File: mlgsl_randist.c

package info (click to toggle)
ocamlgsl 0.3.5-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 3,444 kB
  • ctags: 2,901
  • sloc: ml: 7,956; ansic: 6,796; makefile: 303; sh: 87; awk: 13
file content (326 lines) | stat: -rw-r--r-- 9,936 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/* ocamlgsl - OCaml interface to GSL                        */
/* Copyright () 2002 - Olivier Andrieu                     */
/* distributed under the terms of the GPL version 2         */

#include <gsl/gsl_randist.h>

#include <caml/alloc.h>
#include <caml/memory.h>

#include "wrappers.h"
#include "mlgsl_rng.h"

/* GAUSSIAN */
ML2(gsl_ran_gaussian, Rng_val, Double_val, copy_double)
ML2(gsl_ran_gaussian_ratio_method, Rng_val, Double_val, copy_double)
ML2(gsl_ran_gaussian_pdf, Double_val, Double_val, copy_double)

ML1(gsl_ran_ugaussian, Rng_val, copy_double)
ML1(gsl_ran_ugaussian_ratio_method, Rng_val, copy_double)
ML1(gsl_ran_ugaussian_pdf, Double_val, copy_double)


/* GAUSSIAN TAIL */
ML3(gsl_ran_gaussian_tail, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gaussian_tail_pdf, Double_val, Double_val, Double_val ,copy_double)

ML2(gsl_ran_ugaussian_tail, Rng_val, Double_val, copy_double)
ML2(gsl_ran_ugaussian_tail_pdf, Double_val, Double_val, copy_double)


/* BIVARIATE */
value ml_gsl_ran_bivariate_gaussian(value rng, value sigma_x, value sigma_y,
				    value rho)
{
  double x,y;
  gsl_ran_bivariate_gaussian(Rng_val(rng), 
			     Double_val(sigma_x), Double_val(sigma_y),
			     Double_val(rho), &x, &y);
  return copy_two_double(x, y);
}
ML5(gsl_ran_bivariate_gaussian_pdf, Double_val, Double_val, Double_val, Double_val, Double_val, copy_double)


/* EXPONENTIAL */
ML2(gsl_ran_exponential, Rng_val, Double_val, copy_double)
ML2(gsl_ran_exponential_pdf, Double_val, Double_val, copy_double)

/* LAPLACE */
ML2(gsl_ran_laplace, Rng_val, Double_val, copy_double)
ML2(gsl_ran_laplace_pdf, Double_val, Double_val, copy_double)

/* EXPONENTIAL POWER */
ML3(gsl_ran_exppow, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_exppow_pdf, Double_val, Double_val, Double_val, copy_double)

/* CAUCHY */
ML2(gsl_ran_cauchy, Rng_val, Double_val, copy_double)
ML2(gsl_ran_cauchy_pdf, Double_val, Double_val, copy_double)

/* RAYLEIGH */
ML2(gsl_ran_rayleigh, Rng_val, Double_val, copy_double)
ML2(gsl_ran_rayleigh_pdf, Double_val, Double_val, copy_double)

/* RAYLEIGH TAIL */
ML3(gsl_ran_rayleigh_tail, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_rayleigh_tail_pdf, Double_val, Double_val, Double_val, copy_double)

/* LANDAU */
ML1(gsl_ran_landau, Rng_val, copy_double)
ML1(gsl_ran_landau_pdf, Double_val, copy_double)

/* LEVY ALPHA-STABLE */
ML3(gsl_ran_levy, Rng_val, Double_val, Double_val, copy_double)

/* LEVY SKEW ALPHA-STABLE */
ML4(gsl_ran_levy_skew, Rng_val, Double_val, Double_val, Double_val, copy_double)

/* GAMMA */
ML3(gsl_ran_gamma, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gamma_pdf, Double_val, Double_val, Double_val, copy_double)

/* FLAT */
ML3(gsl_ran_flat, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_flat_pdf, Double_val, Double_val, Double_val, copy_double)

/* LOGNORMAL */
ML3(gsl_ran_lognormal, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_lognormal_pdf, Double_val, Double_val, Double_val, copy_double)

/* CHISQ */
ML2(gsl_ran_chisq, Rng_val, Double_val, copy_double)
ML2(gsl_ran_chisq_pdf, Double_val, Double_val, copy_double)

/* DIRICHLET */
value ml_gsl_ran_dirichlet(value rng, value alpha, value theta)
{
  const size_t K = Double_array_length(alpha);
  if(Double_array_length(theta) != K)
    GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
  gsl_ran_dirichlet(Rng_val(rng), K, Double_array_val(alpha), 
		    Double_array_val(theta));
  return Val_unit;
}

value ml_gsl_ran_dirichlet_pdf(value alpha, value theta)
{
  const size_t K = Double_array_length(alpha);
  double r ;
  if(Double_array_length(theta) != K)
    GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
  r = gsl_ran_dirichlet_pdf(K, Double_array_val(alpha), 
			    Double_array_val(theta));
  return copy_double(r);
}

value ml_gsl_ran_dirichlet_lnpdf(value alpha, value theta)
{
  const size_t K = Double_array_length(alpha);
  double r ;
  if(Double_array_length(theta) != K)
    GSL_ERROR("alpha and theta must have same size", GSL_EBADLEN);
  r = gsl_ran_dirichlet_lnpdf(K, Double_array_val(alpha), 
			      Double_array_val(theta));
  return copy_double(r);
}

/* FDIST */
ML3(gsl_ran_fdist, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_fdist_pdf, Double_val, Double_val, Double_val, copy_double)

/* TDIST */
ML2(gsl_ran_tdist, Rng_val, Double_val, copy_double)
ML2(gsl_ran_tdist_pdf, Double_val, Double_val, copy_double)

/* BETA */
ML3(gsl_ran_beta, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_beta_pdf, Double_val, Double_val, Double_val, copy_double)

/* LOGISTIC */
ML2(gsl_ran_logistic, Rng_val, Double_val, copy_double)
ML2(gsl_ran_logistic_pdf, Double_val, Double_val, copy_double)

/* PARETO */
ML3(gsl_ran_pareto, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_pareto_pdf, Double_val, Double_val, Double_val, copy_double)

/* SPHERICAL */
value ml_gsl_ran_dir_2d(value rng)
{
  double x,y;
  gsl_ran_dir_2d(Rng_val(rng), &x, &y);
  return copy_two_double(x, y);
}

value ml_gsl_ran_dir_2d_trig_method(value rng)
{
  double x,y;
  gsl_ran_dir_2d_trig_method(Rng_val(rng), &x, &y);
  return copy_two_double(x, y);
}

value ml_gsl_ran_dir_3d(value rng)
{
  double x,y,z;
  gsl_ran_dir_3d(Rng_val(rng), &x, &y, &z);
  {
    CAMLparam0();
    CAMLlocal1(r);
    r=alloc_tuple(3);
    Store_field(r, 0, copy_double(x));
    Store_field(r, 1, copy_double(y));
    Store_field(r, 2, copy_double(z));
    CAMLreturn(r);
  }
}

value ml_gsl_ran_dir_nd(value rng, value x)
{
  gsl_ran_dir_nd(Rng_val(rng), Double_array_length(x), Double_array_val(x));
  return Val_unit;
}

/* WEIBULL */
ML3(gsl_ran_weibull, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_weibull_pdf, Double_val, Double_val, Double_val, copy_double)

/* GUMBEL1 */
ML3(gsl_ran_gumbel1, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gumbel1_pdf, Double_val, Double_val, Double_val, copy_double)

/* GUMBEL2 */
ML3(gsl_ran_gumbel2, Rng_val, Double_val, Double_val, copy_double)
ML3(gsl_ran_gumbel2_pdf, Double_val, Double_val, Double_val, copy_double)

/* POISSON */
ML2(gsl_ran_poisson, Rng_val, Double_val, Val_int)
ML2(gsl_ran_poisson_pdf, Int_val, Double_val, copy_double)

/* BERNOULLI */
ML2(gsl_ran_bernoulli, Rng_val, Double_val, Val_int)
ML2(gsl_ran_bernoulli_pdf, Int_val, Double_val, copy_double)

/* BINOMIAL */
ML3(gsl_ran_binomial, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_binomial_tpe, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_binomial_pdf, Int_val, Double_val, Int_val, copy_double)

/* MULTINOMIAL */
value ml_gsl_ran_multinomial(value rng, value n, value p)
{
  const size_t K = Double_array_length(p);
  LOCALARRAY(unsigned int, N, K); 
  value r;
  gsl_ran_multinomial(Rng_val(rng), K, Int_val(n), Double_array_val(p), N);
  {
    register int i;
    r = alloc(K, 0);
    for(i=0; i<K; i++)
      Store_field(r, i, Val_int(N[i]));
  }
  return r;
}

value ml_gsl_ran_multinomial_pdf(value p, value n)
{
  const size_t K = Double_array_length(p);
  LOCALARRAY(unsigned int, N, K); 
  double r;
  register int i;
  for(i=0; i<K; i++)
    N[i] = Int_val(Field(n, i));
  r = gsl_ran_multinomial_pdf(K, Double_array_val(p), N);
  return copy_double(r);
}

value ml_gsl_ran_multinomial_lnpdf(value p, value n)
{
  const size_t K = Double_array_length(p);
  LOCALARRAY(unsigned int, N, K); 
  double r;
  register int i;
  for(i=0; i<K; i++)
    N[i] = Int_val(Field(n, i));
  r = gsl_ran_multinomial_lnpdf(K, Double_array_val(p), N);
  return copy_double(r);
}


/* NEGATIVE BINOMIAL */
ML3(gsl_ran_negative_binomial, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_negative_binomial_pdf, Int_val, Double_val, Int_val, copy_double)

/* PASCAL */
ML3(gsl_ran_pascal, Rng_val, Double_val, Int_val, Val_int)
ML3(gsl_ran_pascal_pdf, Int_val, Double_val, Int_val, copy_double)

/* GEOMETRIC */
ML2(gsl_ran_geometric, Rng_val, Double_val, Val_int)
ML2(gsl_ran_geometric_pdf, Int_val, Double_val, copy_double)

/* HYPERGEOMETRIC */
ML4(gsl_ran_hypergeometric, Rng_val, Int_val, Int_val, Int_val, Val_int)
ML4(gsl_ran_hypergeometric_pdf, Int_val, Int_val, Int_val, Int_val, copy_double)

/* LOGARITHMIC */
ML2(gsl_ran_logarithmic, Rng_val, Double_val, Val_int)
ML2(gsl_ran_logarithmic_pdf, Int_val, Double_val, copy_double)


/* SHUFFLING */
value ml_gsl_ran_shuffle(value rng, value arr)
{
  if(Tag_val(arr) == Double_array_tag)
    gsl_ran_shuffle(Rng_val(rng), Double_array_val(arr),
		    Double_array_length(arr), sizeof(double));
  else
    gsl_ran_shuffle(Rng_val(rng), (value *)arr, 
		    Array_length(arr), sizeof(value));
  return Val_unit;
}

value ml_gsl_ran_choose(value rng, value src, value dest)
{
  if(Tag_val(src) == Double_array_tag)
    gsl_ran_choose(Rng_val(rng), 
		   Double_array_val(dest), Double_array_length(dest),
		   Double_array_val(src), Double_array_length(src),
		   sizeof(double));
  else
    gsl_ran_choose(Rng_val(rng), 
		   (value *)dest, Array_length(dest),
		   (value *)src,  Array_length(src),
		   sizeof(value));
  return Val_unit;
}

value ml_gsl_ran_sample(value rng, value src, value dest)
{
  if(Tag_val(src) == Double_array_tag)
    gsl_ran_sample(Rng_val(rng), 
		   Double_array_val(dest), Double_array_length(dest),
		   Double_array_val(src), Double_array_length(src),
		   sizeof(double));
  else
    gsl_ran_sample(Rng_val(rng), 
		   (value *)dest, Array_length(dest),
		   (value *)src,  Array_length(src),
		   sizeof(value));
  return Val_unit;
}


/* DISCRETE */
value ml_gsl_ran_discrete_preproc(value p)
{
  gsl_ran_discrete_t *G;
  value r;
  G = gsl_ran_discrete_preproc(Double_array_length(p), Double_array_val(p));
  Abstract_ptr(r, G);
  return r;
}

#define Discrete_val(v) ((gsl_ran_discrete_t *)(Field(v, 0)))
ML2(gsl_ran_discrete, Rng_val, Discrete_val, Val_int)
ML2(gsl_ran_discrete_pdf, Int_val, Discrete_val, copy_double)
ML1(gsl_ran_discrete_free, Discrete_val, Unit)