File: check.ml

package info (click to toggle)
ocamlgraph 2.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,624 kB
  • sloc: ml: 19,995; xml: 151; makefile: 14; sh: 1
file content (809 lines) | stat: -rw-r--r-- 23,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2007                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2, with the special exception on linking              *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Graph

module Int = struct
  type t = int
  let compare = compare
  let hash = Hashtbl.hash
  let equal = (=)
  let default = 0
end

(* pair with equality which ignores the second component *)
module Pair = struct
  type t = int * int
  let compare (x, _) (y, _) = Int.compare x y
  let hash (x, _) = Int.hash x
  let equal (x, _) (y, _) = x = y
  let default = 0, 0
end

module W(E:sig type t type label val label: t -> label end) = struct
  type edge = E.t
  type t = int
  let weight = E.label
  let zero = 0
  let add = (+)
  let compare = compare
end

(********************************************)
(* Generic functions                        *)
(********************************************)

module Generic = struct

  (* Generic tests for imperative graphs *)
  module Make
    (G : Sig.I with type V.label = int)
    (V : sig val v: int val e: int end) =
  struct

    module O = Oper.I(G)
    let test_mirror g =
      if G.is_directed then begin (* TODO: remove *)
	let g' = O.mirror g in
	assert (G.nb_vertex g = G.nb_vertex g');
	G.iter_edges (fun v1 v2 -> assert (G.mem_edge g' v2 v1)) g;
	G.iter_edges (fun v1 v2 -> assert (G.mem_edge g v2 v1)) g';
	()
      end

    let test_intersect g =
      let gg = O.intersect g g in
      assert (G.nb_vertex gg = G.nb_vertex g);
      assert (G.nb_edges gg = G.nb_edges g);
      let g0 = O.intersect g (G.create ()) in
      assert (G.is_empty g0);
      ()

    let g = G.create ()
    let () =
      let v1 = G.V.create 1 in
      let v2 = G.V.create 2 in
      let v3 = G.V.create 3 in
      test_mirror g;
      G.add_edge g v1 v2;
      G.add_edge g v1 v3;
      G.add_edge g v2 v1;
      G.add_edge g v2 v2;
      G.add_edge g v2 v2;
      test_mirror g;
      test_intersect g;
      assert (G.nb_vertex g = V.v && G.nb_edges g = V.e);
      G.remove_vertex g v1;
      assert (G.nb_vertex g = 2 && G.nb_edges g = 1);
      G.remove_vertex g v2;
      assert (G.nb_vertex g = 1 && G.nb_edges g = 0);
      test_mirror g;
      G.clear g;
      assert (G.nb_vertex g = 0 && G.nb_edges g = 0)

  end

  let () =
    let module A = Make
      (Imperative.Digraph.ConcreteLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = Make
      (Imperative.Graph.ConcreteLabeled(Int)(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = Make
      (Imperative.Digraph.AbstractLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = Make
      (Imperative.Graph.AbstractLabeled(Int)(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = Make
      (Imperative.Digraph.Concrete(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = Make
      (Imperative.Graph.Concrete(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = Make
      (Imperative.Digraph.Abstract(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = Make
      (Imperative.Graph.Abstract(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = Make
      (Imperative.Digraph.ConcreteBidirectional(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = Make
      (Imperative.Digraph.ConcreteBidirectionalLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    ()

  (* Generic tests for persistent graphs *)
  module MakeP
    (G : Sig.P with type V.label = int)
    (V : sig val v: int val e: int end) =
  struct

    module O = Oper.P(G)
    let test_mirror g =
      let g' = O.mirror g in
      assert (G.nb_vertex g = G.nb_vertex g');
      G.iter_edges (fun v1 v2 -> assert (G.mem_edge g' v2 v1)) g;
      G.iter_edges (fun v1 v2 -> assert (G.mem_edge g v2 v1)) g'

    let test_intersect g =
      let gg = O.intersect g g in
      assert (G.nb_vertex gg = G.nb_vertex g);
      assert (G.nb_edges gg = G.nb_edges g);
      let g0 = O.intersect g G.empty in
      assert (G.is_empty g0);
      ()

    let () =
      let g = G.empty in
      let v1 = G.V.create 1 in
      let v2 = G.V.create 2 in
      let v3 = G.V.create 3 in
      test_mirror g;
      let g = G.add_edge g v1 v2 in
      let g = G.add_edge g v1 v3 in
      let g = G.add_edge g v2 v1 in
      let g = G.add_edge g v2 v2 in
      let g = G.add_edge g v2 v2 in
      test_mirror g;
      test_intersect g;
      assert (G.nb_vertex g = V.v && G.nb_edges g = V.e);
      let g = G.remove_vertex g v1 in
      assert (G.nb_vertex g = 2 && G.nb_edges g = 1);
      let g = G.remove_vertex g v2 in
      assert (G.nb_vertex g = 1 && G.nb_edges g = 0);
      test_mirror g

  end

  let () =
    let module A = MakeP
      (Persistent.Digraph.ConcreteLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = MakeP
      (Persistent.Graph.ConcreteLabeled(Int)(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = MakeP
      (Persistent.Digraph.AbstractLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = MakeP
      (Persistent.Graph.AbstractLabeled(Int)(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = MakeP
      (Persistent.Digraph.Concrete(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = MakeP
      (Persistent.Graph.Concrete(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = MakeP
      (Persistent.Digraph.Abstract(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = MakeP
      (Persistent.Graph.Abstract(Int))
      (struct let v = 3 let e = 3 end)
    in
    let module A = MakeP
      (Persistent.Digraph.ConcreteBidirectional(Int))
      (struct let v = 3 let e = 4 end)
    in
    let module A = MakeP
      (Persistent.Digraph.ConcreteBidirectionalLabeled(Int)(Int))
      (struct let v = 3 let e = 4 end)
    in
    ()

  (* Generic tests for imperative concrete graphs with custom equality *)
  module Make_pair
    (G : Sig.I with type V.label = int * int)
    (V : sig val v: int val e: int end) =
  struct

    module O = Oper.I(G)
    let test_mirror g =
      if G.is_directed then begin (* TODO: remove *)
	let g' = O.mirror g in
	assert (G.nb_vertex g = G.nb_vertex g');
	G.iter_edges (fun v1 v2 -> assert (G.mem_edge g' v2 v1)) g;
	G.iter_edges (fun v1 v2 -> assert (G.mem_edge g v2 v1)) g';
	()
      end

    let g = G.create ()
    let () =
      let v1 = G.V.create (1, 0) in
      let v2 = G.V.create (2, 0) in
      let v3 = G.V.create (2, 1) in
      test_mirror g;
      G.add_edge g v1 v2;
      G.add_edge g v2 v1;
      G.add_edge g v1 v3;
      G.iter_vertex (fun v -> assert (snd (G.V.label v) = 0)) g;
      test_mirror g;
      assert (G.nb_vertex g = V.v && G.nb_edges g = V.e);
      G.remove_vertex g v3;
      assert (G.nb_vertex g = 1 && G.nb_edges g = 0);
      test_mirror g;
      G.clear g;
      assert (G.nb_vertex g = 0 && G.nb_edges g = 0)

  end

  let () =
    let module A = Make_pair
      (Imperative.Digraph.ConcreteLabeled(Pair)(Pair))
      (struct let v = 2 let e = 2 end)
    in
    let module A = Make_pair
      (Imperative.Graph.ConcreteLabeled(Pair)(Pair))
      (struct let v = 2 let e = 1 end)
    in
    let module A = Make_pair
      (Imperative.Digraph.Concrete(Pair))
      (struct let v = 2 let e = 2 end)
    in
    let module A = Make_pair
      (Imperative.Graph.Concrete(Pair))
      (struct let v = 2 let e = 1 end)
    in
    let module A = Make_pair
      (Imperative.Digraph.ConcreteBidirectional(Pair))
      (struct let v = 2 let e = 2 end)
    in
    let module A = Make_pair
      (Imperative.Digraph.ConcreteBidirectionalLabeled(Pair)(Pair))
      (struct let v = 2 let e = 2 end)
    in
    ()

  (* find_edge *)

  module Make2
    (G : Sig.I
     with type V.t = int and type E.label = int and type E.t = int * int * int)
    =
  struct

    let g = G.create ()

    let test_exn v1 v2 =
      assert (G.find_all_edges g v1 v2 = []);
      try
	let _ = G.find_edge g v1 v2 in
	assert false
      with Not_found ->
	()

    let () =
      let e1 = 1, 0, 2 in
      let e2 = 1, 1, 3 in
      let e2' = 1, 2, 3 in
      let e3 = 2, 2, 1 in
      G.add_edge_e g e1;
      G.add_edge_e g e2;
      G.add_edge_e g e2';
      G.add_edge_e g e3;
      G.add_edge_e g e3;
      assert (G.find_edge g 1 2 = e1);
      assert (List.length (G.find_all_edges g 1 3) = 2);
      test_exn 2 3;
      test_exn 2 4;
      test_exn 5 2;
      G.remove_vertex g 2;
      assert (G.nb_vertex g = 2 && G.nb_edges g = 2)

  end

  let () =
    let module D = Make2(Imperative.Digraph.ConcreteLabeled(Int)(Int)) in
    D.test_exn 3 1;
    let module G = Imperative.Graph.ConcreteLabeled(Int)(Int) in
    let module G2 = Make2(G) in
    assert (G.find_edge G2.g 3 1 = (3, 1, 1))

end

(********************************************)
(* Dijkstra                                 *)
(********************************************)

module Dijkstra = struct

  module TestDijkstra
    (G: Sig.G with type V.label = int and type E.label = int)
    (B: Builder.S with module G = G) =
  struct

    let g = B.empty ()
    let v1 = G.V.create 1
    let g = B.add_vertex g v1
    let v2 = G.V.create 2
    let g = B.add_vertex g v2
    let v3 = G.V.create 3
    let g = B.add_vertex g v3
    let v4 = G.V.create 4
    let g = B.add_vertex g v4
    let v5 = G.V.create 5
    let g = B.add_vertex g v5

    let g = B.add_edge_e g (G.E.create v1 10 v2)
    let g = B.add_edge_e g (G.E.create v2 50 v3)
    let g = B.add_edge_e g (G.E.create v1 30 v4)
    let g = B.add_edge_e g (G.E.create v1 100 v5)
    let g = B.add_edge_e g (G.E.create v3 10 v5)
    let g = B.add_edge_e g (G.E.create v4 20 v3)
    let g = B.add_edge_e g (G.E.create v4 60 v5)

    module Dij = Path.Dijkstra(G)(W(G.E))
    module Dfs = Traverse.Dfs(G)

    let test g i j w l =
      let p,w' = Dij.shortest_path g i j in
      assert (w' = w && List.length p = l)
    let test_not_found g i j =
      try let _ = Dij.shortest_path g i j in assert false with Not_found -> ()

    let () = test g v1 v5 60 3
    let () = test g v1 v1 0 0
    let () = if G.is_directed then test_not_found g v5 v1
    let () = assert (not (Dfs.has_cycle g))
    let gc = B.add_edge_e g (G.E.create v5 10 v1)
    let v6 = G.V.create 6
    let gc = B.add_vertex gc v6
    let () = if G.is_directed then test gc v1 v5 60 3
    let () = test gc v5 v1 10 1
    let () = test_not_found gc v1 v6

    let () = assert (Dfs.has_cycle gc)

  end

  (* Dijkstra on Persistent Directed Labeled Graphs *)

  module G = Persistent.Digraph.ConcreteLabeled(Int)(Int)
  module Test1 = TestDijkstra(G)(Builder.P(G))

  (* Dijkstra on Persistent Directed Abstract Labeled Graphs *)

  module G2 = Persistent.Digraph.AbstractLabeled(Int)(Int)
  module Test2 = TestDijkstra(G2)(Builder.P(G2))

  (* Dijkstra on Imperative Hashed Directed Labeled Graphs *)

  module G3 = Imperative.Digraph.ConcreteLabeled(Int)(Int)
  module Test3 = TestDijkstra(G3)(Builder.I(G3))

end

(********************************************)
(* Traversal                                *)
(********************************************)

module Traversal = struct

  module G = Imperative.Digraph.AbstractLabeled(Int)(Int)
  module Dfs = Traverse.Dfs(G)
  module Mark = Traverse.Mark(G)

  let g = G.create ()
  let newv g = let v = G.V.create 0 in G.add_vertex g v; v
  let v1 = newv g
  let v2 = newv g
  let v3 = newv g
  let v4 = newv g
  let v5 = newv g
  let add_edge g v1 l v2 = G.add_edge_e g (G.E.create v1 l v2)
  let () =
    add_edge g v1 10 v2;
    add_edge g v2 50 v3;
    add_edge g v1 30 v4;
    add_edge g v1 100 v5;
    add_edge g v3 10 v5;
    add_edge g v4 20 v3;
    add_edge g v4 60 v5
  let () = assert (not (Mark.has_cycle g) && not (Dfs.has_cycle g))
  let v6 = newv g
  let () = assert (not (Mark.has_cycle g) && not (Dfs.has_cycle g))
  let () = add_edge g v5 10 v1
  let () = assert (Mark.has_cycle g && Dfs.has_cycle g)

(* debug dfs / Cormen p 479 *)

  let g = G.create ()
  let newv i = let v = G.V.create i in G.add_vertex g v; v
  let u = newv 1
  let v = newv 2
  let w = newv 3
  let x = newv 4
  let y = newv 5
  let z = newv 6
  let edge a b = add_edge g a 0 b
  let () =
    edge u v; edge u x;
    edge v y;
    edge w y; edge w z;
    edge x v;
    edge y x;
    edge z z
  open Format
  let pre v = printf "pre %d@." (G.V.label v)
  let post v = printf "post %d@." (G.V.label v)
  (*
  let () = printf "iter:@."; Dfs.iter_component ~pre ~post g w
  let () = printf "prefix:@."; Dfs.prefix_component pre g w
  let () =
    printf "step:@.";
    let rec visit it =
      let v = Dfs.get it in
      printf "visit %d@." (G.V.label v);
      visit (Dfs.step it)
    in
    try visit (Dfs.start g) with Exit -> ()
   *)

end

(********************************************)
(* Ford-Fulkerson and Goldberg              *)
(********************************************)

module FF_Goldberg = struct

  module G = Persistent.Digraph.ConcreteLabeled(Int)(Int)

  let add_edge g v1 l v2 = G.add_edge_e g (G.E.create v1 l v2)
  let g = G.empty
  let g = add_edge g 1 16 2
  let g = add_edge g 1 13 3
  let g = add_edge g 2 10 3
  let g = add_edge g 3 4 2
  let g = add_edge g 2 12 4
  let g = add_edge g 4 9 3
  let g = add_edge g 3 14 5
  let g = add_edge g 5 7 4
  let g = add_edge g 4 20 6
  let g = add_edge g 5 4 6

  module F = struct
    type label = int
    type t = int
    let max_capacity x = x
    let min_capacity _ = 0
    let flow _ = 0
    let add = (+)
    let sub = (-)
    let compare = compare
    let zero = 0
  end

  module FF = Flow.Ford_Fulkerson(G)(F)
  module Gold = Flow.Goldberg_Tarjan(G)(F)

  let () =
    assert (snd (FF.maxflow g 1 6) = 23);
    assert (snd (Gold.maxflow g 1 6) = 23);
    assert (snd (FF.maxflow g 1 1) = 0);
    assert (snd (Gold.maxflow g 1 1) = 0)

  module G2 =
    Persistent.Digraph.ConcreteLabeled
      (Int)
      (struct include Util.OTProduct(Int)(Int) let default = 0, 0 end)

  let add_edge g v1 l v2 = G2.add_edge_e g (G2.E.create v1 l v2)
  let g = G2.empty
  let g = add_edge g 1 (1, 1) 2
  let g = add_edge g 1 (3, 0) 3
  let g = add_edge g 2 (1, 1) 3
  let g = add_edge g 3 (1, 0) 2
  let g = add_edge g 2 (3, 0) 4
  let g = add_edge g 3 (1, 1) 4

  module F2 = struct
    type label = int * int
    type t = int
    let max_capacity = fst
    let min_capacity _ = 0
    let flow = snd
    let add = (+)
    let sub = (-)
    let compare = compare
    let zero = 0
  end

  module FF2 = Flow.Ford_Fulkerson(G2)(F2)
  module Gold2 = Flow.Goldberg_Tarjan(G2)(F2)

  let () =
    assert (snd (FF2.maxflow g 1 4) = 2); (* growth of the flow *)
    assert (snd (Gold2.maxflow g 1 4) = 3) (* max flow *)

end

(********************************************)
(* Neighbourhood                            *)
(********************************************)

module Neighbourhood = struct

  module G = Graph.Imperative.Graph.Concrete(Int)
  open G

  let g = create ()
  let add = add_edge g
  let () =
    add 1 2;
    add 1 3;
    add 1 4;
    add 2 5;
    add 3 5;
    add 4 5;
    add 5 6

  module N = Oper.Neighbourhood(G)
  module V = N.Vertex_Set
  let s2 = V.add 1 (V.singleton 5)
  let () = assert (V.equal (N.set_from_vertex g 2) s2)
  let s25 = V.add 1 (V.add 3 (V.add 4 (V.singleton 6)))
  let () = assert (V.equal (N.set_from_vertices g [ 2; 5 ]) s25)

end

(********************************************)
(* Minimal seperators                       *)
(********************************************)

module Minsep = struct

  module P = struct

    module G = Graph.Persistent.Graph.Concrete(Int)
    open G

    let g = empty
    let g = add_edge g 1 2
    let g = add_edge g 1 3
    let g = add_edge g 1 4
    let g = add_edge g 2 5
    let g = add_edge g 3 5
    let g = add_edge g 4 5
    let g = add_edge g 5 6

    module M = Minsep.P(G)
    module S = M.Vertex_Set
    module VS = M.VSetset
    let s5 = S.singleton 5
    let s15 = S.add 1 s5
    let s234 = S.add 2 (S.add 3 (S.singleton 4))
    let bigs = VS.add s5 (VS.add s15 (VS.singleton s234))
    let () = assert (VS.equal (M.set_of_allminsep g) bigs)

  end

  module I = struct

    module G = Graph.Imperative.Graph.Abstract(struct type t = unit end)
    open G

    let g = create ()
    let v1 = V.create ()
    let v2 = V.create ()
    let v3 = V.create ()
    let v4 = V.create ()
    let v5 = V.create ()
    let v6 = V.create ()
    let add = add_edge g
    let () =
      add v1 v2;
      add v1 v3;
      add v1 v4;
      add v2 v5;
      add v3 v5;
      add v4 v5;
      add v5 v6

    module M = Minsep.I(G)
    module S = M.Vertex_Set
    module VS = M.VSetset
    let s5 = S.singleton v5
    let s15 = S.add v1 s5
    let s234 = S.add v2 (S.add v3 (S.singleton v4))
    let bigs = VS.add s5 (VS.add s15 (VS.singleton s234))
    let () =
      let _ =  G.copy g in
      assert (VS.equal (M.set_of_allminsep g) bigs)

  end

end

(********************************************)
(* Checking signature                       *)
(********************************************)

(* check that signature [Sig_pack.S] (which is manually expanded) does not
   forget anything *)
module type RightSigPack = sig
  include Sig.IM with type V.label = int and type E.label = int
  val find_vertex : t -> int -> V.t
  include Oper.S with type g = t
  module Dfs : sig
    val iter : ?pre:(V.t -> unit) ->
               ?post:(V.t -> unit) -> t -> unit
    val prefix : (V.t -> unit) -> t -> unit
    val postfix : (V.t -> unit) -> t -> unit

    val iter_component :
               ?pre:(V.t -> unit) ->
               ?post:(V.t -> unit) -> t -> V.t -> unit
    val prefix_component : (V.t -> unit) -> t -> V.t -> unit
    val postfix_component : (V.t -> unit) -> t -> V.t -> unit

    val has_cycle : t -> bool
  end
  module Bfs : sig
    val iter : (V.t -> unit) -> t -> unit
    val iter_component : (V.t -> unit) -> t -> V.t -> unit
  end
  module Marking : sig
    val dfs : t -> unit
    val has_cycle : t -> bool
  end
  module Classic : sig
    val divisors : int -> t
    val de_bruijn : int -> t
    val vertex_only : int -> t
    val full : ?self:bool -> int -> t
  end
  module Rand : sig
    val graph : ?loops:bool -> v:int -> e:int -> unit -> t
    val labeled :
      (V.t -> V.t -> E.label) ->
	?loops:bool -> v:int -> e:int -> unit -> t
  end
  module Components : sig
    val scc : t -> int*(V.t -> int)
    val scc_array : t -> V.t list array
    val scc_list : t -> V.t list list
  end
  val shortest_path : t -> V.t -> V.t -> E.t list * int
  val ford_fulkerson : t -> V.t -> V.t -> (E.t -> int) * int
  val goldberg_tarjan : t -> V.t -> V.t -> (E.t -> int) * int
  val dot_output : t -> string -> unit
end

module TestSigPack : RightSigPack = struct
  include Pack.Digraph
  type g = t
end

module Test_clique = struct
  (* Test file for Brom-Kerbosch *)

  open Graph

  module G = Persistent.Graph.Concrete (struct
    type t = int
    let compare = compare
    let hash = Hashtbl.hash
    let equal = (=)
  end)

  module BK = Clique.Bron_Kerbosch(G)

  let () =
    let vertices = [1;2;3;4;5;6;7] in
    let edges = [(1,2);(1,5);(2,5);(2,3);(4,5);(3,4);(4,6)] in
    let g = List.fold_left (fun graph v -> G.add_vertex graph v) G.empty vertices in
    let g = List.fold_left (fun graph (v1, v2) -> G.add_edge graph v1 v2) g edges in
    let cliques = BK.maximalcliques g in
    (* The cliques of this graph should be: [2, 3], [3, 4], [1, 2, 5], [4, 5], [4, 6], [7] *)
    assert (List.length cliques == 6);
    assert (List.exists (fun cl -> List.length cl == 2 && List.mem 2 cl && List.mem 3 cl) cliques);
    assert (List.exists (fun cl -> List.length cl == 2 && List.mem 3 cl && List.mem 4 cl) cliques);
    assert (List.exists (fun cl -> List.length cl == 3 && List.mem 1 cl && List.mem 2 cl && List.mem 5 cl) cliques);
    assert (List.exists (fun cl -> List.length cl == 2 && List.mem 4 cl && List.mem 5 cl) cliques);
    assert (List.exists (fun cl -> List.length cl == 2 && List.mem 4 cl && List.mem 6 cl) cliques);
    assert (List.exists (fun cl -> List.length cl == 1 && List.mem 7 cl) cliques)
end

module Test_reduction = struct

  open Graph

  module G = Imperative.Digraph.Concrete(struct
                 type t = int
                 let compare = compare
                 let hash = Hashtbl.hash
                 let equal = (=) end)
  open G

  module R = Rand.I(G)
  module O = Oper.I(G)

  let check_included g1 g2 =
    iter_vertex (fun v -> assert (mem_vertex g2 v)) g1;
    iter_edges (fun u v -> assert (mem_edge g2 u v)) g1

  let check_same_graph g1 g2 =
    check_included g1 g2;
    check_included g2 g1

  let test v e =
    (* Format.eprintf "v=%d e=%d@." v e; *)
    let g = R.graph ~loops:true ~v ~e () in
    (* Format.eprintf "g:@."; *)
    (* iter_edges (fun u v -> Format.eprintf "  %d->%d@." u v) g; *)
    let t = O.transitive_closure g in
    check_included g t;
    let r = O.transitive_reduction g in
    (* Format.eprintf "r:@."; *)
    (* iter_edges (fun u v -> Format.eprintf "  %d->%d@." u v) r; *)
    check_included r g;
    check_same_graph (O.transitive_closure r) t

  let () =
    for v = 1 to 10 do
      for e = 0 to v * (v-1) / 2 do
        test v e
      done
    done

  (* issue #91 *)
  let () =
    let g = create () in
    for v = 1 to 5 do add_vertex g v done;
    add_edge g 1 2; add_edge g 2 3; add_edge g 3 4; add_edge g 4 5;
    add_edge g 2 5;
    let r = O.transitive_reduction g in
    check_included r g;
    (* iter_edges (fun u v -> Format.eprintf "  %d->%d@." u v) r; *)
    assert (nb_edges r = 4);
    assert (not (mem_edge r 2 5));
    ()

  (* issue #145 *)
  let () =
    let g = create () in
    for v = 1 to 3 do add_vertex g v done;
    add_edge g 1 2; add_edge g 2 1;
    add_edge g 3 1; add_edge g 3 2;
    let r = O.transitive_reduction g in
    check_same_graph (O.transitive_closure r) (O.transitive_closure g)

end

let () = Format.printf "check: all tests succeeded@."