1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _Geom_BSplineSurface_HeaderFile
#define _Geom_BSplineSurface_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_Geom_BSplineSurface.hxx>
#include <Standard_Boolean.hxx>
#include <GeomAbs_BSplKnotDistribution.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Integer.hxx>
#include <Handle_TColgp_HArray2OfPnt.hxx>
#include <Handle_TColStd_HArray2OfReal.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <Handle_TColStd_HArray1OfInteger.hxx>
#include <Standard_Real.hxx>
#include <Standard_Mutex.hxx>
#include <Geom_BoundedSurface.hxx>
#include <Handle_Geom_Curve.hxx>
#include <Handle_Geom_Geometry.hxx>
class TColgp_HArray2OfPnt;
class TColStd_HArray2OfReal;
class TColStd_HArray1OfReal;
class TColStd_HArray1OfInteger;
class Standard_ConstructionError;
class Standard_DimensionError;
class Standard_DomainError;
class Standard_OutOfRange;
class Standard_NoSuchObject;
class Standard_RangeError;
class Geom_UndefinedDerivative;
class TColgp_Array2OfPnt;
class TColStd_Array1OfReal;
class TColStd_Array1OfInteger;
class TColStd_Array2OfReal;
class gp_Pnt;
class TColgp_Array1OfPnt;
class gp_Vec;
class Geom_Curve;
class gp_Trsf;
class Geom_Geometry;
//! Describes a BSpline surface.
//! In each parametric direction, a BSpline surface can be:
//! - uniform or non-uniform,
//! - rational or non-rational,
//! - periodic or non-periodic.
//! A BSpline surface is defined by:
//! - its degrees, in the u and v parametric directions,
//! - its periodic characteristic, in the u and v parametric directions,
//! - a table of poles, also called control points (together
//! with the associated weights if the surface is rational), and
//! - a table of knots, together with the associated multiplicities.
//! The degree of a Geom_BSplineSurface is limited to
//! a value (25) which is defined and controlled by the
//! system. This value is returned by the function MaxDegree.
//! Poles and Weights
//! Poles and Weights are manipulated using two associative double arrays:
//! - the poles table, which is a double array of gp_Pnt points, and
//! - the weights table, which is a double array of reals.
//! The bounds of the poles and weights arrays are:
//! - 1 and NbUPoles for the row bounds (provided
//! that the BSpline surface is not periodic in the u
//! parametric direction), where NbUPoles is the
//! number of poles of the surface in the u parametric direction, and
//! - 1 and NbVPoles for the column bounds (provided
//! that the BSpline surface is not periodic in the v
//! parametric direction), where NbVPoles is the
//! number of poles of the surface in the v parametric direction.
//! The poles of the surface are the points used to shape
//! and reshape the surface. They comprise a rectangular network.
//! If the surface is not periodic:
//! - The points (1, 1), (NbUPoles, 1), (1,
//! NbVPoles), and (NbUPoles, NbVPoles)
//! are the four parametric "corners" of the surface.
//! - The first column of poles and the last column of
//! poles define two BSpline curves which delimit the
//! surface in the v parametric direction. These are the
//! v isoparametric curves corresponding to the two
//! bounds of the v parameter.
//! - The first row of poles and the last row of poles
//! define two BSpline curves which delimit the surface
//! in the u parametric direction. These are the u
//! isoparametric curves corresponding to the two bounds of the u parameter.
//! If the surface is periodic, these geometric properties are not verified.
//! It is more difficult to define a geometrical significance
//! for the weights. However they are useful for
//! representing a quadric surface precisely. Moreover, if
//! the weights of all the poles are equal, the surface has
//! a polynomial equation, and hence is a "non-rational surface".
//! The non-rational surface is a special, but frequently
//! used, case, where all poles have identical weights.
//! The weights are defined and used only in the case of
//! a rational surface. The rational characteristic is
//! defined in each parametric direction. A surface can be
//! rational in the u parametric direction, and
//! non-rational in the v parametric direction.
//! Knots and Multiplicities
//! For a Geom_BSplineSurface the table of knots is
//! made up of two increasing sequences of reals, without
//! repetition, one for each parametric direction. The
//! multiplicities define the repetition of the knots.
//! A BSpline surface comprises multiple contiguous
//! patches, which are themselves polynomial or rational
//! surfaces. The knots are the parameters of the
//! isoparametric curves which limit these contiguous
//! patches. The multiplicity of a knot on a BSpline
//! surface (in a given parametric direction) is related to
//! the degree of continuity of the surface at that knot in
//! that parametric direction:
//! Degree of continuity at knot(i) = Degree - Multi(i) where:
//! - Degree is the degree of the BSpline surface in
//! the given parametric direction, and
//! - Multi(i) is the multiplicity of knot number i in
//! the given parametric direction.
//! There are some special cases, where the knots are
//! regularly spaced in one parametric direction (i.e. the
//! difference between two consecutive knots is a constant).
//! - "Uniform": all the multiplicities are equal to 1.
//! - "Quasi-uniform": all the multiplicities are equal to 1,
//! except for the first and last knots in this parametric
//! direction, and these are equal to Degree + 1.
//! - "Piecewise Bezier": all the multiplicities are equal to
//! Degree except for the first and last knots, which
//! are equal to Degree + 1. This surface is a
//! concatenation of Bezier patches in the given
//! parametric direction.
//! If the BSpline surface is not periodic in a given
//! parametric direction, the bounds of the knots and
//! multiplicities tables are 1 and NbKnots, where
//! NbKnots is the number of knots of the BSpline
//! surface in that parametric direction.
//! If the BSpline surface is periodic in a given parametric
//! direction, and there are k periodic knots and p
//! periodic poles in that parametric direction:
//! - the period is such that:
//! period = Knot(k+1) - Knot(1), and
//! - the poles and knots tables in that parametric
//! direction can be considered as infinite tables, such that:
//! Knot(i+k) = Knot(i) + period, and
//! Pole(i+p) = Pole(i)
//! Note: The data structure tables for a periodic BSpline
//! surface are more complex than those of a non-periodic one.
//! References :
//! . A survey of curve and surface methods in CADG Wolfgang BOHM
//! CAGD 1 (1984)
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
//! cagd 5 (1988)
//! . Blossoming and knot insertion algorithms for B-spline curves
//! Ronald N. GOLDMAN
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
//! . Curves and Surfaces for Computer Aided Geometric Design,
//! a practical guide Gerald Farin
class Geom_BSplineSurface : public Geom_BoundedSurface
{
public:
//! Creates a non-rational b-spline surface (weights
//! default value is 1.).
//! The following conditions must be verified.
//! 0 < UDegree <= MaxDegree.
//! UKnots.Length() == UMults.Length() >= 2
//! UKnots(i) < UKnots(i+1) (Knots are increasing)
//! 1 <= UMults(i) <= UDegree
//! On a non uperiodic surface the first and last
//! umultiplicities may be UDegree+1 (this is even
//! recommanded if you want the curve to start and finish on
//! the first and last pole).
//! On a uperiodic surface the first and the last
//! umultiplicities must be the same.
//! on non-uperiodic surfaces
//! Poles.ColLength() == Sum(UMults(i)) - UDegree - 1 >= 2
//! on uperiodic surfaces
//! Poles.ColLength() == Sum(UMults(i)) except the first or last
//! The previous conditions for U holds also for V, with the
//! RowLength of the poles.
Standard_EXPORT Geom_BSplineSurface(const TColgp_Array2OfPnt& Poles, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean UPeriodic = Standard_False, const Standard_Boolean VPeriodic = Standard_False);
//! Creates a non-rational b-spline surface (weights
//! default value is 1.).
//!
//! The following conditions must be verified.
//! 0 < UDegree <= MaxDegree.
//!
//! UKnots.Length() == UMults.Length() >= 2
//!
//! UKnots(i) < UKnots(i+1) (Knots are increasing)
//! 1 <= UMults(i) <= UDegree
//!
//! On a non uperiodic surface the first and last
//! umultiplicities may be UDegree+1 (this is even
//! recommanded if you want the curve to start and finish on
//! the first and last pole).
//!
//! On a uperiodic surface the first and the last
//! umultiplicities must be the same.
//!
//! on non-uperiodic surfaces
//!
//! Poles.ColLength() == Sum(UMults(i)) - UDegree - 1 >= 2
//!
//! on uperiodic surfaces
//!
//! Poles.ColLength() == Sum(UMults(i)) except the first or
//! last
//!
//! The previous conditions for U holds also for V, with the
//! RowLength of the poles.
Standard_EXPORT Geom_BSplineSurface(const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean UPeriodic = Standard_False, const Standard_Boolean VPeriodic = Standard_False);
//! Exchanges the u and v parametric directions on
//! this BSpline surface.
//! As a consequence:
//! - the poles and weights tables are transposed,
//! - the knots and multiplicities tables are exchanged,
//! - degrees of continuity, and rational, periodic and
//! uniform characteristics are exchanged, and
//! - the orientation of the surface is inverted.
Standard_EXPORT void ExchangeUV() ;
//! Sets the surface U periodic.
Standard_EXPORT void SetUPeriodic() ;
//! Modifies this surface to be periodic in the u (or v)
//! parametric direction.
//! To become periodic in a given parametric direction a
//! surface must be closed in that parametric direction,
//! and the knot sequence relative to that direction must be periodic.
//! To generate this periodic sequence of knots, the
//! functions FirstUKnotIndex and LastUKnotIndex (or
//! FirstVKnotIndex and LastVKnotIndex) are used to
//! compute I1 and I2. These are the indexes, in the
//! knot array associated with the given parametric
//! direction, of the knots that correspond to the first and
//! last parameters of this BSpline surface in the given
//! parametric direction. Hence the period is:
//! Knots(I1) - Knots(I2)
//! As a result, the knots and poles tables are modified.
//! Exceptions
//! Standard_ConstructionError if the surface is not
//! closed in the given parametric direction.
Standard_EXPORT void SetVPeriodic() ;
//! returns the parameter normalized within
//! the period if the surface is periodic : otherwise
//! does not do anything
Standard_EXPORT void PeriodicNormalization (Standard_Real& U, Standard_Real& V) const;
//! Assigns the knot of index Index in the knots table in
//! the corresponding parametric direction to be the
//! origin of this periodic BSpline surface. As a
//! consequence, the knots and poles tables are modified.
//! Exceptions
//! Standard_NoSuchObject if this BSpline surface is
//! not periodic in the given parametric direction.
//! Standard_DomainError if Index is outside the
//! bounds of the knots table in the given parametric direction.
Standard_EXPORT void SetUOrigin (const Standard_Integer Index) ;
//! Assigns the knot of index Index in the knots table in
//! the corresponding parametric direction to be the
//! origin of this periodic BSpline surface. As a
//! consequence, the knots and poles tables are modified.
//! Exceptions
//! Standard_NoSuchObject if this BSpline surface is
//! not periodic in the given parametric direction.
//! Standard_DomainError if Index is outside the
//! bounds of the knots table in the given parametric direction.
Standard_EXPORT void SetVOrigin (const Standard_Integer Index) ;
Standard_EXPORT void SetUNotPeriodic() ;
//! Modifies this surface to be periodic in the u (or v) parametric direction.
//! To become periodic in a given parametric direction a
//! surface must be closed in that parametric direction,
//! and the knot sequence relative to that direction must be periodic.
//! To generate this periodic sequence of knots, the
//! functions FirstUKnotIndex and LastUKnotIndex (or
//! FirstVKnotIndex and LastVKnotIndex) are used to
//! compute I1 and I2. These are the indexes, in the
//! knot array associated with the given parametric
//! direction, of the knots that correspond to the first and
//! last parameters of this BSpline surface in the given
//! parametric direction. Hence the period is:
//! Knots(I1) - Knots(I2)
//! As a result, the knots and poles tables are modified.
//! Exceptions
//! Standard_ConstructionError if the surface is not
//! closed in the given parametric direction.
Standard_EXPORT void SetVNotPeriodic() ;
Standard_EXPORT void UReverse() ;
//! Changes the orientation of this BSpline surface in the
//! u (or v) parametric direction. The bounds of the
//! surface are not changed but the given parametric
//! direction is reversed. Hence the orientation of the
//! surface is reversed.
//! The knots and poles tables are modified.
Standard_EXPORT void VReverse() ;
Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const;
//! Computes the u (or v) parameter on the modified
//! surface, produced by reversing its u (or v) parametric
//! direction, for the point of u parameter U, (or of v
//! parameter V) on this BSpline surface.
//! For a BSpline surface, these functions return respectively:
//! - UFirst + ULast - U, or
//! - VFirst + VLast - V,
//! where UFirst, ULast, VFirst and VLast are
//! the values of the first and last parameters of this
//! BSpline surface, in the u and v parametric directions.
Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const;
//! Increases the degrees of this BSpline surface to
//! UDegree and VDegree in the u and v parametric
//! directions respectively. As a result, the tables of poles,
//! weights and multiplicities are modified. The tables of
//! knots is not changed.
//! Note: Nothing is done if the given degree is less than
//! or equal to the current degree in the corresponding
//! parametric direction.
//! Exceptions
//! Standard_ConstructionError if UDegree or
//! VDegree is greater than
//! Geom_BSplineSurface::MaxDegree().
Standard_EXPORT void IncreaseDegree (const Standard_Integer UDegree, const Standard_Integer VDegree) ;
Standard_EXPORT void InsertUKnots (const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Real ParametricTolerance = 0.0, const Standard_Boolean Add = Standard_True) ;
//! Inserts into the knots table for the corresponding
//! parametric direction of this BSpline surface:
//! - the value U, or V, with the multiplicity M (defaulted to 1), or
//! - the values of the array Knots, with their respective
//! multiplicities, Mults.
//! If the knot value to insert already exists in the table, its multiplicity is:
//! - increased by M, if Add is true (the default), or
//! - increased to M, if Add is false.
//! The tolerance criterion used to check the equality of
//! the knots is the larger of the values ParametricTolerance and
//! Standard_Real::Epsilon(val), where val is the knot value to be inserted.
//! Warning
//! - If a given multiplicity coefficient is null, or negative, nothing is done.
//! - The new multiplicity of a knot is limited to the degree of this BSpline surface in the
//! corresponding parametric direction.
//! Exceptions
//! Standard_ConstructionError if a knot value to
//! insert is outside the bounds of this BSpline surface in
//! the specified parametric direction. The comparison
//! uses the precision criterion ParametricTolerance.
Standard_EXPORT void InsertVKnots (const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Real ParametricTolerance = 0.0, const Standard_Boolean Add = Standard_True) ;
Standard_EXPORT Standard_Boolean RemoveUKnot (const Standard_Integer Index, const Standard_Integer M, const Standard_Real Tolerance) ;
//! Reduces to M the multiplicity of the knot of index
//! Index in the given parametric direction. If M is 0, the knot is removed.
//! With a modification of this type, the table of poles is also modified.
//! Two different algorithms are used systematically to
//! compute the new poles of the surface. For each
//! pole, the distance between the pole calculated
//! using the first algorithm and the same pole
//! calculated using the second algorithm, is checked. If
//! this distance is less than Tolerance it ensures that
//! the surface is not modified by more than Tolerance.
//! Under these conditions, the function returns true;
//! otherwise, it returns false.
//! A low tolerance prevents modification of the
//! surface. A high tolerance "smoothes" the surface.
//! Exceptions
//! Standard_OutOfRange if Index is outside the
//! bounds of the knots table of this BSpline surface.
Standard_EXPORT Standard_Boolean RemoveVKnot (const Standard_Integer Index, const Standard_Integer M, const Standard_Real Tolerance) ;
//! Increases the multiplicity of the knot of range UIndex
//! in the UKnots sequence.
//! M is the new multiplicity. M must be greater than the
//! previous multiplicity and lower or equal to the degree
//! of the surface in the U parametric direction.
//! Raised if M is not in the range [1, UDegree]
//!
//! Raised if UIndex is not in the range [FirstUKnotIndex,
//! LastUKnotIndex] given by the methods with the same name.
Standard_EXPORT void IncreaseUMultiplicity (const Standard_Integer UIndex, const Standard_Integer M) ;
//! Increases until order M the multiplicity of the set of knots
//! FromI1,...., ToI2 in the U direction. This method can be used
//! to make a B_spline surface into a PiecewiseBezier B_spline
//! surface.
//! If <me> was uniform, it can become non uniform.
//!
//! Raised if FromI1 or ToI2 is out of the range [FirstUKnotIndex,
//! LastUKnotIndex].
//!
//! M should be greater than the previous multiplicity of the
//! all the knots FromI1,..., ToI2 and lower or equal to the
//! Degree of the surface in the U parametric direction.
Standard_EXPORT void IncreaseUMultiplicity (const Standard_Integer FromI1, const Standard_Integer ToI2, const Standard_Integer M) ;
//! Increments the multiplicity of the consecutives uknots FromI1..ToI2
//! by step. The multiplicity of each knot FromI1,.....,ToI2 must be
//! lower or equal to the UDegree of the B_spline.
//!
//! Raised if FromI1 or ToI2 is not in the range
//! [FirstUKnotIndex, LastUKnotIndex]
//!
//! Raised if one knot has a multiplicity greater than UDegree.
Standard_EXPORT void IncrementUMultiplicity (const Standard_Integer FromI1, const Standard_Integer ToI2, const Standard_Integer Step) ;
//! Increases the multiplicity of a knot in the V direction.
//! M is the new multiplicity.
//!
//! M should be greater than the previous multiplicity and lower
//! than the degree of the surface in the V parametric direction.
//!
//! Raised if VIndex is not in the range [FirstVKnotIndex,
//! LastVKnotIndex] given by the methods with the same name.
Standard_EXPORT void IncreaseVMultiplicity (const Standard_Integer VIndex, const Standard_Integer M) ;
//! Increases until order M the multiplicity of the set of knots
//! FromI1,...., ToI2 in the V direction. This method can be used to
//! make a BSplineSurface into a PiecewiseBezier B_spline
//! surface. If <me> was uniform, it can become non-uniform.
//!
//! Raised if FromI1 or ToI2 is out of the range [FirstVKnotIndex,
//! LastVKnotIndex] given by the methods with the same name.
//!
//! M should be greater than the previous multiplicity of the
//! all the knots FromI1,..., ToI2 and lower or equal to the
//! Degree of the surface in the V parametric direction.
Standard_EXPORT void IncreaseVMultiplicity (const Standard_Integer FromI1, const Standard_Integer ToI2, const Standard_Integer M) ;
//! Increments the multiplicity of the consecutives vknots FromI1..ToI2
//! by step. The multiplicity of each knot FromI1,.....,ToI2 must be
//! lower or equal to the VDegree of the B_spline.
//!
//! Raised if FromI1 or ToI2 is not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
//!
//! Raised if one knot has a multiplicity greater than VDegree.
Standard_EXPORT void IncrementVMultiplicity (const Standard_Integer FromI1, const Standard_Integer ToI2, const Standard_Integer Step) ;
//! Inserts a knot value in the sequence of UKnots. If U is a knot
//! value this method increases the multiplicity of the knot if the
//! previous multiplicity was lower than M else it does nothing. The
//! tolerance criterion is ParametricTolerance. ParametricTolerance
//! should be greater or equal than Resolution from package gp.
//!
//! Raised if U is out of the bounds [U1, U2] given by the methods
//! Bounds, the criterion ParametricTolerance is used.
//! Raised if M is not in the range [1, UDegree].
Standard_EXPORT void InsertUKnot (const Standard_Real U, const Standard_Integer M, const Standard_Real ParametricTolerance, const Standard_Boolean Add = Standard_True) ;
//! Inserts a knot value in the sequence of VKnots. If V is a knot
//! value this method increases the multiplicity of the knot if the
//! previous multiplicity was lower than M otherwise it does nothing.
//! The tolerance criterion is ParametricTolerance.
//! ParametricTolerance should be greater or equal than Resolution
//! from package gp.
//!
//! raises if V is out of the Bounds [V1, V2] given by the methods
//! Bounds, the criterion ParametricTolerance is used.
//! raises if M is not in the range [1, VDegree].
Standard_EXPORT void InsertVKnot (const Standard_Real V, const Standard_Integer M, const Standard_Real ParametricTolerance, const Standard_Boolean Add = Standard_True) ;
//! Segments the surface between U1 and U2 in the U-Direction.
//! between V1 and V2 in the V-Direction.
//! The control points are modified, the first and the last point
//! are not the same.
//! Warnings :
//! Even if <me> is not closed it can become closed after the
//! segmentation for example if U1 or U2 are out of the bounds
//! of the surface <me> or if the surface makes loop.
//! raises if U2 < U1 or V2 < V1
Standard_EXPORT void Segment (const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2) ;
//! Segments the surface between U1 and U2 in the U-Direction.
//! between V1 and V2 in the V-Direction.
//!
//! same as Segment but do nothing if U1 and U2 (resp. V1 and V2) are
//! equal to the bounds in U (resp. in V) of <me>.
//! For example, if <me> is periodic in V, it will be always periodic
//! in V after the segmentation if the bounds in V are unchanged
//!
//! Warnings :
//! Even if <me> is not closed it can become closed after the
//! segmentation for example if U1 or U2 are out of the bounds
//! of the surface <me> or if the surface makes loop.
//! raises if U2 < U1 or V2 < V1
Standard_EXPORT void CheckAndSegment (const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2) ;
//! Substitutes the UKnots of range UIndex with K.
//!
//! Raised if UIndex < 1 or UIndex > NbUKnots
//!
//! Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1)
Standard_EXPORT void SetUKnot (const Standard_Integer UIndex, const Standard_Real K) ;
//! Changes all the U-knots of the surface.
//! The multiplicity of the knots are not modified.
//!
//! Raised if there is an index such that UK (Index+1) <= UK (Index).
//!
//! Raised if UK.Lower() < 1 or UK.Upper() > NbUKnots
Standard_EXPORT void SetUKnots (const TColStd_Array1OfReal& UK) ;
//! Changes the value of the UKnots of range UIndex and
//! increases its multiplicity.
//!
//! Raised if UIndex is not in the range [FirstUKnotIndex,
//! LastUKnotIndex] given by the methods with the same name.
//!
//! Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1)
//! M must be lower than UDegree and greater than the previous
//! multiplicity of the knot of range UIndex.
Standard_EXPORT void SetUKnot (const Standard_Integer UIndex, const Standard_Real K, const Standard_Integer M) ;
//! Substitutes the VKnots of range VIndex with K.
//!
//! Raised if VIndex < 1 or VIndex > NbVKnots
//!
//! Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1)
Standard_EXPORT void SetVKnot (const Standard_Integer VIndex, const Standard_Real K) ;
//! Changes all the V-knots of the surface.
//! The multiplicity of the knots are not modified.
//!
//! Raised if there is an index such that VK (Index+1) <= VK (Index).
//!
//! Raised if VK.Lower() < 1 or VK.Upper() > NbVKnots
Standard_EXPORT void SetVKnots (const TColStd_Array1OfReal& VK) ;
//! Changes the value of the VKnots of range VIndex and increases
//! its multiplicity.
//!
//! Raised if VIndex is not in the range [FirstVKnotIndex,
//! LastVKnotIndex] given by the methods with the same name.
//!
//! Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1)
//! M must be lower than VDegree and greater than the previous
//! multiplicity of the knot of range VIndex.
Standard_EXPORT void SetVKnot (const Standard_Integer VIndex, const Standard_Real K, const Standard_Integer M) ;
//! Locates the parametric value U in the sequence of UKnots.
//! If "WithKnotRepetition" is True we consider the knot's
//! representation with repetition of multiple knot value,
//! otherwise we consider the knot's representation with
//! no repetition of multiple knot values.
//! UKnots (I1) <= U <= UKnots (I2)
//! . if I1 = I2 U is a knot value (the tolerance criterion
//! ParametricTolerance is used).
//! . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance)
//! . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance)
Standard_EXPORT void LocateU (const Standard_Real U, const Standard_Real ParametricTolerance, Standard_Integer& I1, Standard_Integer& I2, const Standard_Boolean WithKnotRepetition = Standard_False) const;
//! Locates the parametric value U in the sequence of knots.
//! If "WithKnotRepetition" is True we consider the knot's
//! representation with repetition of multiple knot value,
//! otherwise we consider the knot's representation with
//! no repetition of multiple knot values.
//! VKnots (I1) <= V <= VKnots (I2)
//! . if I1 = I2 V is a knot value (the tolerance criterion
//! ParametricTolerance is used).
//! . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance)
//! . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance)
//! poles insertion and removing
//! The following methods are available only if the surface
//! is Uniform or QuasiUniform in the considered direction
//! The knot repartition is modified.
Standard_EXPORT void LocateV (const Standard_Real V, const Standard_Real ParametricTolerance, Standard_Integer& I1, Standard_Integer& I2, const Standard_Boolean WithKnotRepetition = Standard_False) const;
//! Substitutes the pole of range (UIndex, VIndex) with P.
//! If the surface is rational the weight of range (UIndex, VIndex)
//! is not modified.
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or
//! VIndex > NbVPoles.
Standard_EXPORT void SetPole (const Standard_Integer UIndex, const Standard_Integer VIndex, const gp_Pnt& P) ;
//! Substitutes the pole and the weight of range (UIndex, VIndex)
//! with P and W.
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or
//! VIndex > NbVPoles.
//! Raised if Weight <= Resolution from package gp.
Standard_EXPORT void SetPole (const Standard_Integer UIndex, const Standard_Integer VIndex, const gp_Pnt& P, const Standard_Real Weight) ;
//! Changes a column of poles or a part of this column.
//! Raised if Vindex < 1 or VIndex > NbVPoles.
//!
//! Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles.
Standard_EXPORT void SetPoleCol (const Standard_Integer VIndex, const TColgp_Array1OfPnt& CPoles) ;
//! Changes a column of poles or a part of this column with the
//! corresponding weights. If the surface was rational it can
//! become non rational. If the surface was non rational it can
//! become rational.
//! Raised if Vindex < 1 or VIndex > NbVPoles.
//!
//! Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles
//! Raised if the bounds of CPoleWeights are not the same as the
//! bounds of CPoles.
//! Raised if one of the weight value of CPoleWeights is lower or
//! equal to Resolution from package gp.
Standard_EXPORT void SetPoleCol (const Standard_Integer VIndex, const TColgp_Array1OfPnt& CPoles, const TColStd_Array1OfReal& CPoleWeights) ;
//! Changes a row of poles or a part of this row with the
//! corresponding weights. If the surface was rational it can
//! become non rational. If the surface was non rational it can
//! become rational.
//! Raised if Uindex < 1 or UIndex > NbUPoles.
//!
//! Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles
//! raises if the bounds of CPoleWeights are not the same as the
//! bounds of CPoles.
//! Raised if one of the weight value of CPoleWeights is lower or
//! equal to Resolution from package gp.
Standard_EXPORT void SetPoleRow (const Standard_Integer UIndex, const TColgp_Array1OfPnt& CPoles, const TColStd_Array1OfReal& CPoleWeights) ;
//! Changes a row of poles or a part of this row.
//! Raised if Uindex < 1 or UIndex > NbUPoles.
//!
//! Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles.
Standard_EXPORT void SetPoleRow (const Standard_Integer UIndex, const TColgp_Array1OfPnt& CPoles) ;
//! Changes the weight of the pole of range UIndex, VIndex.
//! If the surface was non rational it can become rational.
//! If the surface was rational it can become non rational.
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or
//! VIndex > NbVPoles
//!
//! Raised if weight is lower or equal to Resolution from
//! package gp
Standard_EXPORT void SetWeight (const Standard_Integer UIndex, const Standard_Integer VIndex, const Standard_Real Weight) ;
//! Changes a column of weights of a part of this column.
//!
//! Raised if VIndex < 1 or VIndex > NbVPoles
//!
//! Raised if CPoleWeights.Lower() < 1 or
//! CPoleWeights.Upper() > NbUPoles.
//! Raised if a weight value is lower or equal to Resolution
//! from package gp.
Standard_EXPORT void SetWeightCol (const Standard_Integer VIndex, const TColStd_Array1OfReal& CPoleWeights) ;
//! Changes a row of weights or a part of this row.
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles
//!
//! Raised if CPoleWeights.Lower() < 1 or
//! CPoleWeights.Upper() > NbVPoles.
//! Raised if a weight value is lower or equal to Resolution
//! from package gp.
Standard_EXPORT void SetWeightRow (const Standard_Integer UIndex, const TColStd_Array1OfReal& CPoleWeights) ;
//! Move a point with parameter U and V to P.
//! given u,v as parameters) to reach a new position
//! UIndex1, UIndex2, VIndex1, VIndex2:
//! indicates the poles which can be moved
//! if Problem in BSplineBasis calculation, no change
//! for the curve and
//! UFirstIndex, VLastIndex = 0
//! VFirstIndex, VLastIndex = 0
//!
//! Raised if UIndex1 < UIndex2 or VIndex1 < VIndex2 or
//! UIndex1 < 1 || UIndex1 > NbUPoles or
//! UIndex2 < 1 || UIndex2 > NbUPoles
//! VIndex1 < 1 || VIndex1 > NbVPoles or
//! VIndex2 < 1 || VIndex2 > NbVPoles
//! characteristics of the surface
Standard_EXPORT void MovePoint (const Standard_Real U, const Standard_Real V, const gp_Pnt& P, const Standard_Integer UIndex1, const Standard_Integer UIndex2, const Standard_Integer VIndex1, const Standard_Integer VIndex2, Standard_Integer& UFirstIndex, Standard_Integer& ULastIndex, Standard_Integer& VFirstIndex, Standard_Integer& VLastIndex) ;
//! Returns true if the first control points row and the last
//! control points row are identical. The tolerance criterion
//! is Resolution from package gp.
Standard_EXPORT Standard_Boolean IsUClosed() const;
//! Returns true if the first control points column and the
//! last last control points column are identical.
//! The tolerance criterion is Resolution from package gp.
Standard_EXPORT Standard_Boolean IsVClosed() const;
//! Returns True if the order of continuity of the surface in the
//! U direction is N.
//! Raised if N < 0.
Standard_EXPORT Standard_Boolean IsCNu (const Standard_Integer N) const;
//! Returns True if the order of continuity of the surface
//! in the V direction is N.
//! Raised if N < 0.
Standard_EXPORT Standard_Boolean IsCNv (const Standard_Integer N) const;
//! Returns True if the surface is closed in the U direction
//! and if the B-spline has been turned into a periodic surface
//! using the function SetUPeriodic.
Standard_EXPORT Standard_Boolean IsUPeriodic() const;
//! Returns False if for each row of weights all the weights
//! are identical.
//! The tolerance criterion is resolution from package gp.
//! Example :
//! |1.0, 1.0, 1.0|
//! if Weights = |0.5, 0.5, 0.5| returns False
//! |2.0, 2.0, 2.0|
Standard_EXPORT Standard_Boolean IsURational() const;
//! Returns True if the surface is closed in the V direction
//! and if the B-spline has been turned into a periodic
//! surface using the function SetVPeriodic.
Standard_EXPORT Standard_Boolean IsVPeriodic() const;
//! Returns False if for each column of weights all the weights
//! are identical.
//! The tolerance criterion is resolution from package gp.
//! Examples :
//! |1.0, 2.0, 0.5|
//! if Weights = |1.0, 2.0, 0.5| returns False
//! |1.0, 2.0, 0.5|
Standard_EXPORT Standard_Boolean IsVRational() const;
//! Tells whether the Cache is valid for the
//! given parameter
//! Warnings : the parameter must be normalized within
//! the period if the curve is periodic. Otherwise
//! the answer will be false
Standard_EXPORT Standard_Boolean IsCacheValid (const Standard_Real UParameter, const Standard_Real VParameter) const;
//! Returns the parametric bounds of the surface.
//! Warnings :
//! These parametric values are the bounds of the array of
//! knots UKnots and VKnots only if the first knots and the
//! last knots have a multiplicity equal to UDegree + 1 or
//! VDegree + 1
Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const;
//! Returns the continuity of the surface :
//! C0 : only geometric continuity,
//! C1 : continuity of the first derivative all along the Surface,
//! C2 : continuity of the second derivative all along the Surface,
//! C3 : continuity of the third derivative all along the Surface,
//! CN : the order of continuity is infinite.
//! A B-spline surface is infinitely continuously differentiable
//! for the couple of parameters U, V such thats U != UKnots(i)
//! and V != VKnots(i). The continuity of the surface at a knot
//! value depends on the multiplicity of this knot.
//! Example :
//! If the surface is C1 in the V direction and C2 in the U
//! direction this function returns Shape = C1.
Standard_EXPORT GeomAbs_Shape Continuity() const;
//! Computes the Index of the UKnots which gives the first
//! parametric value of the surface in the U direction.
//! The UIso curve corresponding to this value is a
//! boundary curve of the surface.
Standard_EXPORT Standard_Integer FirstUKnotIndex() const;
//! Computes the Index of the VKnots which gives the
//! first parametric value of the surface in the V direction.
//! The VIso curve corresponding to this knot is a boundary
//! curve of the surface.
Standard_EXPORT Standard_Integer FirstVKnotIndex() const;
//! Computes the Index of the UKnots which gives the
//! last parametric value of the surface in the U direction.
//! The UIso curve corresponding to this knot is a boundary
//! curve of the surface.
Standard_EXPORT Standard_Integer LastUKnotIndex() const;
//! Computes the Index of the VKnots which gives the
//! last parametric value of the surface in the V direction.
//! The VIso curve corresponding to this knot is a
//! boundary curve of the surface.
Standard_EXPORT Standard_Integer LastVKnotIndex() const;
//! Returns the number of knots in the U direction.
Standard_EXPORT Standard_Integer NbUKnots() const;
//! Returns number of poles in the U direction.
Standard_EXPORT Standard_Integer NbUPoles() const;
//! Returns the number of knots in the V direction.
Standard_EXPORT Standard_Integer NbVKnots() const;
//! Returns the number of poles in the V direction.
Standard_EXPORT Standard_Integer NbVPoles() const;
//! Returns the pole of range (UIndex, VIndex).
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or
//! VIndex > NbVPoles.
Standard_EXPORT gp_Pnt Pole (const Standard_Integer UIndex, const Standard_Integer VIndex) const;
//! Returns the poles of the B-spline surface.
//!
//! Raised if the length of P in the U and V direction
//! is not equal to NbUpoles and NbVPoles.
Standard_EXPORT void Poles (TColgp_Array2OfPnt& P) const;
//! Returns the poles of the B-spline surface.
Standard_EXPORT const TColgp_Array2OfPnt& Poles() const;
//! Returns the degree of the normalized B-splines Ni,n in the U
//! direction.
Standard_EXPORT Standard_Integer UDegree() const;
//! Returns the Knot value of range UIndex.
//! Raised if UIndex < 1 or UIndex > NbUKnots
Standard_EXPORT Standard_Real UKnot (const Standard_Integer UIndex) const;
//! Returns NonUniform or Uniform or QuasiUniform or
//! PiecewiseBezier. If all the knots differ by a
//! positive constant from the preceding knot in the U
//! direction the B-spline surface can be :
//! - Uniform if all the knots are of multiplicity 1,
//! - QuasiUniform if all the knots are of multiplicity 1
//! except for the first and last knot which are of
//! multiplicity Degree + 1,
//! - PiecewiseBezier if the first and last knots have
//! multiplicity Degree + 1 and if interior knots have
//! multiplicity Degree
//! otherwise the surface is non uniform in the U direction
//! The tolerance criterion is Resolution from package gp.
Standard_EXPORT GeomAbs_BSplKnotDistribution UKnotDistribution() const;
//! Returns the knots in the U direction.
//!
//! Raised if the length of Ku is not equal to the number of knots
//! in the U direction.
Standard_EXPORT void UKnots (TColStd_Array1OfReal& Ku) const;
//! Returns the knots in the U direction.
Standard_EXPORT const TColStd_Array1OfReal& UKnots() const;
//! Returns the uknots sequence.
//! In this sequence the knots with a multiplicity greater than 1
//! are repeated.
//! Example :
//! Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
//!
//! Raised if the length of Ku is not equal to NbUPoles + UDegree + 1
Standard_EXPORT void UKnotSequence (TColStd_Array1OfReal& Ku) const;
//! Returns the uknots sequence.
//! In this sequence the knots with a multiplicity greater than 1
//! are repeated.
//! Example :
//! Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
Standard_EXPORT const TColStd_Array1OfReal& UKnotSequence() const;
//! Returns the multiplicity value of knot of range UIndex in
//! the u direction.
//! Raised if UIndex < 1 or UIndex > NbUKnots.
Standard_EXPORT Standard_Integer UMultiplicity (const Standard_Integer UIndex) const;
//! Returns the multiplicities of the knots in the U direction.
//!
//! Raised if the length of Mu is not equal to the number of
//! knots in the U direction.
Standard_EXPORT void UMultiplicities (TColStd_Array1OfInteger& Mu) const;
//! Returns the multiplicities of the knots in the U direction.
Standard_EXPORT const TColStd_Array1OfInteger& UMultiplicities() const;
//! Returns the degree of the normalized B-splines Ni,d in the
//! V direction.
Standard_EXPORT Standard_Integer VDegree() const;
//! Returns the Knot value of range VIndex.
Standard_EXPORT Standard_Real VKnot (const Standard_Integer VIndex) const;
//! Returns NonUniform or Uniform or QuasiUniform or
//! PiecewiseBezier. If all the knots differ by a positive
//! constant from the preceding knot in the V direction the
//! B-spline surface can be :
//! - Uniform if all the knots are of multiplicity 1,
//! - QuasiUniform if all the knots are of multiplicity 1
//! except for the first and last knot which are of
//! multiplicity Degree + 1,
//! - PiecewiseBezier if the first and last knots have
//! multiplicity Degree + 1 and if interior knots have
//! multiplicity Degree
//! otherwise the surface is non uniform in the V direction.
//! The tolerance criterion is Resolution from package gp.
Standard_EXPORT GeomAbs_BSplKnotDistribution VKnotDistribution() const;
//! Returns the knots in the V direction.
//!
//! Raised if the length of Kv is not equal to the number of
//! knots in the V direction.
Standard_EXPORT void VKnots (TColStd_Array1OfReal& Kv) const;
//! Returns the knots in the V direction.
Standard_EXPORT const TColStd_Array1OfReal& VKnots() const;
//! Returns the vknots sequence.
//! In this sequence the knots with a multiplicity greater than 1
//! are repeated.
//! Example :
//! Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
//!
//! Raised if the length of Kv is not equal to NbVPoles + VDegree + 1
Standard_EXPORT void VKnotSequence (TColStd_Array1OfReal& Kv) const;
//! Returns the vknots sequence.
//! In this sequence the knots with a multiplicity greater than 1
//! are repeated.
//! Example :
//! Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
Standard_EXPORT const TColStd_Array1OfReal& VKnotSequence() const;
//! Returns the multiplicity value of knot of range VIndex in
//! the v direction.
//! Raised if VIndex < 1 or VIndex > NbVKnots
Standard_EXPORT Standard_Integer VMultiplicity (const Standard_Integer VIndex) const;
//! Returns the multiplicities of the knots in the V direction.
//!
//! Raised if the length of Mv is not equal to the number of
//! knots in the V direction.
Standard_EXPORT void VMultiplicities (TColStd_Array1OfInteger& Mv) const;
//! Returns the multiplicities of the knots in the V direction.
Standard_EXPORT const TColStd_Array1OfInteger& VMultiplicities() const;
//! Returns the weight value of range UIndex, VIndex.
//!
//! Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1
//! or VIndex > NbVPoles.
Standard_EXPORT Standard_Real Weight (const Standard_Integer UIndex, const Standard_Integer VIndex) const;
//! Returns the weights of the B-spline surface.
//!
//! Raised if the length of W in the U and V direction is
//! not equal to NbUPoles and NbVPoles.
Standard_EXPORT void Weights (TColStd_Array2OfReal& W) const;
//! Returns the weights of the B-spline surface.
//! value and derivatives computation
Standard_EXPORT const TColStd_Array2OfReal& Weights() const;
Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const;
//! Raised if the continuity of the surface is not C1.
Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const;
//! Raised if the continuity of the surface is not C2.
Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const;
//! Raised if the continuity of the surface is not C3.
Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const;
//! Nu is the order of derivation in the U parametric direction and
//! Nv is the order of derivation in the V parametric direction.
//!
//! Raised if the continuity of the surface is not CNu in the U
//! direction and CNv in the V direction.
//!
//! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
//!
//! The following functions computes the point for the
//! parametric values (U, V) and the derivatives at
//! this point on the B-spline surface patch delimited
//! with the knots FromUK1, FromVK1 and the knots ToUK2,
//! ToVK2. (U, V) can be out of these parametric bounds
//! but for the computation we only use the definition
//! of the surface between these knots. This method is
//! useful to compute local derivative, if the order of
//! continuity of the whole surface is not greater enough.
//! Inside the parametric knot's domain previously defined
//! the evaluations are the same as if we consider the whole
//! definition of the surface. Of course the evaluations are
//! different outside this parametric domain.
Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const;
//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT void LocalD0 (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2, gp_Pnt& P) const;
//! Raised if the local continuity of the surface is not C1
//! between the knots FromUK1, ToUK2 and FromVK1, ToVK2.
//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT void LocalD1 (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const;
//! Raised if the local continuity of the surface is not C2
//! between the knots FromUK1, ToUK2 and FromVK1, ToVK2.
//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT void LocalD2 (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const;
//! Raised if the local continuity of the surface is not C3
//! between the knots FromUK1, ToUK2 and FromVK1, ToVK2.
//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT void LocalD3 (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const;
//! Raised if the local continuity of the surface is not CNu
//! between the knots FromUK1, ToUK2 and CNv between the knots
//! FromVK1, ToVK2.
//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT gp_Vec LocalDN (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2, const Standard_Integer Nu, const Standard_Integer Nv) const;
//! Computes the point of parameter U, V on the BSpline surface patch
//! defines between the knots UK1 UK2, VK1, VK2. U can be out of the
//! bounds [Knot UK1, Knot UK2] and V can be outof the bounds
//! [Knot VK1, Knot VK2] but for the computation we only use the
//! definition of the surface between these knot values.
//! Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2.
//!
//! Raises if FromUK1, ToUK2 are not in the range [FirstUKnotIndex,
//! LastUKnotIndex] or if FromVK1, ToVK2 are not in the range
//! [FirstVKnotIndex, LastVKnotIndex]
Standard_EXPORT gp_Pnt LocalValue (const Standard_Real U, const Standard_Real V, const Standard_Integer FromUK1, const Standard_Integer ToUK2, const Standard_Integer FromVK1, const Standard_Integer ToVK2) const;
//! Computes the U isoparametric curve.
//! A B-spline curve is returned.
Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const;
//! Computes the V isoparametric curve.
//! A B-spline curve is returned.
Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const;
//! Computes the U isoparametric curve.
//! If CheckRational=False, no try to make it non-rational.
//! A B-spline curve is returned.
Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U, const Standard_Boolean CheckRational) const;
//! Computes the V isoparametric curve.
//! If CheckRational=False, no try to make it non-rational.
//! A B-spline curve is returned.
//! transformations
Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V, const Standard_Boolean CheckRational) const;
//! Applies the transformation T to this BSpline surface.
Standard_EXPORT void Transform (const gp_Trsf& T) ;
//! Returns the value of the maximum degree of the normalized
//! B-spline basis functions in the u and v directions.
Standard_EXPORT static Standard_Integer MaxDegree() ;
//! Computes two tolerance values for this BSpline
//! surface, based on the given tolerance in 3D space
//! Tolerance3D. The tolerances computed are:
//! - UTolerance in the u parametric direction, and
//! - VTolerance in the v parametric direction.
//! If f(u,v) is the equation of this BSpline surface,
//! UTolerance and VTolerance guarantee that :
//! | u1 - u0 | < UTolerance and
//! | v1 - v0 | < VTolerance
//! ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
Standard_EXPORT void Resolution (const Standard_Real Tolerance3D, Standard_Real& UTolerance, Standard_Real& VTolerance) ;
//! Creates a new object which is a copy of this BSpline surface.
Standard_EXPORT Handle(Geom_Geometry) Copy() const;
DEFINE_STANDARD_RTTI(Geom_BSplineSurface)
protected:
private:
//! Recompute the flatknots, the knotsdistribution, the
//! continuity for U.
Standard_EXPORT void UpdateUKnots() ;
//! Recompute the flatknots, the knotsdistribution, the
//! continuity for V.
Standard_EXPORT void UpdateVKnots() ;
//! Invalidates the cache. This has to be private this has to be private
Standard_EXPORT void InvalidateCache() ;
//! updates the cache and validates it
Standard_EXPORT void ValidateCache (const Standard_Real UParameter, const Standard_Real VParameter) ;
Standard_Boolean urational;
Standard_Boolean vrational;
Standard_Boolean uperiodic;
Standard_Boolean vperiodic;
GeomAbs_BSplKnotDistribution uknotSet;
GeomAbs_BSplKnotDistribution vknotSet;
GeomAbs_Shape Usmooth;
GeomAbs_Shape Vsmooth;
Standard_Integer udeg;
Standard_Integer vdeg;
Handle(TColgp_HArray2OfPnt) poles;
Handle(TColStd_HArray2OfReal) weights;
Handle(TColStd_HArray1OfReal) ufknots;
Handle(TColStd_HArray1OfReal) vfknots;
Handle(TColStd_HArray1OfReal) uknots;
Handle(TColStd_HArray1OfReal) vknots;
Handle(TColStd_HArray1OfInteger) umults;
Handle(TColStd_HArray1OfInteger) vmults;
Handle(TColgp_HArray2OfPnt) cachepoles;
Handle(TColStd_HArray2OfReal) cacheweights;
Standard_Real ucacheparameter;
Standard_Real vcacheparameter;
Standard_Real ucachespanlenght;
Standard_Real vcachespanlenght;
Standard_Integer ucachespanindex;
Standard_Integer vcachespanindex;
Standard_Integer validcache;
Standard_Real umaxderivinv;
Standard_Real vmaxderivinv;
Standard_Boolean maxderivinvok;
Standard_Mutex myMutex;
};
#endif // _Geom_BSplineSurface_HeaderFile
|