1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
(**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2007 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(* 4-coloring planar graphs *)
open Printf
open Graph
(* command line *)
let n_ = ref 30
let prob_ = ref 0.5
let seed_ = ref None
let arg_spec =
["-v", Arg.Int (fun i -> n_ := i),
" <int> number of vertices";
"-prob", Arg.Float (fun f -> prob_ := f),
" <float> probability to discrad an edge";
"-seed", Arg.Int (fun n -> seed_ := Some n),
" <int> random seed"
]
let () = Arg.parse arg_spec (fun _ -> ()) "usage: color <options>"
let n = !n_
let prob = !prob_
let seed = match !seed_ with
| None -> Random.self_init (); Random.int (1 lsl 29)
| Some s -> s
let () = Format.printf "seed = %d@." seed; Random.init seed
(* undirected graphs with integer coordinates and integer labels on edges *)
module IntInt = struct
type t = int * int
end
module Int = struct
type t = int
let compare = compare
let hash = Hashtbl.hash
let equal = (=)
let default = 0
end
module G = Imperative.Graph.AbstractLabeled(IntInt)(Int)
open G
(* a random graph with n vertices *)
module R = Rand.Planar.I(G)
let g0 = R.graph ~xrange:(20,780) ~yrange:(20,580) ~prob n
(* drawing *)
let round f = truncate (f +. 0.5)
let pi = 4.0 *. atan 1.0
open Graphics
let () = open_graph " 800x600"
let vertex_radius = 5
let draw_edge v1 v2 =
let (xu,yu) = G.V.label v1 in
let (xv,yv) = G.V.label v2 in
set_color black;
let dx = float (xv - xu) in
let dy = float (yv - yu) in
let r = sqrt (dx *. dx +. dy *. dy) in
let d = float vertex_radius +. 3. in
let xs, ys = float xu +. d *. dx /. r, float yu +. d *. dy /. r in
let xd, yd = float xv -. d *. dx /. r, float yv -. d *. dy /. r in
moveto (round xs) (round ys);
lineto (round xd) (round yd)
let draw_vertex v =
let (x,y) = G.V.label v in
set_color red;
draw_circle x y vertex_radius
let color_vertex v color =
let x,y = G.V.label v in
set_color color;
fill_circle x y vertex_radius
let draw_graph () =
clear_graph ();
set_color red;
set_line_width 1;
G.iter_vertex draw_vertex g0;
G.iter_edges draw_edge g0
module Dfs = Traverse.Dfs(G)
module Bfs = Traverse.Bfs(G)
let test_bfs () =
let rec loop i =
let v = Bfs.get i in
color_vertex v red;
ignore (Graphics.wait_next_event [ Key_pressed ]);
loop (Bfs.step i)
in
try loop (Bfs.start g0) with Exit -> ()
let test_dfs () =
let rec loop i =
let v = Dfs.get i in
color_vertex v red;
ignore (Graphics.wait_next_event [ Key_pressed ]);
loop (Dfs.step i)
in
try loop (Dfs.start g0) with Exit -> ()
let cols = [| white; red; green; blue; yellow; black |]
exception NoColor
(* Algo I. Brute force. *)
module C = Coloring.Mark(G)
let coloring_a _ =
Mark.clear g0;
C.coloring g0 4;
iter_vertex (fun v -> color_vertex v cols.(Mark.get v)) g0
(* Algo II.
we use marks to color; bits are used as follows:
0: set if node is discarded at step 1
1-4: available colors
5-7: the color (0 = not colored, else color in 1..4
*)
let print_8_bits x =
for i = 7 downto 0 do
if (x lsr i) land 1 = 1 then printf "1" else printf "0"
done
let dump () =
let dump_mark v = printf "["; print_8_bits (Mark.get v); printf "]" in
iter_vertex dump_mark g0;
printf "\n"; flush stdout
let mask_color = [| 0; 0b11101; 0b11011; 0b10111; 0b01111 |]
let coloring_b () =
(* initially all 4 colors available and every vertex to be colored *)
iter_vertex (fun v -> Mark.set v 0b11110) g0;
(* first step: we eliminate vertices with less than 4 successors *)
let stack = Stack.create () in
let finish = ref false in
let round = ref 1 in
let nb_to_color = ref n in
while not !finish do
let c = ref 0 in
finish := true;
let erase v =
incr c; finish := false; Mark.set v 0b11111; Stack.push v stack
in
G.iter_vertex
(fun v -> if Mark.get v = 0 && out_degree g0 v < 4 then erase v)
g0;
printf "round %d: removed %d vertices\n" !round !c;
incr round;
nb_to_color := !nb_to_color - !c
done;
flush stdout;
(* second step: we 4-color the remaining of the graph *)
(* [try_color v i] tries to assigne color [i] to vertex [v] *)
let try_color v i =
assert (1 <= i && i <= 4);
let m = Mark.get v in
assert (m lsr 5 = 0);
if (m lsr i) land 1 = 0 then raise NoColor; (* color [i] not available *)
let remove_color w =
(* make color [i] unavailable for [w] *)
let m = Mark.get w in
if m lsr 5 > 0 then
assert (m lsr 5 <> i) (* [w] already colored *)
else begin
let m' = m land mask_color.(i) in
if m' = 0 then raise NoColor; (* no more color available for [w] *)
Mark.set w m'
end
in
iter_succ remove_color g0 v;
Mark.set v (m lor (i lsl 5))
in
let uncolor v =
let m = Mark.get v in
let c = m lsr 5 in
assert (0 <= c && c <= 4);
if c > 0 then begin
Mark.set v (m land 0b11111);
let update w =
(* give back color [c] to [w] only when no more succ. has color [c] *)
try
iter_succ (fun u -> if Mark.get u lsr 5 = c then raise Exit) g0 w;
Mark.set w ((Mark.get w) lor (1 lsl c))
with Exit ->
()
in
iter_succ update g0 v
end
in
if !nb_to_color > 0 then begin
let rec iterate iter =
let v = Bfs.get iter in
if Mark.get v land 1 = 1 then
(* no need to color this vertex *)
iterate (Bfs.step iter)
else begin
for i = 1 to 4 do
try try_color v i; iterate (Bfs.step iter); assert false
with NoColor -> uncolor v
done;
raise NoColor
end
in
try iterate (Bfs.start g0) with Exit -> ()
end;
(* third step: we color the eliminated vertices, in reverse order *)
Stack.iter
(fun v ->
assert (Mark.get v land 1 = 1);
try
for i = 1 to 4 do
try try_color v i; raise Exit with NoColor -> uncolor v
done;
assert false (* we must succeed *)
with Exit -> ())
stack;
(* finally we display the coloring *)
iter_vertex
(fun v ->
let c = (Mark.get v) lsr 5 in
assert (1 <= c && c <= 4);
color_vertex v cols.(c))
g0
open Unix
let utime f x =
let u = (times()).tms_utime in
let y = f x in
let ut = (times()).tms_utime -. u in
(y,ut)
let print_utime f x =
let (y,ut) = utime f x in
Format.printf "user time: %2.2f@." ut;
y
let () =
draw_graph ();
(* test_bfs (); *)
(* test_dfs (); *)
print_utime coloring_a 4;
(*ignore (Graphics.wait_next_event [ Key_pressed ]);*)
(*draw_graph ();*)
print_utime coloring_b ();
ignore (Graphics.wait_next_event [ Key_pressed ]);
close_graph ()
|