File: mlgsl_stats.c

package info (click to toggle)
ocamlgsl 0.3.5-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 3,444 kB
  • ctags: 2,901
  • sloc: ml: 7,956; ansic: 6,796; makefile: 303; sh: 87; awk: 13
file content (296 lines) | stat: -rw-r--r-- 8,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/* ocamlgsl - OCaml interface to GSL                        */
/* Copyright () 2002 - Olivier Andrieu                     */
/* distributed under the terms of the GPL version 2         */


#include <gsl/gsl_statistics_double.h>

#include <caml/mlvalues.h>
#include <caml/fail.h>

#include "wrappers.h"

static inline void check_array_size(value a, value b)
{
  if(Double_array_length(a) != Double_array_length(b))
    invalid_argument("arrays sizes differ");
}

CAMLprim value ml_gsl_stats_mean(value ow, value data)
{
  size_t len = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_mean(Double_array_val(data), 1, len);
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wmean(Double_array_val(w), 1, 
			     Double_array_val(data), 1, len);
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_variance(value ow, value omean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    if(omean == Val_none)
      result = gsl_stats_variance(Double_array_val(data), 1, len);
    else
      result = gsl_stats_variance_m(Double_array_val(data), 1, len, 
				    Double_val(Unoption(omean)));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    if(omean == Val_none)
      result = gsl_stats_wvariance(Double_array_val(w), 1, 
				   Double_array_val(data), 1, len);
    else
      result = gsl_stats_wvariance_m(Double_array_val(w), 1, 
				     Double_array_val(data), 1, len, 
				     Double_val(Unoption(omean)));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_sd(value ow, value omean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    if(omean == Val_none)
      result = gsl_stats_sd(Double_array_val(data), 1, len);
    else
      result = gsl_stats_sd_m(Double_array_val(data), 1, len, 
			      Double_val(Unoption(omean)));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    if(omean == Val_none)
      result = gsl_stats_wsd(Double_array_val(w), 1, 
			     Double_array_val(data), 1, len);
    else
      result = gsl_stats_wsd_m(Double_array_val(w), 1, 
			       Double_array_val(data), 1, len, 
			       Double_val(Unoption(omean)));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_variance_with_fixed_mean(value ow,
						     value mean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_variance_with_fixed_mean(Double_array_val(data), 
						1, len, Double_val(mean));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wvariance_with_fixed_mean(Double_array_val(w), 1,
						 Double_array_val(data), 1,
						 len, Double_val(mean));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_sd_with_fixed_mean(value ow,
						     value mean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_sd_with_fixed_mean(Double_array_val(data), 
					  1, len, Double_val(mean));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wsd_with_fixed_mean(Double_array_val(w), 1, 
					   Double_array_val(data), 1,
					   len, Double_val(mean));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_absdev(value ow, value omean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    if(omean == Val_none)
      result = gsl_stats_absdev(Double_array_val(data), 1, len);
    else
      result = gsl_stats_absdev_m(Double_array_val(data), 1, len, 
				  Double_val(Unoption(omean)));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    if(omean == Val_none)
      result = gsl_stats_wabsdev(Double_array_val(w), 1, 
				 Double_array_val(data), 1, len);
    else
      result = gsl_stats_wabsdev_m(Double_array_val(w), 1, 
				   Double_array_val(data), 1, len, 
				   Double_val(Unoption(omean)));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_skew(value ow, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_skew(Double_array_val(data), 1, len);
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wskew(Double_array_val(w), 1, 
			     Double_array_val(data), 1, len);
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_skew_m_sd(value ow, value mean, 
				      value sd, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_skew_m_sd(Double_array_val(data), 1, len,
				 Double_val(mean), Double_val(sd));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wskew_m_sd(Double_array_val(w), 1,
				  Double_array_val(data), 1, len,
				  Double_val(mean), Double_val(sd));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_kurtosis(value ow, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_kurtosis(Double_array_val(data), 1, len);
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wkurtosis(Double_array_val(w), 1,
				 Double_array_val(data), 1, len);
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_kurtosis_m_sd(value ow, value mean, 
					  value sd, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(ow == Val_none)
    result = gsl_stats_kurtosis_m_sd(Double_array_val(data), 1, len,
				     Double_val(mean), Double_val(sd));
  else {
    value w = Unoption(ow);
    check_array_size(data, w);
    result = gsl_stats_wkurtosis_m_sd(Double_array_val(w), 1,
				      Double_array_val(data), 1, len,
				      Double_val(mean), Double_val(sd));
  }
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_lag1_autocorrelation(value omean, value data)
{
  size_t len    = Double_array_length(data);
  double result;
  if(omean == Val_none)
    result = gsl_stats_lag1_autocorrelation(Double_array_val(data), 1, len);
  else
    result = gsl_stats_lag1_autocorrelation_m(Double_array_val(data), 1, len, 
					      Double_val(Unoption(omean)));
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_covariance(value data1, value data2)
{
  size_t len = Double_array_length(data1);
  double result;
  check_array_size(data1, data2);
  result = gsl_stats_covariance(Double_array_val(data1), 1,
				Double_array_val(data2), 1, len);
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_covariance_m(value mean1, value data1,
					 value mean2, value data2)
{
  size_t len = Double_array_length(data1);
  double result;
  check_array_size(data1, data2);
  result = gsl_stats_covariance_m(Double_array_val(data1), 1, 
				  Double_array_val(data2), 1, len,
				  Double_val(mean1), Double_val(mean2));
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_max(value data)
{
  size_t len    = Double_array_length(data);
  double result = gsl_stats_max(Double_array_val(data), 1, len);
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_min(value data)
{
  size_t len    = Double_array_length(data);
  double result = gsl_stats_min(Double_array_val(data), 1, len);
  return copy_double(result);
}

CAMLprim value ml_gsl_stats_minmax(value data)
{
  size_t len    = Double_array_length(data);
  double mi, ma;
  gsl_stats_minmax(&mi, &ma, Double_array_val(data), 1, len);
  return copy_two_double(mi, ma);
}

CAMLprim value ml_gsl_stats_max_index(value data)
{
  size_t len    = Double_array_length(data);
  size_t result = gsl_stats_max_index(Double_array_val(data), 1, len);
  return Val_int(result);
}

CAMLprim value ml_gsl_stats_min_index(value data)
{
  size_t len    = Double_array_length(data);
  size_t result = gsl_stats_min_index(Double_array_val(data), 1, len);
  return Val_int(result);
}

CAMLprim value ml_gsl_stats_minmax_index(value data)
{
  size_t len    = Double_array_length(data);
  size_t mi, ma;
  value r;
  gsl_stats_minmax_index(&mi, &ma, Double_array_val(data), 1, len);
  r = alloc_small(2, 0);
  Field(r, 0) = Val_int(mi);
  Field(r, 1) = Val_int(ma);
  return r;
}

CAMLprim value ml_gsl_stats_quantile_from_sorted_data(value data, value f)
{
  size_t len = Double_array_length(data);
  double r = gsl_stats_quantile_from_sorted_data(Double_array_val(data),
						 1, len, Double_val(f));
  return copy_double(r);
}