1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
(**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2007 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
open Printf
open Graph
module U = Unix
let utime f x =
let u = (U.times()).U.tms_utime in
let y = f x in
let ut = (U.times()).U.tms_utime -. u in
(y,ut)
let print_utime f x =
let (y,ut) = utime f x in
Printf.printf "user time: %2.2f\n" ut; flush Stdlib.stdout;
y
let () =
printf "planar graphs demo
use mouse to select two vertices (blue = source, green = destination)
keys are
- `r' generates a new random graph
- `d' runs DFS
- `b' runs BFS
- `p' runs Dijkstra's shortest path
- `c' runs SCC
- `j' runs Johnson shortest path
- `q' to quit
";
flush stdout
(* directed graphs with integer coordinates and integer labels on edges *)
module IntInt = struct
type t = int * int
end
module Int = struct
type t = int
let compare = compare
let hash = Hashtbl.hash
let equal = (=)
let default = 0
end
module G = Imperative.Digraph.AbstractLabeled(IntInt)(Int)
open G
let n_ = ref 30
let prob_ = ref 0.5
let () =
Arg.parse
["-v", Arg.Int (fun i -> n_ := i),
" <int> number of vertices";
"-prob", Arg.Float (fun f -> prob_ := f),
" <float> probability to discrad an edge";
]
(fun _ -> ())
"usage: demo_planar <options>"
let n = !n_
let prob = !prob_
let round f = truncate (f +. 0.5)
let pi = 4.0 *. atan 1.0
module Point = struct
type point = V.t
let ccw v1 v2 v3 =
Delaunay.IntPoints.ccw (V.label v1) (V.label v2) (V.label v3)
let in_circle v1 v2 v3 v4 =
Delaunay.IntPoints.in_circle
(V.label v1) (V.label v2) (V.label v3) (V.label v4)
let distance v1 v2 =
let x1,y1 = V.label v1 in
let x2,y2 = V.label v2 in
let sqr x = let x = float x in x *. x in
truncate (sqrt (sqr (x1 - x2) +. sqr (y1 - y2)))
end
module Triangulation = Delaunay.Make(Point)
let read_graph f =
let c = open_in f in
let l = ref [] in
try
while true do
let s = input_line c in
let x,y = Scanf.sscanf s "%d %f %f" (fun _ x y -> x,y) in
printf "x=%f y=%f\n" x y;
l := (x,y) :: !l
done;
assert false
with End_of_file ->
close_in c;
let rec min_list cmp = function
| [] -> assert false
| [x] -> x
| x :: l -> let m = min_list cmp l in if cmp x m then x else m
in
let xmin,_ = min_list (fun (x,_) (x',_) -> x < x') !l in
let xmax,_ = min_list (fun (x,_) (x',_) -> x > x') !l in
let _,ymin = min_list (fun (_,y) (_,y') -> y < y') !l in
let _,ymax = min_list (fun (_,y) (_,y') -> y > y') !l in
let calibrate (x,y) =
round (20. +. 760. *. (x -. xmin) /. (xmax -. xmin)),
round (20. +. 560. *. (y -. ymin) /. (ymax -. ymin))
in
let vertices =
Array.map (fun xy -> V.create (calibrate xy)) (Array.of_list !l)
in
let t = Triangulation.triangulate vertices in
let g = create () in
Array.iter (G.add_vertex g) vertices;
let add_edge v1 v2 =
let e = E.create v1 (Point.distance v1 v2) v2 in G.add_edge_e g e
in
Triangulation.iter (fun v1 v2 -> add_edge v1 v2; add_edge v2 v1) t;
g
(* a random digraph with n vertices *)
let () = Random.self_init ()
module R = Rand.Planar.I(G)
let new_graph () = R.graph ~xrange:(20,780) ~yrange:(20,580) ~prob n
let g = ref (new_graph ())
let () = printf "nb edges : %d\n" (G.nb_edges !g); flush stdout
let dump_graph () =
G.iter_edges (fun v1 v2 ->
let x1, y1 = G.V.label v1 in
let x2, y2 = G.V.label v2 in
Format.printf "%d,%d,%d,%d@\n" x1 y1 x2 y2) !g;
Format.printf "@?"
(* let () = g := read_graph "tmp/carron.txt" *)
open Graphics
let () = open_graph " 800x600"
let vertex_radius = 5
let draw_arrow ?(color=black) ?(width=1) (xu,yu) (xv,yv) =
set_color color;
set_line_width width;
let dx = float (xv - xu) in
let dy = float (yv - yu) in
let alpha = atan2 dy dx in
let r = sqrt (dx *. dx +. dy *. dy) in
let ra = float vertex_radius *. 1.5 in
let d = float vertex_radius +. 3. in
let xs, ys = float xu +. d *. dx /. r, float yu +. d *. dy /. r in
let xd, yd = float xv -. d *. dx /. r, float yv -. d *. dy /. r in
let coords theta =
round (xd +. ra *. cos (pi +. alpha +. theta)),
round (yd +. ra *. sin (pi +. alpha +. theta))
in
moveto (round xs) (round ys);
lineto (round xd) (round yd);
let x1,y1 = coords (pi /. 6.) in
moveto (round xd) (round yd); lineto x1 y1;
let x2,y2 = coords (-. pi /. 6.) in
moveto (round xd) (round yd); lineto x2 y2
let color_vertex v color =
let x,y = G.V.label v in
set_color color;
fill_circle x y vertex_radius
type selection =
| No
| One of G.V.t
| Two of G.V.t * G.V.t
let selection = ref No
let draw_selection () = match !selection with
| No -> ()
| One v1 -> color_vertex v1 blue
| Two (v1, v2) -> color_vertex v1 blue; color_vertex v2 green
let draw_graph () =
clear_graph ();
set_color red;
set_line_width 1;
G.iter_vertex
(fun v ->
let (x,y) = G.V.label v in
draw_circle x y vertex_radius)
!g;
set_color black;
G.iter_edges
(fun v1 v2 -> draw_arrow (G.V.label v1) (G.V.label v2))
!g;
draw_selection ()
let distance (x1,y1) (x2,y2) =
let dx = float (x1 - x2) in
let dy = float (y1 - y2) in
round (sqrt (dx *. dx +. dy *. dy))
let select () =
let select_vertex v = match !selection with
| No -> selection := One v
| One v1 -> selection := Two (v1, v)
| Two (_, v2) -> selection := Two (v2, v)
in
let p = mouse_pos () in
try
G.iter_vertex
(fun v ->
if distance p (G.V.label v) <= vertex_radius then begin
select_vertex v; draw_graph (); raise Exit
end)
!g
with Exit ->
()
module W = struct
type edge = G.E.t
type t = int
let weight x = G.E.label x
let zero = 0
let add = (+)
let sub = (-)
let compare = compare
end
module Dij = Path.Dijkstra(G)(W)
let dijkstra () = match !selection with
| Two (v1, v2) ->
printf "running Dijkstra... "; flush stdout;
let t_ = ref 0.0 in
begin try
let (p,l),t = utime (Dij.shortest_path !g v1) v2 in
t_ := t;
printf "path of length %d (%d nodes) (%2.2f s)\n" l (List.length p) t;
flush stdout;
List.iter
(fun e ->
let v1 = G.E.src e in
let v2 = G.E.dst e in
draw_arrow ~color:red ~width:3 (G.V.label v1) (G.V.label v2))
p;
ignore (Graphics.wait_next_event [ Key_pressed; Button_down ]);
draw_graph ()
with Not_found ->
printf "no path (%2.2f s)\n" !t_; flush stdout
end
| _ ->
()
module J = Path.Johnson(G)(W)
let johnson () =
match !selection with
| Two (v1, v2) ->
printf "running Johnson... "; flush stdout;
let t_ = ref 0.0 in
begin try
let paths, t = utime (J.all_pairs_shortest_paths) !g in
t_ := t;
printf "path of length %d (%2.2f s)\n" (J.HVV.find paths (v1, v2)) t;
flush stdout
with Not_found ->
printf "no path (%2.2f s)\n" !t_; flush stdout
end
| _ -> ()
let draw_iteration f =
let pause () = for _ = 1 to 10000000 do () done in
f (fun v -> color_vertex v red; pause ()) !g;
ignore (Graphics.wait_next_event [ Key_pressed; Button_down ]);
draw_graph ()
module Dfs = Traverse.Dfs(G)
let dfs () = draw_iteration Dfs.prefix
module Bfs = Traverse.Bfs(G)
let bfs () = draw_iteration Bfs.iter
let golden_ratio = 0.618033988749895
let hsv_to_rgb h s v =
let c = v *. s in
let h = int_of_float h in
let hh = (h mod 360)/60 in
let hhf = (mod_float (float_of_int h) 360.) /. 60. in
let x = c *. (1. -. (abs_float (mod_float hhf 2. -. 1.))) in
let m = v -. c in
let cc = int_of_float ((c +. m) *. 255.) in
let xx = int_of_float ((x +. m) *. 255.) in
let mm = int_of_float (m *. 255.) in
match hh with
| 0 -> cc, xx, mm
| 1 -> xx, cc, mm
| 2 -> mm, cc, xx
| 3 -> mm, xx, cc
| 4 -> xx, mm, cc
| 5 -> cc, mm, xx
| _ -> mm, mm, mm
module Scc = Components.Make(G)
let scc () =
printf "running scc ... "; flush stdout;
let (n_scc, map_scc) = Scc.scc !g in
printf "number of components: %d\n" n_scc; flush stdout;
let colors = Hashtbl.create n_scc in
let inc = golden_ratio *. 360. in
Random.self_init ();
let h = ref (Random.float 360.) in
G.iter_vertex (
fun v -> try let color = Hashtbl.find colors (map_scc v) in
color_vertex v color
with Not_found ->
let color = hsv_to_rgb !h 0.7 0.95 in
h := !h +. inc;
let rgb (r, g, b) = rgb r g b in
let c = rgb color in
Hashtbl.add colors (map_scc v) c;
color_vertex v c) !g
(* brute-force coloring *)
let four_colors () =
(* vertices still to be colored are queued in [q] *)
let q = Queue.create () in
let rec loop () =
if not (Queue.is_empty q) then begin
let v = Queue.pop q in
assert (Mark.get v == 0);
try_color v 1 ||
try_color v 2 ||
try_color v 3 ||
try_color v 4 ||
(Mark.set v 0; Queue.add v q; false)
end else
true
and try_color v c =
(try
G.iter_succ (fun w -> if Mark.get w == c then raise Exit) !g v; true
with Exit ->
false) &&
(Mark.set v c; loop ())
in
G.iter_vertex (fun v -> Queue.add v q) !g;
Mark.clear !g;
assert (loop ());
let color = [| black; red; green; blue; yellow |] in
G.iter_vertex (fun v -> color_vertex v (color.(Mark.get v))) !g;
ignore (Graphics.wait_next_event [ Key_pressed; Button_down ])
let () =
try
let () = draw_graph () in
while true do
let st = Graphics.wait_next_event [ Key_pressed; Button_down ] in
if st.keypressed then match st.key with
| 'q' -> raise Exit
| 'r' -> g := new_graph (); selection := No; draw_graph ()
| 'p' -> dijkstra ()
| 'd' -> dfs ()
| 'b' -> bfs ()
| 'x' -> dump_graph ()
| 'c' -> scc ()
| 'j' -> johnson ()
(* | 'c' -> four_colors () *)
| _ -> ()
else if st.button then
select ()
done
with Exit ->
close_graph ()
|