1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
open Gsl_fun
let _ =
Gsl_error.init ()
let f a b ~x ~f:y =
let x0 = x.{0} in
let x1 = x.{1} in
y.{0} <- a *. (1. -. x0) ;
y.{1} <- b *. (x1 -. x0 *. x0)
let df a b ~x ~j =
let x0 = x.{0} in
let x1 = x.{1} in
j.{0,0} <- ~-. a ;
j.{0,1} <- 0. ;
j.{1,0} <- -2. *. b *. x0 ;
j.{1,1} <- b
let fdf a b ~x ~f:y ~j =
let x0 = x.{0} in
let x1 = x.{1} in
y.{0} <- a *. (1. -. x0) ;
y.{1} <- b *. (x1 -. x0 *. x0) ;
j.{0,0} <- ~-. a ;
j.{0,1} <- 0. ;
j.{1,0} <- -2. *. b *. x0 ;
j.{1,1} <- b
let print_state n =
let x = Gsl_vector.create n in
let f = Gsl_vector.create n in
fun iter solv ->
Gsl_multiroot.NoDeriv.get_state solv ~x ~f () ;
Printf.printf
"iter = %3u x = %+ .3f %+ .3f f(x) = %+ .3e %+ .3e\n"
iter x.{0} x.{1} f.{0} f.{1} ;
flush stdout
let epsabs = 1e-7
let maxiter = 1000
let solve kind n gf x_init =
let solv = Gsl_multiroot.NoDeriv.make kind n gf
(Gsl_vector.of_array x_init) in
Printf.printf "solver: %s\n" (Gsl_multiroot.NoDeriv.name solv) ;
let print_state = print_state n in
print_state 0 solv ;
let rec proc iter =
Gsl_multiroot.NoDeriv.iterate solv ;
print_state iter solv ;
let status = Gsl_multiroot.NoDeriv.test_residual solv epsabs in
match status with
| true ->
Printf.printf "status = converged\n"
| false when iter >= maxiter ->
Printf.printf "status = too many iterations\n"
| false ->
proc (succ iter)
in
proc 1
open Gsl_multiroot.NoDeriv
let _ =
List.iter
(fun kind ->
solve kind 2 (f 1. 10.) [| -10.; -5. |] ;
print_newline ())
[ HYBRIDS ;
HYBRID ;
DNEWTON ;
BROYDEN ; ]
let print_state_deriv n =
let x = Gsl_vector.create n in
let f = Gsl_vector.create n in
fun iter solv ->
Gsl_multiroot.Deriv.get_state solv ~x ~f () ;
Printf.printf
"iter = %3u x = %+ .3f %+ .3f f(x) = %+ .3e %+ .3e\n"
iter x.{0} x.{1} f.{0} f.{1} ;
flush stdout
let solve_deriv kind n gf x_init =
let solv = Gsl_multiroot.Deriv.make kind n gf
(Gsl_vector.of_array x_init) in
Printf.printf "solver: %s\n" (Gsl_multiroot.Deriv.name solv) ;
let print_state = print_state_deriv n in
print_state 0 solv ;
let rec proc iter =
Gsl_multiroot.Deriv.iterate solv ;
print_state iter solv ;
let status = Gsl_multiroot.Deriv.test_residual solv epsabs in
match status with
| true ->
Printf.printf "status = converged\n"
| false when iter >= maxiter ->
Printf.printf "status = too many iterations\n"
| false ->
proc (succ iter)
in
proc 1
open Gsl_multiroot.Deriv
let _ =
let gf = {
multi_f = f 1. 10. ;
multi_df = df 1. 10. ;
multi_fdf = fdf 1. 10. ; } in
List.iter
(fun kind ->
solve_deriv kind 2 gf [| -10.; -5. |] ;
print_newline ())
[ HYBRIDSJ ;
HYBRIDJ ;
NEWTON ;
GNEWTON ; ]
|