1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/* ocamlgsl - OCaml interface to GSL */
/* Copyright () 2002 - Olivier Andrieu */
/* distributed under the terms of the GPL version 2 */
#include <gsl/gsl_multifit_nlin.h>
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/fail.h>
#include "wrappers.h"
#include "mlgsl_fun.h"
#include "mlgsl_vector_double.h"
#include "mlgsl_matrix_double.h"
/* solvers */
static const gsl_multifit_fdfsolver_type *fdfsolver_of_value(value t)
{
const gsl_multifit_fdfsolver_type *solver_types[] = {
gsl_multifit_fdfsolver_lmsder,
gsl_multifit_fdfsolver_lmder, } ;
return solver_types[Int_val(t)];
}
value ml_gsl_multifit_fdfsolver_alloc(value type, value n, value p)
{
gsl_multifit_fdfsolver *S;
struct callback_params *params;
value res;
S=gsl_multifit_fdfsolver_alloc(fdfsolver_of_value(type),
Int_val(n), Int_val(p));
params=stat_alloc(sizeof(*params));
res=alloc_small(2, Abstract_tag);
Field(res, 0) = (value)S;
Field(res, 1) = (value)params;
params->gslfun.mffdf.f = &gsl_multifit_callback_f;
params->gslfun.mffdf.df = &gsl_multifit_callback_df;
params->gslfun.mffdf.fdf = &gsl_multifit_callback_fdf;
params->gslfun.mffdf.n = Int_val(n);
params->gslfun.mffdf.p = Int_val(p);
params->gslfun.mffdf.params = params;
params->closure = Val_unit;
params->dbl = Val_unit;
register_global_root(&(params->closure));
return res;
}
#define FDFSOLVER_VAL(v) ((gsl_multifit_fdfsolver *)(Field(v, 0)))
#define CALLBACKPARAMS_VAL(v) ((struct callback_params *)(Field(v, 1)))
value ml_gsl_multifit_fdfsolver_set(value S, value fun, value x)
{
struct callback_params *p=CALLBACKPARAMS_VAL(S);
_DECLARE_VECTOR(x);
_CONVERT_VECTOR(x);
p->closure = fun;
gsl_multifit_fdfsolver_set(FDFSOLVER_VAL(S), &(p->gslfun.mffdf), &v_x);
return Val_unit;
}
value ml_gsl_multifit_fdfsolver_free(value S)
{
struct callback_params *p=CALLBACKPARAMS_VAL(S);
remove_global_root(&(p->closure));
stat_free(p);
gsl_multifit_fdfsolver_free(FDFSOLVER_VAL(S));
return Val_unit;
}
ML1(gsl_multifit_fdfsolver_name, FDFSOLVER_VAL, copy_string)
ML1(gsl_multifit_fdfsolver_iterate, FDFSOLVER_VAL, Unit)
value ml_gsl_multifit_fdfsolver_position(value S, value x)
{
gsl_vector *pos;
_DECLARE_VECTOR(x);
_CONVERT_VECTOR(x);
pos=gsl_multifit_fdfsolver_position(FDFSOLVER_VAL(S));
gsl_vector_memcpy(&v_x, pos);
return Val_unit;
}
value ml_gsl_multifit_fdfsolver_get_state(value solv, value xo, value fo,
value dxo, value unit)
{
gsl_multifit_fdfsolver *S=FDFSOLVER_VAL(solv);
if(Is_block(xo)) {
value x=Unoption(xo);
_DECLARE_VECTOR(x);
_CONVERT_VECTOR(x);
gsl_vector_memcpy(&v_x, S->x);
}
if(Is_block(fo)) {
value f=Unoption(fo);
_DECLARE_VECTOR(f);
_CONVERT_VECTOR(f);
gsl_vector_memcpy(&v_f, S->f);
}
if(Is_block(dxo)) {
value dx=Unoption(dxo);
_DECLARE_VECTOR(dx);
_CONVERT_VECTOR(dx);
gsl_vector_memcpy(&v_dx, S->dx);
}
return Val_unit;
}
value ml_gsl_multifit_test_delta(value S, value epsabs, value epsrel)
{
gsl_multifit_fdfsolver *solv=FDFSOLVER_VAL(S);
int status = gsl_multifit_test_delta(solv->dx, solv->x,
Double_val(epsabs), Double_val(epsrel));
return Val_negbool(status);
}
value ml_gsl_multifit_test_gradient(value S, value epsabs, value g)
{
int status;
gsl_multifit_fdfsolver *solv=FDFSOLVER_VAL(S);
_DECLARE_VECTOR(g);
_CONVERT_VECTOR(g);
gsl_multifit_gradient(solv->J, solv->f, &v_g);
status = gsl_multifit_test_gradient(&v_g, Double_val(epsabs));
return Val_negbool(status);
}
value ml_gsl_multifit_covar(value S, value epsrel, value covar)
{
_DECLARE_MATRIX(covar);
_CONVERT_MATRIX(covar);
gsl_multifit_covar(FDFSOLVER_VAL(S)->J, Double_val(epsrel), &m_covar);
return Val_unit;
}
|