non)
| Ptyp_alias _ -> Some (As, Non)
| Ptyp_constr (_, _ :: _ :: _) -> Some (Comma, Non)
| Ptyp_constr _ -> Some (Apply, Non)
| Ptyp_any | Ptyp_var _ | Ptyp_object _ | Ptyp_class _
|Ptyp_variant _ | Ptyp_poly _ | Ptyp_package _ | Ptyp_extension _
|Ptyp_open _ ->
None )
| {ctx= Cty {pcty_desc; _}; ast= Typ typ; _} -> (
match pcty_desc with
| Pcty_constr (_, _ :: _ :: _) -> Some (Comma, Non)
| Pcty_arrow (t, _) ->
let assoc =
if List.exists t ~f:(fun x -> x.pap_type == typ) then Left
else Right
in
Some (MinusGreater, assoc)
| _ -> None )
| {ctx= Cty {pcty_desc; _}; ast= Cty typ; _} -> (
match pcty_desc with
| Pcty_arrow (_, t2) ->
Some (MinusGreater, if t2 == typ then Right else Left)
| _ -> None )
| {ast= Cty _; _} -> None
| {ast= Typ _; _} -> None
| {ctx= Exp {pexp_desc; _}; ast= Exp exp} -> (
match pexp_desc with
| Pexp_tuple (e0 :: _) ->
Some (Comma, if exp == e0 then Left else Right)
| Pexp_cons l ->
Some (ColonColon, if exp == List.last_exn l then Right else Left)
| Pexp_construct
({txt= Lident "[]"; _}, Some {pexp_desc= Pexp_tuple [_; _]; _}) ->
Some (Semi, Non)
| Pexp_array _ | Pexp_list _ -> Some (Semi, Non)
| Pexp_construct (_, Some _)
|Pexp_assert _ | Pexp_lazy _
|Pexp_variant (_, Some _) ->
Some (Apply, Non)
| Pexp_indexop_access {pia_lhs= lhs; pia_rhs= rhs; _} -> (
if lhs == exp then Some (Dot, Left)
else
match rhs with
| Some e when e == exp -> Some (LessMinus, Right)
| _ -> Some (Low, Left) )
| Pexp_prefix ({txt= i; loc}, _) -> (
match i with
| "~-" | "~-." | "~+" | "~+." ->
if
loc.loc_end.pos_cnum - loc.loc_start.pos_cnum
= String.length i - 1
then Some (UMinus, Non)
else Some (High, Non)
| _ -> (
match i.[0] with
| '!' | '?' | '~' -> Some (High, Non)
| _ -> Some (Apply, Non) ) )
| Pexp_infix ({txt= i; _}, e1, _) -> (
let child = if e1 == exp then Left else Right in
match (i.[0], i) with
| _, ":=" -> Some (ColonEqual, child)
| _, ("or" | "||") -> Some (BarBar, child)
| _, ("&" | "&&") -> Some (AmperAmper, child)
| ('=' | '<' | '>' | '|' | '&' | '$'), _ | _, "!=" ->
Some (InfixOp0, child)
| ('@' | '^'), _ -> Some (InfixOp1, child)
| ('+' | '-'), _ -> Some (InfixOp2, child)
| '*', _ when String.(i <> "*") && Char.(i.[1] = '*') ->
Some (InfixOp4, child)
| ('*' | '/' | '%'), _ | _, ("lor" | "lxor" | "mod" | "land") ->
Some (InfixOp3, child)
| _, ("lsl" | "lsr" | "asr") -> Some (InfixOp4, child)
| '#', _ -> Some (HashOp, child)
| _ -> Some (Apply, child) )
| Pexp_apply _ -> Some (Apply, Non)
| Pexp_setfield (e0, _, _) when e0 == exp -> Some (Dot, Left)
| Pexp_setfield (_, _, e0) when e0 == exp -> Some (LessMinus, Non)
| Pexp_setinstvar _ -> Some (LessMinus, Non)
| Pexp_field _ -> Some (Dot, Left)
(* We use [Dot] so [x#y] has the same precedence as [x.y], it is
different to what is done in the parser, but it is intended. *)
| Pexp_send _ -> Some (Dot, Left)
| _ -> None )
| {ctx= Cl {pcl_desc; _}; ast= Cl _ | Exp _} -> (
match pcl_desc with Pcl_apply _ -> Some (Apply, Non) | _ -> None )
| { ctx= Exp _
; ast=
( Pld _ | Top | Tli _ | Pat _ | Cl _ | Mty _ | Mod _ | Sig _
| Str _ | Clf _ | Ctf _ | Rep | Mb _ | Md _ ) }
|{ctx= Fpe _ | Fpc _; ast= _}
|{ctx= _; ast= Fpe _ | Fpc _}
|{ctx= Vc _; ast= _}
|{ctx= _; ast= Vc _}
|{ctx= Lb _; ast= _}
|{ctx= _; ast= Lb _}
|{ctx= Bo _; ast= _}
|{ctx= _; ast= Bo _}
|{ctx= Td _; ast= _}
|{ctx= _; ast= Td _}
|{ctx= Cd _; ast= _}
|{ctx= _; ast= Cd _}
|{ctx= Ctd _; ast= _}
|{ctx= _; ast= Ctd _}
|{ ctx= Cl _
; ast=
( Pld _ | Top | Tli _ | Pat _ | Mty _ | Mod _ | Sig _ | Str _
| Clf _ | Ctf _ | Rep | Mb _ | Md _ ) }
|{ ctx=
( Pld _ | Top | Tli _ | Typ _ | Cty _ | Pat _ | Mty _ | Mod _
| Sig _ | Str _ | Clf _ | Ctf _ | Rep | Mb _ | Md _ )
; ast=
( Pld _ | Top | Tli _ | Pat _ | Exp _ | Cl _ | Mty _ | Mod _
| Sig _ | Str _ | Clf _ | Ctf _ | Rep | Mb _ | Md _ ) } ->
None
(** [prec_ast ast] is the precedence of [ast]. Meaningful for binary
operators, otherwise returns [None]. *)
let rec prec_ast =
let open Prec in
function
| Pld _ -> None
| Typ {ptyp_desc; _} -> (
match ptyp_desc with
| Ptyp_package _ -> Some Low
| Ptyp_arrow _ -> Some MinusGreater
| Ptyp_tuple _ -> Some InfixOp3
| Ptyp_alias _ -> Some As
| Ptyp_any | Ptyp_var _ | Ptyp_constr _ | Ptyp_object _
|Ptyp_class _ | Ptyp_variant _ | Ptyp_poly _ | Ptyp_extension _
|Ptyp_open _ ->
None )
| Td _ -> None
| Cty {pcty_desc; _} -> (
match pcty_desc with Pcty_arrow _ -> Some MinusGreater | _ -> None )
| Exp {pexp_desc; _} -> (
match pexp_desc with
| Pexp_tuple _ -> Some Comma
| Pexp_cons _ -> Some ColonColon
| Pexp_construct (_, Some _) -> Some Apply
| Pexp_constant
{pconst_desc= Pconst_integer (i, _) | Pconst_float (i, _); _} -> (
match i.[0] with '-' | '+' -> Some UMinus | _ -> Some Atomic )
| Pexp_indexop_access {pia_rhs= rhs; _} -> (
match rhs with Some _ -> Some LessMinus | _ -> Some Dot )
| Pexp_prefix ({txt= i; loc; _}, _) -> (
match i with
| "~-" | "~-." | "~+." | "~+" ->
if
loc.loc_end.pos_cnum - loc.loc_start.pos_cnum
= String.length i - 1
then Some UMinus
else Some High
| "!=" -> Some Apply
| _ -> (
match i.[0] with '!' | '?' | '~' -> Some High | _ -> Some Apply ) )
| Pexp_infix ({txt= i; _}, _, _) -> (
match (i.[0], i) with
| _, ":=" -> Some ColonEqual
| _, ("or" | "||") -> Some BarBar
| _, ("&" | "&&") -> Some AmperAmper
| ('=' | '<' | '>' | '|' | '&' | '$'), _ | _, "!=" -> Some InfixOp0
| ('@' | '^'), _ -> Some InfixOp1
| ('+' | '-'), _ -> Some InfixOp2
| '*', _ when String.(i <> "*") && Char.(i.[1] = '*') ->
Some InfixOp4
| ('*' | '/' | '%'), _ | _, ("lor" | "lxor" | "mod" | "land") ->
Some InfixOp3
| _, ("lsl" | "lsr" | "asr") -> Some InfixOp4
| '#', _ -> Some HashOp
| _ -> Some Apply )
| Pexp_apply _ -> Some Apply
| Pexp_assert _ | Pexp_lazy _ | Pexp_for _
|Pexp_variant (_, Some _)
|Pexp_while _ | Pexp_new _ | Pexp_object _ ->
Some Apply
| Pexp_extension (ext, PStr [{pstr_desc= Pstr_eval (e, _); _}])
when Source.extension_using_sugar ~name:ext ~payload:e.pexp_loc ->
prec_ast (Exp e)
| Pexp_setfield _ -> Some LessMinus
| Pexp_setinstvar _ -> Some LessMinus
| Pexp_field _ -> Some Dot
| Pexp_send _ -> Some Dot
| _ -> None )
| Fpe _ | Fpc _ -> None
| Vc _ -> None
| Lb _ -> None
| Bo _ -> None
| Cl c -> (
match c.pcl_desc with
| Pcl_apply _ -> Some Apply
| Pcl_structure _ -> Some Apply
| Pcl_let _ -> Some Low
| _ -> None )
| Top | Pat _ | Mty _ | Mod _ | Sig _ | Str _ | Tli _ | Clf _ | Ctf _
|Rep | Mb _ | Md _ | Cd _ | Ctd _ ->
None
(** [ambig_prec {ctx; ast}] holds when [ast] is ambiguous in its context
[ctx], indicating that [ast] should be parenthesized. Meaningful for
binary operators, otherwise returns [None] if [ctx] has no precedence
or [Some None] if [ctx] does but [ast] does not. *)
let ambig_prec ({ast; _} as xast) =
match prec_ctx xast with
| Some (prec_ctx, which_child) -> (
match prec_ast ast with
| Some prec_ast ->
let ambiguous =
match Prec.compare prec_ctx prec_ast with
| 0 ->
(* which child and associativity match: no parens *)
(* which child and assoc conflict: add parens *)
Assoc.equal which_child Non
|| not (Assoc.equal (Assoc.of_prec prec_ast) which_child)
(* add parens only when the context has a higher prec than ast *)
| cmp -> cmp >= 0
in
if ambiguous then `Ambiguous else `Non_ambiguous
| None -> `No_prec_ast )
| None -> `No_prec_ctx
(** [parenze_typ {ctx; ast}] holds when type [ast] should be parenthesized
in context [ctx]. *)
let parenze_typ ({ctx; ast= typ} as xtyp) =
assert_check_typ xtyp ;
match xtyp with
| {ast= {ptyp_desc= Ptyp_package _; _}; _} -> true
| {ast= {ptyp_desc= Ptyp_alias _; _}; ctx= Typ _} -> true
| { ast= {ptyp_desc= Ptyp_arrow _ | Ptyp_tuple _; _}
; ctx= Typ {ptyp_desc= Ptyp_class _; _} } ->
true
| { ast= {ptyp_desc= Ptyp_alias _; _}
; ctx=
( Str {pstr_desc= Pstr_typext _; _}
| Sig {psig_desc= Psig_typext _; _} ) } ->
true
| { ast= {ptyp_desc= Ptyp_alias _; _}
; ctx= Td {ptype_kind= Ptype_variant l; _} }
when List.exists l ~f:(fun c ->
match c.pcd_args with
| Pcstr_tuple l -> List.exists l ~f:(phys_equal typ)
| _ -> false ) ->
true
| { ast= {ptyp_desc= Ptyp_alias _ | Ptyp_arrow _ | Ptyp_tuple _; _}
; ctx=
( Str {pstr_desc= Pstr_exception _; _}
| Sig {psig_desc= Psig_exception _; _} ) } ->
true
| _ -> (
match ambig_prec (sub_ast ~ctx (Typ typ)) with
| `Ambiguous -> true
| _ -> false )
(** [parenze_cty {ctx; ast}] holds when class type [ast] should be
parenthesized in context [ctx]. *)
let parenze_cty ({ctx; ast= cty} as xcty) =
assert_check_cty xcty ;
match ambig_prec (sub_ast ~ctx (Cty cty)) with
| `Ambiguous -> true
| _ -> false
(** [parenze_mty {ctx; ast}] holds when module type [ast] should be
parenthesized in context [ctx]. *)
let parenze_mty {ctx; ast= mty} =
Mty.has_trailing_attributes mty
||
match (ctx, mty.pmty_desc) with
| Mty {pmty_desc= Pmty_with _; _}, Pmty_with _ -> true
| _ -> false
(** [parenze_mod {ctx; ast}] holds when module expr [ast] should be
parenthesized in context [ctx]. *)
let parenze_mod {ctx; ast= m} =
Mod.has_trailing_attributes m
||
match (ctx, m.pmod_desc) with
(* The RHS of an application is always parenthesized already. *)
| Mod {pmod_desc= Pmod_apply (_, x); _}, Pmod_functor _ when m == x ->
false
| Mod {pmod_desc= Pmod_apply _ | Pmod_apply_unit _; _}, Pmod_functor _ ->
true
| _ -> false
(* Whether a pattern should be parenthesed if followed by a [:]. *)
let exposed_right_colon pat =
match pat.ppat_desc with
(* Some patterns that are always parenthesed are not mentionned here:
Ppat_constraint, Ppat_unpack *)
| Ppat_tuple _ -> true
| _ -> false
let parenze_pat_in_bindings bindings pat =
let parenze_pat_in_binding ~pvb_constraint =
(* Some patterns must be parenthesed when followed by a colon. *)
(exposed_right_colon pat && Option.is_some pvb_constraint)
||
match pat.ppat_desc with
| Ppat_construct (_, Some _)
|Ppat_variant (_, Some _)
|Ppat_cons _ | Ppat_alias _ | Ppat_or _ ->
(* Add disambiguation parentheses that are not necessary. *)
true
| _ -> false
in
List.exists bindings ~f:(fun {pvb_pat; pvb_constraint; _} ->
(* [pat] appears on the left side of a binding. *)
pvb_pat == pat && parenze_pat_in_binding ~pvb_constraint )
(** [parenze_pat {ctx; ast}] holds when pattern [ast] should be
parenthesized in context [ctx]. *)
let parenze_pat ({ctx; ast= pat} as xpat) =
assert_check_pat xpat ;
Pat.has_trailing_attributes pat
||
match (ctx, pat.ppat_desc) with
| Pat {ppat_desc= Ppat_cons pl; _}, Ppat_cons _
when List.last_exn pl == pat ->
false
| Pat {ppat_desc= Ppat_cons _; _}, inner -> (
match inner with
| Ppat_cons _ -> true
| Ppat_construct _ | Ppat_record _ | Ppat_variant _ -> false
| _ -> true )
| Fpe {pparam_desc= Pparam_val (_, _, _); _}, Ppat_cons _ -> true
| Fpc {pparam_desc= _; _}, Ppat_cons _ -> true
| Pat {ppat_desc= Ppat_construct _; _}, Ppat_cons _ -> true
| _, Ppat_constraint (_, {ptyp_desc= Ptyp_poly _; _}) -> false
| ( Exp {pexp_desc= Pexp_letop _; _}
, ( Ppat_construct (_, Some _)
| Ppat_cons _
| Ppat_variant (_, Some _)
| Ppat_or _ | Ppat_alias _
| Ppat_constraint ({ppat_desc= Ppat_any; _}, _) ) ) ->
true
| ( Exp {pexp_desc= Pexp_letop _; _}
, Ppat_constraint ({ppat_desc= Ppat_tuple _; _}, _) ) ->
false
| ( Bo {pbop_typ= None; _}
, ( Ppat_construct (_, Some _)
| Ppat_cons _
| Ppat_variant (_, Some _)
| Ppat_or _ | Ppat_alias _ ) ) ->
true
| Bo {pbop_typ= Some _; _}, (Ppat_any | Ppat_tuple _) -> true
| Exp {pexp_desc= Pexp_function (_, _, Pfunction_body _); _}, Ppat_or _
|( Exp {pexp_desc= Pexp_function (_, _, Pfunction_body _); _}
, ( Ppat_construct _ | Ppat_cons _ | Ppat_lazy _ | Ppat_tuple _
| Ppat_variant _ ) ) ->
true
| _, Ppat_constraint _
|_, Ppat_unpack _
|( Pat
{ ppat_desc=
( Ppat_alias _ | Ppat_array _ | Ppat_list _ | Ppat_constraint _
| Ppat_construct _ | Ppat_variant _ )
; _ }
, Ppat_tuple _ )
|( ( Pat
{ ppat_desc=
( Ppat_construct _ | Ppat_exception _ | Ppat_effect _
| Ppat_or _ | Ppat_lazy _ | Ppat_tuple _ | Ppat_variant _
| Ppat_list _ )
; _ }
| Exp {pexp_desc= Pexp_function (_, _, Pfunction_body _); _} )
, Ppat_alias _ )
|( Pat {ppat_desc= Ppat_lazy _; _}
, ( Ppat_construct _ | Ppat_cons _
| Ppat_variant (_, Some _)
| Ppat_or _ ) )
|( Pat
{ ppat_desc=
( Ppat_construct _ | Ppat_exception _ | Ppat_effect _
| Ppat_tuple _ | Ppat_variant _ | Ppat_list _ )
; _ }
, Ppat_or _ )
|Pat {ppat_desc= Ppat_lazy _; _}, Ppat_tuple _
|Pat {ppat_desc= Ppat_tuple _; _}, Ppat_tuple _
|Pat _, Ppat_lazy _
|Pat _, Ppat_exception _
|Pat _, Ppat_effect _
|Cl {pcl_desc= Pcl_fun _; _}, Ppat_variant (_, Some _)
|Cl {pcl_desc= Pcl_fun _; _}, Ppat_tuple _
|Cl {pcl_desc= Pcl_fun _; _}, Ppat_construct _
|Cl {pcl_desc= Pcl_fun _; _}, Ppat_alias _
|Cl {pcl_desc= Pcl_fun _; _}, Ppat_lazy _
|( (Exp {pexp_desc= Pexp_letop _; _} | Bo _)
, (Ppat_exception _ | Ppat_effect _) ) ->
true
| (Str _ | Exp _ | Lb _), Ppat_lazy _ -> true
| ( (Fpe _ | Fpc _)
, ( Ppat_tuple _ | Ppat_construct _ | Ppat_alias _ | Ppat_variant _
| Ppat_lazy _ | Ppat_exception _ | Ppat_effect _ | Ppat_or _ ) )
|( Pat {ppat_desc= Ppat_construct _ | Ppat_variant _; _}
, (Ppat_construct (_, Some _) | Ppat_cons _ | Ppat_variant (_, Some _))
) ->
true
| _, Ppat_var _ when List.is_empty pat.ppat_attributes -> false
| ( ( Exp {pexp_desc= Pexp_let ({pvbs_bindings; _}, _, _); _}
| Str {pstr_desc= Pstr_value {pvbs_bindings; _}; _} )
, _ )
when parenze_pat_in_bindings pvbs_bindings pat ->
true
| ( Lb {pvb_pat; _}
, ( Ppat_construct (_, Some _)
| Ppat_variant (_, Some _)
| Ppat_cons _ | Ppat_alias _ | Ppat_or _ ) )
when pvb_pat == pat ->
(* Disambiguation parentheses *)
true
| Lb {pvb_pat; pvb_constraint= Some _; _}, _
when pvb_pat == pat && exposed_right_colon pat ->
true
| _ -> false
(* Whether an expression in a let binding shouldn't be parenthesed,
bypassing the other Ast rules. *)
let dont_parenze_exp_in_bindings bindings exp =
match exp.pexp_desc with
| Pexp_function ([], None, (Pfunction_cases _ as fun_body)) ->
(* [fun_body] is the body of the let binding and shouldn't be
parenthesed. [exp] is a synthetic expression constructed in the
formatting code. *)
List.exists bindings ~f:(fun {pvb_body; _} -> pvb_body == fun_body)
| _ -> false
let ctx_sensitive_to_trailing_attributes = function
| Lb _ -> false
| _ -> true
let marked_parenzed_inner_nested_match =
let memo = Hashtbl.Poly.create () in
register_reset (fun () -> Hashtbl.clear memo) ;
memo
(** [exposed cls exp] holds if there is a right-most subexpression of [exp]
which satisfies [Exp.mem_cls cls] and is not parenthesized. *)
let rec exposed_right_exp =
(* exponential without memoization *)
let memo = Hashtbl.Poly.create () in
register_reset (fun () -> Hashtbl.clear memo) ;
fun cls exp ->
let exposed_ () =
let continue subexp =
(not (parenze_exp (sub_exp ~ctx:(Exp exp) subexp)))
&& exposed_right_exp cls subexp
in
match exp.pexp_desc with
| Pexp_assert e
|Pexp_construct (_, Some e)
|Pexp_function (_, _, Pfunction_body e)
|Pexp_ifthenelse (_, Some (e, _))
|Pexp_prefix (_, e)
|Pexp_infix (_, _, e)
|Pexp_lazy e
|Pexp_open (_, e)
|Pexp_letopen (_, e)
|Pexp_sequence (_, e)
|Pexp_setfield (_, _, e)
|Pexp_setinstvar (_, e)
|Pexp_variant (_, Some e) ->
continue e
| Pexp_cons l -> continue (List.last_exn l)
| Pexp_ifthenelse (eN, None) -> continue (List.last_exn eN).if_body
| Pexp_extension
( ext
, PStr
[ { pstr_desc= Pstr_eval (({pexp_attributes= []; _} as e), _)
; _ } ] )
when Source.extension_using_sugar ~name:ext ~payload:e.pexp_loc ->
continue e
| Pexp_let (_, e, _)
|Pexp_letop {body= e; _}
|Pexp_letexception (_, e)
|Pexp_letmodule (_, _, _, e) -> (
match cls with Match | Then | ThenElse -> continue e | _ -> false )
| Pexp_match _ when match cls with Then -> true | _ -> false ->
false
| Pexp_function (_, _, Pfunction_cases (cases, _, _))
|Pexp_match (_, cases)
|Pexp_try (_, cases) ->
continue (List.last_exn cases).pc_rhs
| Pexp_apply (_, args) -> continue (snd (List.last_exn args))
| Pexp_tuple es -> continue (List.last_exn es)
| Pexp_array _ | Pexp_list _ | Pexp_coerce _ | Pexp_constant _
|Pexp_constraint _
|Pexp_construct (_, None)
|Pexp_extension _ | Pexp_field _ | Pexp_for _ | Pexp_ident _
|Pexp_new _ | Pexp_object _ | Pexp_override _ | Pexp_pack _
|Pexp_record _ | Pexp_send _ | Pexp_unreachable
|Pexp_variant (_, None)
|Pexp_hole | Pexp_while _ | Pexp_beginend _ | Pexp_parens _
|Pexp_indexop_access _ ->
false
in
Exp.mem_cls cls exp
|| Hashtbl.find_or_add memo (cls, exp) ~default:exposed_
and exposed_right_cl =
let memo = Hashtbl.Poly.create () in
register_reset (fun () -> Hashtbl.clear memo) ;
fun cls cl ->
let exposed_ () =
match cl.pcl_desc with
| Pcl_apply (_, args) ->
let exp = snd (List.last_exn args) in
(not (parenze_exp (sub_exp ~ctx:(Cl cl) exp)))
&& exposed_right_exp cls exp
| Pcl_fun (_, e) ->
(not (parenze_cl (sub_cl ~ctx:(Cl cl) e)))
&& exposed_right_cl cls e
| _ -> false
in
Cl.mem_cls cls cl
|| Hashtbl.find_or_add memo (cls, cl) ~default:exposed_
and mark_parenzed_inner_nested_match exp =
let exposed_ () =
let continue subexp =
if not (parenze_exp (sub_exp ~ctx:(Exp exp) subexp)) then
mark_parenzed_inner_nested_match subexp ;
false
in
match exp.pexp_desc with
| Pexp_assert e
|Pexp_construct (_, Some e)
|Pexp_ifthenelse (_, Some (e, _))
|Pexp_prefix (_, e)
|Pexp_infix (_, _, e)
|Pexp_lazy e
|Pexp_open (_, e)
|Pexp_letopen (_, e)
|Pexp_function (_, _, Pfunction_body e)
|Pexp_sequence (_, e)
|Pexp_setfield (_, _, e)
|Pexp_setinstvar (_, e)
|Pexp_variant (_, Some e) ->
continue e
| Pexp_cons l -> continue (List.last_exn l)
| Pexp_let (_, e, _)
|Pexp_letop {body= e; _}
|Pexp_letexception (_, e)
|Pexp_letmodule (_, _, _, e) ->
continue e
| Pexp_ifthenelse (eN, None) -> continue (List.last_exn eN).if_body
| Pexp_extension (ext, PStr [{pstr_desc= Pstr_eval (e, _); _}])
when Source.extension_using_sugar ~name:ext ~payload:e.pexp_loc -> (
match e.pexp_desc with
| Pexp_function (_, _, Pfunction_cases (cases, _, _))
|Pexp_match (_, cases)
|Pexp_try (_, cases) ->
List.iter cases ~f:(fun case ->
mark_parenzed_inner_nested_match case.pc_rhs ) ;
true
| _ -> continue e )
| Pexp_function (_, _, Pfunction_cases (cases, _, _))
|Pexp_match (_, cases)
|Pexp_try (_, cases) ->
List.iter cases ~f:(fun case ->
mark_parenzed_inner_nested_match case.pc_rhs ) ;
true
| Pexp_indexop_access {pia_rhs= rhs; _} -> (
match rhs with Some e -> continue e | None -> false )
| Pexp_apply (_, args) -> continue (snd (List.last_exn args))
| Pexp_tuple es -> continue (List.last_exn es)
| Pexp_array _ | Pexp_list _ | Pexp_coerce _ | Pexp_constant _
|Pexp_constraint _
|Pexp_construct (_, None)
|Pexp_extension _ | Pexp_field _ | Pexp_for _ | Pexp_ident _
|Pexp_new _ | Pexp_object _ | Pexp_override _ | Pexp_pack _
|Pexp_record _ | Pexp_send _ | Pexp_unreachable
|Pexp_variant (_, None)
|Pexp_hole | Pexp_while _ | Pexp_beginend _ | Pexp_parens _ ->
false
in
Hashtbl.find_or_add marked_parenzed_inner_nested_match exp
~default:exposed_
|> (ignore : bool -> _)
(* Whether to parenze an expr on the RHS of a match/try/function case. *)
and parenze_exp_in_match_case cases exp =
if !leading_nested_match_parens then
List.iter cases ~f:(fun {pc_rhs; _} ->
mark_parenzed_inner_nested_match pc_rhs ) ;
List.exists cases ~f:(fun {pc_rhs; _} -> pc_rhs == exp)
&& exposed_right_exp Match exp
(* Whether to parenze an expr on the RHS of a let binding.
[dont_parenze_exp_in_bindings] must have been checked before. *)
and parenze_exp_in_bindings bindings exp =
List.exists bindings ~f:(fun {pvb_body; pvb_args; _} ->
match pvb_body with
| Pfunction_body
( {pexp_desc= Pexp_function ([], None, Pfunction_cases _); _} as
let_body )
when let_body == exp ->
(* Function with cases and no 'fun' keyword is in the body of a
binding, parentheses are needed if the binding also defines
arguments. *)
not (List.is_empty pvb_args)
| Pfunction_cases (cases, _, _) ->
parenze_exp_in_match_case cases exp
| _ -> false )
(** [parenze_exp {ctx; ast}] holds when expression [ast] should be
parenthesized in context [ctx]. *)
and parenze_exp ({ctx; ast= exp} as xexp) =
let parenze () =
let is_right_infix_arg ctx_desc exp =
match ctx_desc with
| Pexp_infix (_, _, e2)
when e2 == exp
&& Option.value_map ~default:false (prec_ast ctx) ~f:(fun p ->
Prec.compare p Apply < 0 ) ->
true
| Pexp_tuple e1N -> List.last_exn e1N == xexp.ast
| _ -> false
in
match ambig_prec (sub_ast ~ctx (Exp exp)) with
| `No_prec_ctx -> false (* ctx not apply *)
| `Ambiguous -> true (* exp is apply and ambig *)
| _ -> (
match ctx with
| Exp {pexp_desc; _} ->
if is_right_infix_arg pexp_desc exp then Exp.is_sequence exp
else exposed_right_exp Non_apply exp
| _ -> exposed_right_exp Non_apply exp )
in
let rec ifthenelse pexp_desc =
match pexp_desc with
| Pexp_extension (ext, PStr [{pstr_desc= Pstr_eval (e, _); _}])
when Source.extension_using_sugar ~name:ext ~payload:e.pexp_loc ->
ifthenelse e.pexp_desc
| Pexp_let _ | Pexp_match _ | Pexp_try _ -> true
| _ -> false
in
let exp_in_sequence lhs rhs exp =
match (lhs.pexp_desc, exp.pexp_attributes) with
| (Pexp_match _ | Pexp_try _), _ :: _ when lhs == exp -> true
| _, _ :: _ -> false
| ( Pexp_extension
( _
, PStr
[ { pstr_desc= Pstr_eval ({pexp_desc= Pexp_sequence _; _}, [])
; _ } ] )
, _ )
when lhs == exp ->
true
| _ when lhs == exp -> exposed_right_exp Let_match exp
| _ when rhs == exp -> false
| _ -> failwith "exp must be lhs or rhs from the parent expression"
in
assert_check_exp xexp ;
Hashtbl.find marked_parenzed_inner_nested_match exp
|> Option.value ~default:false
||
match (ctx, exp) with
| Str {pstr_desc= Pstr_eval _; _}, _ -> false
| Lb pvb, _ when dont_parenze_exp_in_bindings [pvb] exp -> false
| Exp {pexp_desc= Pexp_let ({pvbs_bindings; _}, _, _); _}, _
|Cl {pcl_desc= Pcl_let ({pvbs_bindings; _}, _, _); _}, _
when dont_parenze_exp_in_bindings pvbs_bindings exp ->
false
| Lb pvb, _ when parenze_exp_in_bindings [pvb] exp -> true
| Exp {pexp_desc= Pexp_let ({pvbs_bindings; _}, _, _); _}, _
|Cl {pcl_desc= Pcl_let ({pvbs_bindings; _}, _, _); _}, _
when parenze_exp_in_bindings pvbs_bindings exp ->
true
| _, {pexp_desc= Pexp_infix _; pexp_attributes= _ :: _; _}
when ctx_sensitive_to_trailing_attributes ctx ->
true
| ( Str
{ pstr_desc=
Pstr_value
{ pvbs_rec= Nonrecursive
; pvbs_bindings= [{pvb_pat= {ppat_desc= Ppat_any; _}; _}]
; _ }
; _ }
, _ ) ->
false
(* Object fields do not require parens, even with trailing attributes *)
| Exp {pexp_desc= Pexp_object _; _}, _ -> false
| _, {pexp_desc= Pexp_object _; pexp_attributes= []; _}
when Ocaml_version.(compare !ocaml_version Releases.v4_14_0 >= 0) ->
false
| ( Exp {pexp_desc= Pexp_construct ({txt= id; _}, _); _}
, {pexp_attributes= _ :: _; _} )
when Std_longident.is_infix id ->
true
| Exp _, e when Exp.is_symbol e || Exp.is_monadic_binding e -> true
| Exp {pexp_desc= Pexp_cons _; _}, {pexp_attributes= _ :: _; _} -> true
| Exp {pexp_desc= Pexp_extension _; _}, {pexp_desc= Pexp_tuple _; _} ->
false
| Pld _, {pexp_desc= Pexp_tuple _; _} -> false
| Cl {pcl_desc= Pcl_apply _; _}, _ -> parenze ()
| Clf _, _ -> parenze ()
| Exp {pexp_desc= Pexp_ifthenelse (eN, _); _}, {pexp_desc; _}
when !parens_ite
&& List.exists eN ~f:(fun x -> x.if_body == exp)
&& ifthenelse pexp_desc ->
true
| Exp {pexp_desc= Pexp_ifthenelse (_, Some (e, _)); _}, {pexp_desc; _}
when !parens_ite && e == exp && ifthenelse pexp_desc ->
true
| ( Exp {pexp_desc= Pexp_infix (_, _, e1); _}
, { pexp_desc=
Pexp_apply ({pexp_desc= Pexp_ident {txt= Lident "not"; _}; _}, _)
; _ } )
when not (e1 == exp) ->
true
| ( Exp {pexp_desc= Pexp_apply (e, _); _}
, {pexp_desc= Pexp_construct _ | Pexp_cons _ | Pexp_variant _; _} )
when e == exp ->
true
| ( Exp {pexp_desc= Pexp_apply (e, _ :: _); _}
, {pexp_desc= Pexp_prefix _; pexp_attributes= _ :: _; _} )
when e == exp ->
true
| ( Exp {pexp_desc= Pexp_indexop_access {pia_lhs= lhs; _}; _}
, {pexp_desc= Pexp_construct _ | Pexp_cons _; _} )
when lhs == exp ->
true
| Exp {pexp_desc= Pexp_indexop_access {pia_kind= Builtin idx; _}; _}, _
when idx == exp ->
false
| ( Exp {pexp_desc= Pexp_constraint (e, _) | Pexp_coerce (e, _, _); _}
, {pexp_desc= Pexp_tuple _ | Pexp_match _ | Pexp_try _; _} )
when e == exp && !ocp_indent_compat ->
true
| ( Exp
{ pexp_desc=
Pexp_indexop_access
{pia_kind= Dotop (_, _, [idx]); pia_paren= Paren; _}
; _ }
, _ )
when idx == exp && not (Exp.is_sequence idx) ->
false
| ( Exp {pexp_desc= Pexp_prefix (_, e); _}
, { pexp_desc=
( Pexp_indexop_access {pia_lhs= x; _}
| Pexp_infix (_, x, _)
| Pexp_apply (_, [(_, x); _]) )
; _ } )
when e == exp && Exp.exposed_left x ->
true
(* Integers without suffixes must be parenthesised on the lhs of an
indexing operator *)
| ( Exp {pexp_desc= Pexp_indexop_access {pia_lhs= lhs; _}; _}
, { pexp_desc= Pexp_constant {pconst_desc= Pconst_integer (_, None); _}
; _ } )
when exp == lhs ->
true
| ( Exp {pexp_desc= Pexp_field (e, _); _}
, {pexp_desc= Pexp_construct _ | Pexp_cons _; _} )
when e == exp ->
true
| ( Exp {pexp_desc= Pexp_function (_, _, Pfunction_body e); _}
, {pexp_desc= Pexp_function ([], None, Pfunction_cases _); _} )
when e == exp ->
true
| ( Exp
{ pexp_desc=
( Pexp_extension
( _
, PStr
[ { pstr_desc=
Pstr_eval
( { pexp_desc=
( Pexp_function
(_, _, Pfunction_cases (cases, _, _))
| Pexp_match (_, cases)
| Pexp_try (_, cases) )
; _ }
, _ )
; _ } ] )
| Pexp_function (_, _, Pfunction_cases (cases, _, _))
| Pexp_match (_, cases)
| Pexp_try (_, cases) )
; _ }
, _ ) ->
parenze_exp_in_match_case cases exp
| Exp {pexp_desc; _}, _ -> (
match pexp_desc with
| Pexp_ifthenelse (eN, _)
when List.exists eN ~f:(fun x -> x.if_cond == exp) ->
false
| Pexp_ifthenelse (eN, None) when (List.last_exn eN).if_body == exp ->
exposed_right_exp Then exp
| Pexp_ifthenelse (eN, _)
when List.exists eN ~f:(fun x -> x.if_body == exp) ->
exposed_right_exp ThenElse exp
| Pexp_ifthenelse (_, Some (els, _)) when els == exp ->
Exp.is_sequence exp
| Pexp_apply (({pexp_desc= Pexp_new _; _} as exp2), _) when exp2 == exp
->
false
| Pexp_apply
( ( { pexp_desc=
Pexp_extension
( _
, PStr
[ { pstr_desc=
Pstr_eval ({pexp_desc= Pexp_new _; _}, [])
; _ } ] )
; _ } as exp2 )
, _ )
when exp2 == exp ->
false
| Pexp_record (flds, _)
when List.exists flds ~f:(fun (_, _, e0) ->
Option.exists e0 ~f:(fun x -> x == exp) ) ->
exposed_right_exp Non_apply exp
(* Non_apply is perhaps pessimistic *)
| Pexp_record (_, Some ({pexp_desc= Pexp_prefix _; _} as e0))
when e0 == exp ->
(* don't put parens around [!e] in [{ !e with a; b }] *)
false
| Pexp_record
( _
, Some
( { pexp_desc=
( Pexp_ident _ | Pexp_constant _ | Pexp_record _
| Pexp_constraint _ | Pexp_field _ )
; _ } as e0 ) )
when e0 == exp ->
false
| Pexp_record (_, Some e0) when e0 == exp -> true
| Pexp_override fields
when List.exists fields ~f:(fun (_, e0) -> e0 == exp) ->
exposed_right_exp Sequence exp
| Pexp_sequence (lhs, rhs) -> exp_in_sequence lhs rhs exp
| Pexp_apply (_, args)
when List.exists args ~f:(fun (_, e0) ->
match (e0.pexp_desc, e0.pexp_attributes) with
| Pexp_list _, _ :: _ when e0 == exp -> true
| Pexp_array _, _ :: _ when e0 == exp -> true
| _ -> false ) ->
true
| _ -> (
match exp.pexp_desc with
| Pexp_list _ | Pexp_array _ -> false
| _ -> Exp.has_trailing_attributes exp || parenze () ) )
| _, {pexp_desc= Pexp_list _; _} -> false
| _, {pexp_desc= Pexp_array _; _} -> false
| _, exp
when ctx_sensitive_to_trailing_attributes ctx
&& Exp.has_trailing_attributes exp ->
true
| _ -> false
(** [parenze_cl {ctx; ast}] holds when class expr [ast] should be
parenthesized in context [ctx]. *)
and parenze_cl ({ctx; ast= cl} as xcl) =
assert_check_cl xcl ;
match ambig_prec (sub_ast ~ctx (Cl cl)) with
| `No_prec_ctx -> false
| `Ambiguous -> true
| _ -> exposed_right_cl Non_apply cl
let parenze_nested_exp {ctx; ast= exp} =
let infix_prec ast =
match ast with
| Exp {pexp_desc= Pexp_infix _; _} -> prec_ast ast
| Exp {pexp_desc= Pexp_apply (e, _); _} when Exp.is_infix e ->
prec_ast ast
| Exp {pexp_desc= Pexp_cons _; _} -> prec_ast ast
| _ -> None
in
(* Make the precedence explicit for infix operators *)
match (infix_prec ctx, infix_prec (Exp exp)) with
| Some (InfixOp0 | ColonEqual), _ | _, Some (InfixOp0 | ColonEqual) ->
(* special case for refs update and all InfixOp0 to reduce parens
noise *)
false
| None, _ | _, None -> false
| Some p1, Some p2 -> not (Prec.equal p1 p2)
end
include In_ctx
include Requires_sub_terms
|