1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/* ocamlgsl - OCaml interface to GSL */
/* Copyright () 2002 - Olivier Andrieu */
/* distributed under the terms of the GPL version 2 */
#include <gsl/gsl_eigen.h>
#include "wrappers.h"
#include "mlgsl_permut.h"
#include "mlgsl_complex.h"
#include "mlgsl_vector_complex.h"
#include "mlgsl_matrix_complex.h"
#undef BASE_TYPE
#undef TYPE
#undef _DECLARE_BASE_TYPE
#undef _CONVERT_BASE_TYPE
#undef DECLARE_BASE_TYPE
#undef FUNCTION
#include "mlgsl_matrix_double.h"
#include "mlgsl_vector_double.h"
value ml_gsl_eigen_symm_alloc(value n)
{
value v;
gsl_eigen_symm_workspace *ws = gsl_eigen_symm_alloc(Int_val(n));
Abstract_ptr(v, ws);
return v;
}
#define SYMM_WS_val(v) ((gsl_eigen_symm_workspace *)Field(v, 0))
ML1(gsl_eigen_symm_free, SYMM_WS_val, Unit)
value ml_gsl_eigen_symm(value A, value EVAL, value ws)
{
_DECLARE_MATRIX(A);
_DECLARE_VECTOR(EVAL);
_CONVERT_MATRIX(A);
_CONVERT_VECTOR(EVAL);
gsl_eigen_symm(&m_A, &v_EVAL, SYMM_WS_val(ws));
return Val_unit;
}
value ml_gsl_eigen_symmv_alloc(value n)
{
value v;
gsl_eigen_symmv_workspace *ws = gsl_eigen_symmv_alloc(Int_val(n));
Abstract_ptr(v, ws);
return v;
}
#define SYMMV_WS_val(v) ((gsl_eigen_symmv_workspace *)Field(v, 0))
ML1(gsl_eigen_symmv_free, SYMMV_WS_val, Unit)
value ml_gsl_eigen_symmv(value A, value EVAL, value EVEC, value ws)
{
_DECLARE_MATRIX2(A, EVEC);
_DECLARE_VECTOR(EVAL);
_CONVERT_MATRIX2(A, EVEC);
_CONVERT_VECTOR(EVAL);
gsl_eigen_symmv(&m_A, &v_EVAL, &m_EVEC, SYMMV_WS_val(ws));
return Val_unit;
}
static const gsl_eigen_sort_t eigen_sort_type[] = {
GSL_EIGEN_SORT_VAL_ASC, GSL_EIGEN_SORT_VAL_DESC,
GSL_EIGEN_SORT_ABS_ASC, GSL_EIGEN_SORT_ABS_DESC, };
value ml_gsl_eigen_symmv_sort(value E, value sort)
{
value EVAL = Field(E, 0);
value EVEC = Field(E, 1);
_DECLARE_MATRIX(EVEC);
_DECLARE_VECTOR(EVAL);
_CONVERT_MATRIX(EVEC);
_CONVERT_VECTOR(EVAL);
gsl_eigen_symmv_sort(&v_EVAL, &m_EVEC, eigen_sort_type[ Int_val(sort) ]);
return Val_unit;
}
/* Hermitian matrices */
value ml_gsl_eigen_herm_alloc(value n)
{
value v;
gsl_eigen_herm_workspace *ws = gsl_eigen_herm_alloc(Int_val(n));
Abstract_ptr(v, ws);
return v;
}
#define HERM_WS_val(v) ((gsl_eigen_herm_workspace *)Field(v, 0))
ML1(gsl_eigen_herm_free, HERM_WS_val, Unit)
value ml_gsl_eigen_herm(value A, value EVAL, value ws)
{
_DECLARE_COMPLEX_MATRIX(A);
_DECLARE_VECTOR(EVAL);
_CONVERT_COMPLEX_MATRIX(A);
_CONVERT_VECTOR(EVAL);
gsl_eigen_herm(&m_A, &v_EVAL, HERM_WS_val(ws));
return Val_unit;
}
value ml_gsl_eigen_hermv_alloc(value n)
{
value v;
gsl_eigen_hermv_workspace *ws = gsl_eigen_hermv_alloc(Int_val(n));
Abstract_ptr(v, ws);
return v;
}
#define HERMV_WS_val(v) ((gsl_eigen_hermv_workspace *)Field(v, 0))
ML1(gsl_eigen_hermv_free, HERMV_WS_val, Unit)
value ml_gsl_eigen_hermv(value A, value EVAL, value EVEC, value ws)
{
_DECLARE_VECTOR(EVAL);
_DECLARE_COMPLEX_MATRIX2(A, EVEC);
_CONVERT_VECTOR(EVAL);
_CONVERT_COMPLEX_MATRIX2(A, EVEC);
gsl_eigen_hermv(&m_A, &v_EVAL, &m_EVEC, HERMV_WS_val(ws));
return Val_unit;
}
value ml_gsl_eigen_hermv_sort(value E, value sort)
{
value EVAL = Field(E, 0);
value EVEC = Field(E, 1);
_DECLARE_COMPLEX_MATRIX(EVEC);
_DECLARE_VECTOR(EVAL);
_CONVERT_COMPLEX_MATRIX(EVEC);
_CONVERT_VECTOR(EVAL);
gsl_eigen_hermv_sort(&v_EVAL, &m_EVEC, eigen_sort_type[ Int_val(sort) ]);
return Val_unit;
}
|