1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
/* ocamlgsl - OCaml interface to GSL */
/* Copyright () 2002 - Olivier Andrieu */
/* distributed under the terms of the GPL version 2 */
#include <gsl/gsl_randist.h>
#include <caml/alloc.h>
#include <caml/memory.h>
#include "wrappers.h"
#include "mlgsl_rng.h"
/* GAUSSIAN */
ML2(gsl_ran_gaussian, Rng_val, Double_val, copy_double)
ML2(gsl_ran_gaussian_ratio_method, Rng_val, Double_val, copy_double)
ML2(gsl_ran_gaussian_pdf, Double_val, Double_val, copy_double)
ML1(gsl_ran_ugaussian, Rng_val, copy_double)
ML1(gsl_ran_ugaussian_ratio_method, Rng_val, copy_double)
ML1(gsl_ran_ugaussian_pdf, Double_val, copy_double)
/* GAUSSIAN TAIL */
ML3(gsl_ran_gaussian_tail, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gaussian_tail_pdf, Double_val, Double_val, Double_val ,copy_double)
ML2(gsl_ran_ugaussian_tail, Rng_val, Double_val, copy_double)
ML2(gsl_ran_ugaussian_tail_pdf, Double_val, Double_val, copy_double)
/* BIVARIATE */
value ml_gsl_ran_bivariate_gaussian(value rng, value sigma_x, value sigma_y,
value rho)
{
double x,y;
gsl_ran_bivariate_gaussian(Rng_val(rng),
Double_val(sigma_x), Double_val(sigma_y),
Double_val(rho), &x, &y);
return copy_two_double(x, y);
}
ML5(gsl_ran_bivariate_gaussian_pdf, Double_val, Double_val, Double_val, Double_val, Double_val, copy_double)
/* EXPONENTIAL */
ML2(gsl_ran_exponential, Rng_val, Double_val, copy_double)
ML2(gsl_ran_exponential_pdf, Double_val, Double_val, copy_double)
/* LAPLACE */
ML2(gsl_ran_laplace, Rng_val, Double_val, copy_double)
ML2(gsl_ran_laplace_pdf, Double_val, Double_val, copy_double)
/* EXPONENTIAL POWER */
ML3(gsl_ran_exppow, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_exppow_pdf, Double_val, Double_val, Double_val, copy_double)
/* CAUCHY */
ML2(gsl_ran_cauchy, Rng_val, Double_val, copy_double)
ML2(gsl_ran_cauchy_pdf, Double_val, Double_val, copy_double)
/* RAYLEIGH */
ML2(gsl_ran_rayleigh, Rng_val, Double_val, copy_double)
ML2(gsl_ran_rayleigh_pdf, Double_val, Double_val, copy_double)
/* RAYLEIGH TAIL */
ML3(gsl_ran_rayleigh_tail, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_rayleigh_tail_pdf, Double_val, Double_val, Double_val, copy_double)
/* LANDAU */
ML1(gsl_ran_landau, Rng_val, copy_double)
ML1(gsl_ran_landau_pdf, Double_val, copy_double)
/* LEVY ALPHA-STABLE */
ML3(gsl_ran_levy, Rng_val, Double_val, Double_val, copy_double)
/* LEVY SKEW ALPHA-STABLE */
ML4(gsl_ran_levy_skew, Rng_val, Double_val, Double_val, Double_val, copy_double)
/* GAMMA */
ML3(gsl_ran_gamma, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gamma_pdf, Double_val, Double_val, Double_val, copy_double)
/* FLAT */
ML3(gsl_ran_flat, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_flat_pdf, Double_val, Double_val, Double_val, copy_double)
/* LOGNORMAL */
ML3(gsl_ran_lognormal, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_lognormal_pdf, Double_val, Double_val, Double_val, copy_double)
/* CHISQ */
ML2(gsl_ran_chisq, Rng_val, Double_val, copy_double)
ML2(gsl_ran_chisq_pdf, Double_val, Double_val, copy_double)
/* DIRICHLET */
value ml_gsl_ran_dirichlet(value rng, value alpha, value theta)
{
const size_t K = Double_array_length(alpha);
if(Double_array_length(theta) != K)
GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
gsl_ran_dirichlet(Rng_val(rng), K, Double_array_val(alpha),
Double_array_val(theta));
return Val_unit;
}
value ml_gsl_ran_dirichlet_pdf(value alpha, value theta)
{
const size_t K = Double_array_length(alpha);
double r ;
if(Double_array_length(theta) != K)
GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
r = gsl_ran_dirichlet_pdf(K, Double_array_val(alpha),
Double_array_val(theta));
return copy_double(r);
}
value ml_gsl_ran_dirichlet_lnpdf(value alpha, value theta)
{
const size_t K = Double_array_length(alpha);
double r ;
if(Double_array_length(theta) != K)
GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
r = gsl_ran_dirichlet_lnpdf(K, Double_array_val(alpha),
Double_array_val(theta));
return copy_double(r);
}
/* FDIST */
ML3(gsl_ran_fdist, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_fdist_pdf, Double_val, Double_val, Double_val, copy_double)
/* TDIST */
ML2(gsl_ran_tdist, Rng_val, Double_val, copy_double)
ML2(gsl_ran_tdist_pdf, Double_val, Double_val, copy_double)
/* BETA */
ML3(gsl_ran_beta, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_beta_pdf, Double_val, Double_val, Double_val, copy_double)
/* LOGISTIC */
ML2(gsl_ran_logistic, Rng_val, Double_val, copy_double)
ML2(gsl_ran_logistic_pdf, Double_val, Double_val, copy_double)
/* PARETO */
ML3(gsl_ran_pareto, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_pareto_pdf, Double_val, Double_val, Double_val, copy_double)
/* SPHERICAL */
value ml_gsl_ran_dir_2d(value rng)
{
double x,y;
gsl_ran_dir_2d(Rng_val(rng), &x, &y);
return copy_two_double(x, y);
}
value ml_gsl_ran_dir_2d_trig_method(value rng)
{
double x,y;
gsl_ran_dir_2d_trig_method(Rng_val(rng), &x, &y);
return copy_two_double(x, y);
}
value ml_gsl_ran_dir_3d(value rng)
{
double x,y,z;
gsl_ran_dir_3d(Rng_val(rng), &x, &y, &z);
{
CAMLparam0();
CAMLlocal1(r);
r=alloc_tuple(3);
Store_field(r, 0, copy_double(x));
Store_field(r, 1, copy_double(y));
Store_field(r, 2, copy_double(z));
CAMLreturn(r);
}
}
value ml_gsl_ran_dir_nd(value rng, value x)
{
gsl_ran_dir_nd(Rng_val(rng), Double_array_length(x), Double_array_val(x));
return Val_unit;
}
/* WEIBULL */
ML3(gsl_ran_weibull, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_weibull_pdf, Double_val, Double_val, Double_val, copy_double)
/* GUMBEL1 */
ML3(gsl_ran_gumbel1, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gumbel1_pdf, Double_val, Double_val, Double_val, copy_double)
/* GUMBEL2 */
ML3(gsl_ran_gumbel2, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gumbel2_pdf, Double_val, Double_val, Double_val, copy_double)
/* POISSON */
ML2(gsl_ran_poisson, Rng_val, Double_val, Val_int)
ML2(gsl_ran_poisson_pdf, Int_val, Double_val, copy_double)
/* BERNOULLI */
ML2(gsl_ran_bernoulli, Rng_val, Double_val, Val_int)
ML2(gsl_ran_bernoulli_pdf, Int_val, Double_val, copy_double)
/* BINOMIAL */
ML3(gsl_ran_binomial, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_binomial_tpe, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_binomial_pdf, Int_val, Double_val, Int_val, copy_double)
/* MULTINOMIAL */
value ml_gsl_ran_multinomial(value rng, value n, value p)
{
const size_t K = Double_array_length(p);
LOCALARRAY(unsigned int, N, K);
value r;
gsl_ran_multinomial(Rng_val(rng), K, Int_val(n), Double_array_val(p), N);
{
register int i;
r = alloc(K, 0);
for(i=0; i<K; i++)
Store_field(r, i, Val_int(N[i]));
}
return r;
}
value ml_gsl_ran_multinomial_pdf(value p, value n)
{
const size_t K = Double_array_length(p);
LOCALARRAY(unsigned int, N, K);
double r;
register int i;
for(i=0; i<K; i++)
N[i] = Int_val(Field(n, i));
r = gsl_ran_multinomial_pdf(K, Double_array_val(p), N);
return copy_double(r);
}
value ml_gsl_ran_multinomial_lnpdf(value p, value n)
{
const size_t K = Double_array_length(p);
LOCALARRAY(unsigned int, N, K);
double r;
register int i;
for(i=0; i<K; i++)
N[i] = Int_val(Field(n, i));
r = gsl_ran_multinomial_lnpdf(K, Double_array_val(p), N);
return copy_double(r);
}
/* NEGATIVE BINOMIAL */
ML3(gsl_ran_negative_binomial, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_negative_binomial_pdf, Int_val, Double_val, Int_val, copy_double)
/* PASCAL */
ML3(gsl_ran_pascal, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_pascal_pdf, Int_val, Double_val, Int_val, copy_double)
/* GEOMETRIC */
ML2(gsl_ran_geometric, Rng_val, Double_val, Val_int)
ML2(gsl_ran_geometric_pdf, Int_val, Double_val, copy_double)
/* HYPERGEOMETRIC */
ML4(gsl_ran_hypergeometric, Rng_val, Int_val, Int_val, Int_val, Val_int)
ML4(gsl_ran_hypergeometric_pdf, Int_val, Int_val, Int_val, Int_val, copy_double)
/* LOGARITHMIC */
ML2(gsl_ran_logarithmic, Rng_val, Double_val, Val_int)
ML2(gsl_ran_logarithmic_pdf, Int_val, Double_val, copy_double)
/* SHUFFLING */
value ml_gsl_ran_shuffle(value rng, value arr)
{
if(Tag_val(arr) == Double_array_tag)
gsl_ran_shuffle(Rng_val(rng), Double_array_val(arr),
Double_array_length(arr), sizeof(double));
else
gsl_ran_shuffle(Rng_val(rng), (value *)arr,
Array_length(arr), sizeof(value));
return Val_unit;
}
value ml_gsl_ran_choose(value rng, value src, value dest)
{
if(Tag_val(src) == Double_array_tag)
gsl_ran_choose(Rng_val(rng),
Double_array_val(dest), Double_array_length(dest),
Double_array_val(src), Double_array_length(src),
sizeof(double));
else
gsl_ran_choose(Rng_val(rng),
(value *)dest, Array_length(dest),
(value *)src, Array_length(src),
sizeof(value));
return Val_unit;
}
value ml_gsl_ran_sample(value rng, value src, value dest)
{
if(Tag_val(src) == Double_array_tag)
gsl_ran_sample(Rng_val(rng),
Double_array_val(dest), Double_array_length(dest),
Double_array_val(src), Double_array_length(src),
sizeof(double));
else
gsl_ran_sample(Rng_val(rng),
(value *)dest, Array_length(dest),
(value *)src, Array_length(src),
sizeof(value));
return Val_unit;
}
/* DISCRETE */
value ml_gsl_ran_discrete_preproc(value p)
{
gsl_ran_discrete_t *G;
value r;
G = gsl_ran_discrete_preproc(Double_array_length(p), Double_array_val(p));
Abstract_ptr(r, G);
return r;
}
#define Discrete_val(v) ((gsl_ran_discrete_t *)(Field(v, 0)))
ML2(gsl_ran_discrete, Rng_val, Discrete_val, Val_int)
ML2(gsl_ran_discrete_pdf, Int_val, Discrete_val, copy_double)
ML1(gsl_ran_discrete_free, Discrete_val, Unit)
|