1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/* ocamlgsl - OCaml interface to GSL */
/* Copyright () 2002 - Olivier Andrieu */
/* distributed under the terms of the GPL version 2 */
#include <caml/fail.h>
#include <caml/memory.h>
#include <caml/callback.h>
#include <gsl/gsl_fft.h>
#include <gsl/gsl_fft_complex.h>
#include <gsl/gsl_fft_halfcomplex.h>
#include <gsl/gsl_fft_real.h>
#include "wrappers.h"
enum mlgsl_fft_array_layout {
LAYOUT_REAL = 0 ,
LAYOUT_HC = 1 ,
LAYOUT_HC_RAD2 = 2 ,
LAYOUT_C = 3 ,
} ;
static void check_layout(value fft_arr,
enum mlgsl_fft_array_layout layout)
{
static value *layout_exn = NULL;
if(Int_val(Field(fft_arr, 0)) != layout) {
if(!layout_exn) {
layout_exn = caml_named_value("mlgsl_layout_exn");
if(!layout_exn) /* Gromeleu */
invalid_argument("wrong fft_array layout");
}
raise_constant(*layout_exn);
}
}
static inline void update_layout(value fft_arr,
enum mlgsl_fft_array_layout layout)
{
Store_field(fft_arr, 0, Val_int(layout));
}
/* WORKSPACE AND WAVETABLES */
#define GSL_REAL_WS(v) ((gsl_fft_real_workspace *)Field((v),0))
#define GSL_COMPLEX_WS(v) ((gsl_fft_complex_workspace *)Field((v),0))
#define GSL_REAL_WT(v) ((gsl_fft_real_wavetable *)Field((v),0))
#define GSL_HALFCOMPLEX_WT(v) ((gsl_fft_halfcomplex_wavetable *)Field((v),0))
#define GSL_COMPLEX_WT(v) ((gsl_fft_complex_wavetable *)Field((v),0))
ML1_alloc(gsl_fft_real_workspace_alloc, Int_val, Abstract_ptr)
ML1_alloc(gsl_fft_complex_workspace_alloc, Int_val, Abstract_ptr)
ML1_alloc(gsl_fft_real_wavetable_alloc, Int_val, Abstract_ptr)
ML1_alloc(gsl_fft_halfcomplex_wavetable_alloc, Int_val, Abstract_ptr)
ML1_alloc(gsl_fft_complex_wavetable_alloc, Int_val, Abstract_ptr)
ML1(gsl_fft_real_workspace_free, GSL_REAL_WS, Unit)
ML1(gsl_fft_complex_workspace_free, GSL_COMPLEX_WS, Unit)
ML1(gsl_fft_real_wavetable_free, GSL_REAL_WT, Unit)
ML1(gsl_fft_halfcomplex_wavetable_free, GSL_HALFCOMPLEX_WT, Unit)
ML1(gsl_fft_complex_wavetable_free, GSL_COMPLEX_WT, Unit)
/* UNPACKING ROUTINES */
value ml_gsl_fft_real_unpack(value stride, value r, value c)
{
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(r);
gsl_fft_real_unpack(Double_array_val(r), Double_array_val(c), c_stride, n) ;
return Val_unit;
}
value ml_gsl_fft_halfcomplex_unpack(value stride, value hc, value c)
{
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(hc);
gsl_fft_halfcomplex_unpack(Double_array_val(hc), Double_array_val(c),
c_stride, n) ;
return Val_unit;
}
value ml_gsl_fft_halfcomplex_unpack_rad2(value stride, value hc, value c)
{
const size_t c_stride = Opt_arg(stride, Int_val ,1);
const size_t n = Double_array_length(hc);
gsl_fft_halfcomplex_radix2_unpack(Double_array_val(hc), Double_array_val(c),
c_stride, n) ;
return Val_unit;
}
/* REAL AND HALFCOMPLEX MIXED-RADIX FFT */
value ml_gsl_fft_real_transform(value stride, value fft_arr, value wt, value ws)
{
value data = Field(fft_arr, 1);
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data);
check_layout(fft_arr, LAYOUT_REAL);
gsl_fft_real_transform(Double_array_val(data), c_stride, n,
GSL_REAL_WT(wt), GSL_REAL_WS(ws)) ;
update_layout(fft_arr, LAYOUT_HC);
return Val_unit;
}
value ml_gsl_fft_halfcomplex_transform(value stride, value fft_arr,
value wt, value ws)
{
value data = Field(fft_arr, 1);
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data);
check_layout(fft_arr, LAYOUT_HC);
gsl_fft_halfcomplex_transform(Double_array_val(data), c_stride, n,
GSL_HALFCOMPLEX_WT(wt),
GSL_REAL_WS(ws)) ;
return Val_unit;
}
value ml_gsl_fft_halfcomplex_backward(value stride, value fft_arr,
value wt, value ws)
{
value data = Field(fft_arr, 1);
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data);
check_layout(fft_arr, LAYOUT_HC);
gsl_fft_halfcomplex_backward(Double_array_val(data), c_stride, n,
GSL_HALFCOMPLEX_WT(wt),
GSL_REAL_WS(ws)) ;
update_layout(fft_arr, LAYOUT_REAL);
return Val_unit;
}
value ml_gsl_fft_halfcomplex_inverse(value stride, value fft_arr,
value wt, value ws)
{
value data = Field(fft_arr, 1);
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data);
check_layout(fft_arr, LAYOUT_HC);
gsl_fft_halfcomplex_inverse(Double_array_val(data), c_stride, n,
GSL_HALFCOMPLEX_WT(wt),
GSL_REAL_WS(ws)) ;
update_layout(fft_arr, LAYOUT_REAL);
return Val_unit;
}
/* REAL AND HALFCOMPLEX RADIX2 FFT */
value ml_gsl_fft_real_radix2_transform(value stride, value fft_arr)
{
value data = Field(fft_arr, 1);
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
check_layout(fft_arr, LAYOUT_REAL);
gsl_fft_real_radix2_transform(Double_array_val(data), c_stride, N);
update_layout(fft_arr, LAYOUT_HC_RAD2);
return Val_unit;
}
value ml_gsl_fft_halfcomplex_radix2_transform(value stride, value fft_arr)
{
value data = Field(fft_arr, 1);
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
check_layout(fft_arr, LAYOUT_HC_RAD2);
gsl_fft_halfcomplex_radix2_transform(Double_array_val(data), c_stride, N);
return Val_unit;
}
value ml_gsl_fft_halfcomplex_radix2_backward(value stride, value fft_arr)
{
value data = Field(fft_arr, 1);
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
check_layout(fft_arr, LAYOUT_HC_RAD2);
gsl_fft_halfcomplex_radix2_backward(Double_array_val(data),
c_stride, N);
update_layout(fft_arr, LAYOUT_REAL);
return Val_unit;
}
value ml_gsl_fft_halfcomplex_radix2_inverse(value stride, value fft_arr)
{
value data = Field(fft_arr, 1);
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
check_layout(fft_arr, LAYOUT_HC_RAD2);
gsl_fft_halfcomplex_radix2_inverse(Double_array_val(data), c_stride, N);
update_layout(fft_arr, LAYOUT_REAL);
return Val_unit;
}
/* COMPLEX RADIX-2 FFT */
value ml_gsl_fft_complex_rad2_forward(value dif, value stride, value data)
{
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
int c_dif = Opt_arg(dif, Bool_val, 0);
if(c_dif)
gsl_fft_complex_radix2_dif_forward(Double_array_val(data), c_stride, N);
else
gsl_fft_complex_radix2_forward(Double_array_val(data), c_stride, N);
return Val_unit;
}
value ml_gsl_fft_complex_rad2_transform(value dif, value stride,
value data, value sign)
{
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
int c_dif = Opt_arg(dif, Bool_val, 0);
gsl_fft_direction c_sign = (Int_val(sign)==0) ? forward : backward;
if(c_dif)
gsl_fft_complex_radix2_dif_transform(Double_array_val(data), c_stride,
N, c_sign);
else
gsl_fft_complex_radix2_transform(Double_array_val(data), c_stride,
N, c_sign);
return Val_unit;
}
value ml_gsl_fft_complex_rad2_backward(value dif, value stride, value data)
{
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
int c_dif = Opt_arg(dif, Bool_val, 0);
if(c_dif)
gsl_fft_complex_radix2_dif_backward(Double_array_val(data), c_stride, N);
else
gsl_fft_complex_radix2_backward(Double_array_val(data), c_stride, N);
return Val_unit;
}
value ml_gsl_fft_complex_rad2_inverse(value dif, value stride, value data)
{
size_t N = Double_array_length(data);
size_t c_stride = Opt_arg(stride, Int_val, 1);
int c_dif = Opt_arg(dif, Bool_val, 0);
if(c_dif)
gsl_fft_complex_radix2_dif_inverse(Double_array_val(data), c_stride, N);
else
gsl_fft_complex_radix2_inverse(Double_array_val(data), c_stride, N);
return Val_unit;
}
/* COMPLEX MIXED RADIX FFT */
value ml_gsl_fft_complex_forward(value stride, value data, value wt, value ws)
{
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data) / 2;
gsl_fft_complex_forward(Double_array_val(data), c_stride, n,
GSL_COMPLEX_WT(wt), GSL_COMPLEX_WS(ws)) ;
return Val_unit;
}
value ml_gsl_fft_complex_transform(value stride, value data,
value wt, value ws, value sign)
{
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data) / 2;
gsl_fft_direction c_sign = (Int_val(sign)==0) ? forward : backward;
gsl_fft_complex_transform(Double_array_val(data), c_stride, n,
GSL_COMPLEX_WT(wt),
GSL_COMPLEX_WS(ws), c_sign) ;
return Val_unit;
}
value ml_gsl_fft_complex_backward(value stride, value data,
value wt, value ws)
{
const size_t c_stride = Opt_arg(stride, Int_val, 1);
const size_t n = Double_array_length(data) / 2;
gsl_fft_complex_backward(Double_array_val(data), c_stride, n,
GSL_COMPLEX_WT(wt),
GSL_COMPLEX_WS(ws)) ;
return Val_unit;
}
value ml_gsl_fft_complex_inverse(value stride, value data,
value wt, value ws)
{
const size_t c_stride = Opt_arg(stride, Int_val ,1);
const size_t n = Double_array_length(data) / 2;
gsl_fft_complex_inverse(Double_array_val(data), c_stride, n,
GSL_COMPLEX_WT(wt),
GSL_COMPLEX_WS(ws)) ;
return Val_unit;
}
|