1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* ocamlgsl - OCaml interface to GSL */
/* Copyright () 2002 - Olivier Andrieu */
/* distributed under the terms of the GPL version 2 */
#include <gsl/gsl_statistics_double.h>
#include <caml/mlvalues.h>
#include <caml/fail.h>
#include "wrappers.h"
static inline void check_array_size(value a, value b)
{
if(Double_array_length(a) != Double_array_length(b))
invalid_argument("arrays sizes differ");
}
CAMLprim value ml_gsl_stats_mean(value ow, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_mean(Double_array_val(data), 1, len);
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wmean(Double_array_val(w), 1,
Double_array_val(data), 1, len);
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_variance(value ow, value omean, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
if(omean == Val_none)
result = gsl_stats_variance(Double_array_val(data), 1, len);
else
result = gsl_stats_variance_m(Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
else {
value w = Unoption(ow);
check_array_size(data, w);
if(omean == Val_none)
result = gsl_stats_wvariance(Double_array_val(w), 1,
Double_array_val(data), 1, len);
else
result = gsl_stats_wvariance_m(Double_array_val(w), 1,
Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_sd(value ow, value omean, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
if(omean == Val_none)
result = gsl_stats_sd(Double_array_val(data), 1, len);
else
result = gsl_stats_sd_m(Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
else {
value w = Unoption(ow);
check_array_size(data, w);
if(omean == Val_none)
result = gsl_stats_wsd(Double_array_val(w), 1,
Double_array_val(data), 1, len);
else
result = gsl_stats_wsd_m(Double_array_val(w), 1,
Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_variance_with_fixed_mean(value ow,
value mean, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_variance_with_fixed_mean(Double_array_val(data),
1, len, Double_val(mean));
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wvariance_with_fixed_mean(Double_array_val(w), 1,
Double_array_val(data), 1,
len, Double_val(mean));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_sd_with_fixed_mean(value ow,
value mean, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_sd_with_fixed_mean(Double_array_val(data),
1, len, Double_val(mean));
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wsd_with_fixed_mean(Double_array_val(w), 1,
Double_array_val(data), 1,
len, Double_val(mean));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_absdev(value ow, value omean, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
if(omean == Val_none)
result = gsl_stats_absdev(Double_array_val(data), 1, len);
else
result = gsl_stats_absdev_m(Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
else {
value w = Unoption(ow);
check_array_size(data, w);
if(omean == Val_none)
result = gsl_stats_wabsdev(Double_array_val(w), 1,
Double_array_val(data), 1, len);
else
result = gsl_stats_wabsdev_m(Double_array_val(w), 1,
Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_skew(value ow, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_skew(Double_array_val(data), 1, len);
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wskew(Double_array_val(w), 1,
Double_array_val(data), 1, len);
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_skew_m_sd(value ow, value mean,
value sd, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_skew_m_sd(Double_array_val(data), 1, len,
Double_val(mean), Double_val(sd));
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wskew_m_sd(Double_array_val(w), 1,
Double_array_val(data), 1, len,
Double_val(mean), Double_val(sd));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_kurtosis(value ow, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_kurtosis(Double_array_val(data), 1, len);
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wkurtosis(Double_array_val(w), 1,
Double_array_val(data), 1, len);
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_kurtosis_m_sd(value ow, value mean,
value sd, value data)
{
size_t len = Double_array_length(data);
double result;
if(ow == Val_none)
result = gsl_stats_kurtosis_m_sd(Double_array_val(data), 1, len,
Double_val(mean), Double_val(sd));
else {
value w = Unoption(ow);
check_array_size(data, w);
result = gsl_stats_wkurtosis_m_sd(Double_array_val(w), 1,
Double_array_val(data), 1, len,
Double_val(mean), Double_val(sd));
}
return copy_double(result);
}
CAMLprim value ml_gsl_stats_lag1_autocorrelation(value omean, value data)
{
size_t len = Double_array_length(data);
double result;
if(omean == Val_none)
result = gsl_stats_lag1_autocorrelation(Double_array_val(data), 1, len);
else
result = gsl_stats_lag1_autocorrelation_m(Double_array_val(data), 1, len,
Double_val(Unoption(omean)));
return copy_double(result);
}
CAMLprim value ml_gsl_stats_covariance(value data1, value data2)
{
size_t len = Double_array_length(data1);
double result;
check_array_size(data1, data2);
result = gsl_stats_covariance(Double_array_val(data1), 1,
Double_array_val(data2), 1, len);
return copy_double(result);
}
CAMLprim value ml_gsl_stats_covariance_m(value mean1, value data1,
value mean2, value data2)
{
size_t len = Double_array_length(data1);
double result;
check_array_size(data1, data2);
result = gsl_stats_covariance_m(Double_array_val(data1), 1,
Double_array_val(data2), 1, len,
Double_val(mean1), Double_val(mean2));
return copy_double(result);
}
CAMLprim value ml_gsl_stats_max(value data)
{
size_t len = Double_array_length(data);
double result = gsl_stats_max(Double_array_val(data), 1, len);
return copy_double(result);
}
CAMLprim value ml_gsl_stats_min(value data)
{
size_t len = Double_array_length(data);
double result = gsl_stats_min(Double_array_val(data), 1, len);
return copy_double(result);
}
CAMLprim value ml_gsl_stats_minmax(value data)
{
size_t len = Double_array_length(data);
double mi, ma;
gsl_stats_minmax(&mi, &ma, Double_array_val(data), 1, len);
return copy_two_double(mi, ma);
}
CAMLprim value ml_gsl_stats_max_index(value data)
{
size_t len = Double_array_length(data);
size_t result = gsl_stats_max_index(Double_array_val(data), 1, len);
return Val_int(result);
}
CAMLprim value ml_gsl_stats_min_index(value data)
{
size_t len = Double_array_length(data);
size_t result = gsl_stats_min_index(Double_array_val(data), 1, len);
return Val_int(result);
}
CAMLprim value ml_gsl_stats_minmax_index(value data)
{
size_t len = Double_array_length(data);
size_t mi, ma;
value r;
gsl_stats_minmax_index(&mi, &ma, Double_array_val(data), 1, len);
r = alloc_small(2, 0);
Field(r, 0) = Val_int(mi);
Field(r, 1) = Val_int(ma);
return r;
}
CAMLprim value ml_gsl_stats_quantile_from_sorted_data(value data, value f)
{
size_t len = Double_array_length(data);
double r = gsl_stats_quantile_from_sorted_data(Double_array_val(data),
1, len, Double_val(f));
return copy_double(r);
}
|