1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _Law_BSpline_HeaderFile
#define _Law_BSpline_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_Law_BSpline.hxx>
#include <Standard_Boolean.hxx>
#include <GeomAbs_BSplKnotDistribution.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Integer.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <Handle_TColStd_HArray1OfInteger.hxx>
#include <MMgt_TShared.hxx>
#include <Standard_Real.hxx>
class TColStd_HArray1OfReal;
class TColStd_HArray1OfInteger;
class Standard_ConstructionError;
class Standard_DimensionError;
class Standard_DomainError;
class Standard_OutOfRange;
class Standard_RangeError;
class Standard_NoSuchObject;
class TColStd_Array1OfReal;
class TColStd_Array1OfInteger;
//! Definition of the 1D B_spline curve.
//!
//! Uniform or non-uniform
//! Rational or non-rational
//! Periodic or non-periodic
//!
//! a b-spline curve is defined by :
//!
//! The Degree (up to 25)
//!
//! The Poles (and the weights if it is rational)
//!
//! The Knots and Multiplicities
//!
//! The knot vector is an increasing sequence of
//! reals without repetition. The multiplicities are
//! the repetition of the knots.
//!
//! If the knots are regularly spaced (the difference
//! of two consecutive knots is a constant), the
//! knots repartition is :
//!
//! - Uniform if all multiplicities are 1.
//!
//! - Quasi-uniform if all multiplicities are 1
//! but the first and the last which are Degree+1.
//!
//! - PiecewiseBezier if all multiplicites are
//! Degree but the first and the last which are
//! Degree+1.
//!
//! The curve may be periodic.
//!
//! On a periodic curve if there are k knots and p
//! poles. the period is knot(k) - knot(1)
//!
//! the poles and knots are infinite vectors with :
//!
//! knot(i+k) = knot(i) + period
//!
//! pole(i+p) = pole(i)
//!
//! References :
//! . A survey of curve and surface methods in CADG Wolfgang BOHM
//! CAGD 1 (1984)
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
//! cagd 5 (1988)
//! . Blossoming and knot insertion algorithms for B-spline curves
//! Ronald N. GOLDMAN
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
//! . Curves and Surfaces for Computer Aided Geometric Design,
//! a practical guide Gerald Farin
class Law_BSpline : public MMgt_TShared
{
public:
//! Creates a non-rational B_spline curve on the
//! basis <Knots, Multiplicities> of degree <Degree>.
Standard_EXPORT Law_BSpline(const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Multiplicities, const Standard_Integer Degree, const Standard_Boolean Periodic = Standard_False);
//! Creates a rational B_spline curve on the basis
//! <Knots, Multiplicities> of degree <Degree>.
Standard_EXPORT Law_BSpline(const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Multiplicities, const Standard_Integer Degree, const Standard_Boolean Periodic = Standard_False);
//! Increase the degree to <Degree>. Nothing is done
//! if <Degree> is lower or equal to the current
//! degree.
Standard_EXPORT void IncreaseDegree (const Standard_Integer Degree) ;
//! Increases the multiplicity of the knot <Index> to
//! <M>.
//!
//! If <M> is lower or equal to the current
//! multiplicity nothing is done. If <M> is higher than
//! the degree the degree is used.
//! If <Index> is not in [FirstUKnotIndex, LastUKnotIndex]
Standard_EXPORT void IncreaseMultiplicity (const Standard_Integer Index, const Standard_Integer M) ;
//! Increases the multiplicities of the knots in
//! [I1,I2] to <M>.
//!
//! For each knot if <M> is lower or equal to the
//! current multiplicity nothing is done. If <M> is
//! higher than the degree the degree is used.
//! If <I1,I2> are not in [FirstUKnotIndex, LastUKnotIndex]
Standard_EXPORT void IncreaseMultiplicity (const Standard_Integer I1, const Standard_Integer I2, const Standard_Integer M) ;
//! Increment the multiplicities of the knots in
//! [I1,I2] by <M>.
//!
//! If <M> is not positive nithing is done.
//!
//! For each knot the resulting multiplicity is
//! limited to the Degree.
//! If <I1,I2> are not in [FirstUKnotIndex, LastUKnotIndex]
Standard_EXPORT void IncrementMultiplicity (const Standard_Integer I1, const Standard_Integer I2, const Standard_Integer M) ;
//! Inserts a knot value in the sequence of knots. If
//! <U> is an existing knot the multiplicity is
//! increased by <M>.
//!
//! If U is not on the parameter range nothing is
//! done.
//!
//! If the multiplicity is negative or null nothing is
//! done. The new multiplicity is limited to the
//! degree.
//!
//! The tolerance criterion for knots equality is
//! the max of Epsilon(U) and ParametricTolerance.
Standard_EXPORT void InsertKnot (const Standard_Real U, const Standard_Integer M = 1, const Standard_Real ParametricTolerance = 0.0, const Standard_Boolean Add = Standard_True) ;
//! Inserts a set of knots values in the sequence of
//! knots.
//!
//! For each U = Knots(i), M = Mults(i)
//!
//! If <U> is an existing knot the multiplicity is
//! increased by <M> if <Add> is True, increased to
//! <M> if <Add> is False.
//!
//! If U is not on the parameter range nothing is
//! done.
//!
//! If the multiplicity is negative or null nothing is
//! done. The new multiplicity is limited to the
//! degree.
//!
//! The tolerance criterion for knots equality is
//! the max of Epsilon(U) and ParametricTolerance.
Standard_EXPORT void InsertKnots (const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Real ParametricTolerance = 0.0, const Standard_Boolean Add = Standard_False) ;
//! Decrement the knots multiplicity to <M>. If M is
//! 0 the knot is removed. The Poles sequence is
//! modified.
//!
//! As there are two ways to compute the new poles the
//! average is computed if the distance is lower than
//! the <Tolerance>, else False is returned.
//!
//! A low tolerance is used to prevent the modification
//! of the curve.
//!
//! A high tolerance is used to "smooth" the curve.
//!
//! Raised if Index is not in the range
//! [FirstUKnotIndex, LastUKnotIndex]
//! pole insertion and pole removing
//! this operation is limited to the Uniform or QuasiUniform
//! BSplineCurve. The knot values are modified . If the BSpline is
//! NonUniform or Piecewise Bezier an exception Construction error
//! is raised.
Standard_EXPORT Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer M, const Standard_Real Tolerance) ;
//! Changes the direction of parametrization of <me>. The Knot
//! sequence is modified, the FirstParameter and the
//! LastParameter are not modified. The StartPoint of the
//! initial curve becomes the EndPoint of the reversed curve
//! and the EndPoint of the initial curve becomes the StartPoint
//! of the reversed curve.
Standard_EXPORT void Reverse() ;
//! Returns the parameter on the reversed curve for
//! the point of parameter U on <me>.
//!
//! returns UFirst + ULast - U
Standard_EXPORT Standard_Real ReversedParameter (const Standard_Real U) const;
//! Segments the curve between U1 and U2.
//! The control points are modified, the first and the last point
//! are not the same.
//! Warnings :
//! Even if <me> is not closed it can become closed after the
//! segmentation for example if U1 or U2 are out of the bounds
//! of the curve <me> or if the curve makes loop.
//! After the segmentation the length of a curve can be null.
//! raises if U2 < U1.
Standard_EXPORT void Segment (const Standard_Real U1, const Standard_Real U2) ;
//! Changes the knot of range Index.
//! The multiplicity of the knot is not modified.
//! Raised if K >= Knots(Index+1) or K <= Knots(Index-1).
//! Raised if Index < 1 || Index > NbKnots
Standard_EXPORT void SetKnot (const Standard_Integer Index, const Standard_Real K) ;
//! Changes all the knots of the curve
//! The multiplicity of the knots are not modified.
//!
//! Raised if there is an index such that K (Index+1) <= K (Index).
//!
//! Raised if K.Lower() < 1 or K.Upper() > NbKnots
Standard_EXPORT void SetKnots (const TColStd_Array1OfReal& K) ;
//! Changes the knot of range Index with its multiplicity.
//! You can increase the multiplicity of a knot but it is
//! not allowed to decrease the multiplicity of an existing knot.
//!
//! Raised if K >= Knots(Index+1) or K <= Knots(Index-1).
//! Raised if M is greater than Degree or lower than the previous
//! multiplicity of knot of range Index.
//! Raised if Index < 1 || Index > NbKnots
Standard_EXPORT void SetKnot (const Standard_Integer Index, const Standard_Real K, const Standard_Integer M) ;
//! returns the parameter normalized within
//! the period if the curve is periodic : otherwise
//! does not do anything
Standard_EXPORT void PeriodicNormalization (Standard_Real& U) const;
//! Makes a closed B-spline into a periodic curve. The curve is
//! periodic if the knot sequence is periodic and if the curve is
//! closed (The tolerance criterion is Resolution from gp).
//! The period T is equal to Knot(LastUKnotIndex) -
//! Knot(FirstUKnotIndex). A periodic B-spline can be uniform
//! or not.
//! Raised if the curve is not closed.
Standard_EXPORT void SetPeriodic() ;
//! Set the origin of a periodic curve at Knot(index)
//! KnotVector and poles are modified.
//! Raised if the curve is not periodic
//! Raised if index not in the range
//! [FirstUKnotIndex , LastUKnotIndex]
Standard_EXPORT void SetOrigin (const Standard_Integer Index) ;
//! Makes a non periodic curve. If the curve was non periodic
//! the curve is not modified.
Standard_EXPORT void SetNotPeriodic() ;
//! Substitutes the Pole of range Index with P.
//!
//! Raised if Index < 1 || Index > NbPoles
Standard_EXPORT void SetPole (const Standard_Integer Index, const Standard_Real P) ;
//! Substitutes the pole and the weight of range Index.
//! If the curve <me> is not rational it can become rational
//! If the curve was rational it can become non rational
//!
//! Raised if Index < 1 || Index > NbPoles
//! Raised if Weight <= 0.0
Standard_EXPORT void SetPole (const Standard_Integer Index, const Standard_Real P, const Standard_Real Weight) ;
//! Changes the weight for the pole of range Index.
//! If the curve was non rational it can become rational.
//! If the curve was rational it can become non rational.
//!
//! Raised if Index < 1 || Index > NbPoles
//! Raised if Weight <= 0.0
Standard_EXPORT void SetWeight (const Standard_Integer Index, const Standard_Real Weight) ;
//! Returns the continuity of the curve, the curve is at least C0.
//! Raised if N < 0.
Standard_EXPORT Standard_Boolean IsCN (const Standard_Integer N) const;
//! Returns true if the distance between the first point and the
//! last point of the curve is lower or equal to Resolution
//! from package gp.
//! Warnings :
//! The first and the last point can be different from the first
//! pole and the last pole of the curve.
Standard_EXPORT Standard_Boolean IsClosed() const;
//! Returns True if the curve is periodic.
Standard_EXPORT Standard_Boolean IsPeriodic() const;
//! Returns True if the weights are not identical.
//! The tolerance criterion is Epsilon of the class Real.
Standard_EXPORT Standard_Boolean IsRational() const;
//! Returns the global continuity of the curve :
//! C0 : only geometric continuity,
//! C1 : continuity of the first derivative all along the Curve,
//! C2 : continuity of the second derivative all along the Curve,
//! C3 : continuity of the third derivative all along the Curve,
//! CN : the order of continuity is infinite.
//! For a B-spline curve of degree d if a knot Ui has a
//! multiplicity p the B-spline curve is only Cd-p continuous
//! at Ui. So the global continuity of the curve can't be greater
//! than Cd-p where p is the maximum multiplicity of the interior
//! Knots. In the interior of a knot span the curve is infinitely
//! continuously differentiable.
Standard_EXPORT GeomAbs_Shape Continuity() const;
//! Computation of value and derivatives
Standard_EXPORT Standard_Integer Degree() const;
Standard_EXPORT Standard_Real Value (const Standard_Real U) const;
Standard_EXPORT void D0 (const Standard_Real U, Standard_Real& P) const;
Standard_EXPORT void D1 (const Standard_Real U, Standard_Real& P, Standard_Real& V1) const;
Standard_EXPORT void D2 (const Standard_Real U, Standard_Real& P, Standard_Real& V1, Standard_Real& V2) const;
Standard_EXPORT void D3 (const Standard_Real U, Standard_Real& P, Standard_Real& V1, Standard_Real& V2, Standard_Real& V3) const;
//! The following functions computes the point of parameter U and
//! the derivatives at this point on the B-spline curve arc
//! defined between the knot FromK1 and the knot ToK2. U can be
//! out of bounds [Knot (FromK1), Knot (ToK2)] but for the
//! computation we only use the definition of the curve between
//! these two knots. This method is useful to compute local
//! derivative, if the order of continuity of the whole curve is
//! not greater enough. Inside the parametric domain Knot
//! (FromK1), Knot (ToK2) the evaluations are the same as if we
//! consider the whole definition of the curve. Of course the
//! evaluations are different outside this parametric domain.
Standard_EXPORT Standard_Real DN (const Standard_Real U, const Standard_Integer N) const;
Standard_EXPORT Standard_Real LocalValue (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2) const;
Standard_EXPORT void LocalD0 (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Real& P) const;
Standard_EXPORT void LocalD1 (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Real& P, Standard_Real& V1) const;
Standard_EXPORT void LocalD2 (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Real& P, Standard_Real& V1, Standard_Real& V2) const;
Standard_EXPORT void LocalD3 (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Real& P, Standard_Real& V1, Standard_Real& V2, Standard_Real& V3) const;
Standard_EXPORT Standard_Real LocalDN (const Standard_Real U, const Standard_Integer FromK1, const Standard_Integer ToK2, const Standard_Integer N) const;
//! Returns the last point of the curve.
//! Warnings :
//! The last point of the curve is different from the last
//! pole of the curve if the multiplicity of the last knot
//! is lower than Degree.
Standard_EXPORT Standard_Real EndPoint() const;
//! For a B-spline curve the first parameter (which gives the start
//! point of the curve) is a knot value but if the multiplicity of
//! the first knot index is lower than Degree + 1 it is not the
//! first knot of the curve. This method computes the index of the
//! knot corresponding to the first parameter.
Standard_EXPORT Standard_Integer FirstUKnotIndex() const;
//! Computes the parametric value of the start point of the curve.
//! It is a knot value.
Standard_EXPORT Standard_Real FirstParameter() const;
//! Returns the knot of range Index. When there is a knot
//! with a multiplicity greater than 1 the knot is not repeated.
//! The method Multiplicity can be used to get the multiplicity
//! of the Knot.
//! Raised if Index < 1 or Index > NbKnots
Standard_EXPORT Standard_Real Knot (const Standard_Integer Index) const;
//! returns the knot values of the B-spline curve;
//!
//! Raised if the length of K is not equal to the number of knots.
Standard_EXPORT void Knots (TColStd_Array1OfReal& K) const;
//! Returns the knots sequence.
//! In this sequence the knots with a multiplicity greater than 1
//! are repeated.
//! Example :
//! K = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
//!
//! Raised if the length of K is not equal to NbPoles + Degree + 1
Standard_EXPORT void KnotSequence (TColStd_Array1OfReal& K) const;
//! Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier.
//! If all the knots differ by a positive constant from the
//! preceding knot the BSpline Curve can be :
//! - Uniform if all the knots are of multiplicity 1,
//! - QuasiUniform if all the knots are of multiplicity 1 except for
//! the first and last knot which are of multiplicity Degree + 1,
//! - PiecewiseBezier if the first and last knots have multiplicity
//! Degree + 1 and if interior knots have multiplicity Degree
//! A piecewise Bezier with only two knots is a BezierCurve.
//! else the curve is non uniform.
//! The tolerance criterion is Epsilon from class Real.
Standard_EXPORT GeomAbs_BSplKnotDistribution KnotDistribution() const;
//! For a BSpline curve the last parameter (which gives the
//! end point of the curve) is a knot value but if the
//! multiplicity of the last knot index is lower than
//! Degree + 1 it is not the last knot of the curve. This
//! method computes the index of the knot corresponding to
//! the last parameter.
Standard_EXPORT Standard_Integer LastUKnotIndex() const;
//! Computes the parametric value of the end point of the curve.
//! It is a knot value.
Standard_EXPORT Standard_Real LastParameter() const;
//! Locates the parametric value U in the sequence of knots.
//! If "WithKnotRepetition" is True we consider the knot's
//! representation with repetition of multiple knot value,
//! otherwise we consider the knot's representation with
//! no repetition of multiple knot values.
//! Knots (I1) <= U <= Knots (I2)
//! . if I1 = I2 U is a knot value (the tolerance criterion
//! ParametricTolerance is used).
//! . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance)
//! . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
Standard_EXPORT void LocateU (const Standard_Real U, const Standard_Real ParametricTolerance, Standard_Integer& I1, Standard_Integer& I2, const Standard_Boolean WithKnotRepetition = Standard_False) const;
//! Returns the multiplicity of the knots of range Index.
//! Raised if Index < 1 or Index > NbKnots
Standard_EXPORT Standard_Integer Multiplicity (const Standard_Integer Index) const;
//! Returns the multiplicity of the knots of the curve.
//!
//! Raised if the length of M is not equal to NbKnots.
Standard_EXPORT void Multiplicities (TColStd_Array1OfInteger& M) const;
//! Returns the number of knots. This method returns the number of
//! knot without repetition of multiple knots.
Standard_EXPORT Standard_Integer NbKnots() const;
//! Returns the number of poles
Standard_EXPORT Standard_Integer NbPoles() const;
//! Returns the pole of range Index.
//! Raised if Index < 1 or Index > NbPoles.
Standard_EXPORT Standard_Real Pole (const Standard_Integer Index) const;
//! Returns the poles of the B-spline curve;
//!
//! Raised if the length of P is not equal to the number of poles.
Standard_EXPORT void Poles (TColStd_Array1OfReal& P) const;
//! Returns the start point of the curve.
//! Warnings :
//! This point is different from the first pole of the curve if the
//! multiplicity of the first knot is lower than Degree.
Standard_EXPORT Standard_Real StartPoint() const;
//! Returns the weight of the pole of range Index .
//! Raised if Index < 1 or Index > NbPoles.
Standard_EXPORT Standard_Real Weight (const Standard_Integer Index) const;
//! Returns the weights of the B-spline curve;
//!
//! Raised if the length of W is not equal to NbPoles.
Standard_EXPORT void Weights (TColStd_Array1OfReal& W) const;
//! Returns the value of the maximum degree of the normalized
//! B-spline basis functions in this package.
Standard_EXPORT static Standard_Integer MaxDegree() ;
//! Changes the value of the Law at parameter U to NewValue.
//! and makes its derivative at U be derivative.
//! StartingCondition = -1 means first can move
//! EndingCondition = -1 means last point can move
//! StartingCondition = 0 means the first point cannot move
//! EndingCondition = 0 means the last point cannot move
//! StartingCondition = 1 means the first point and tangent cannot move
//! EndingCondition = 1 means the last point and tangent cannot move
//! and so forth
//! ErrorStatus != 0 means that there are not enought degree of freedom
//! with the constrain to deform the curve accordingly
Standard_EXPORT void MovePointAndTangent (const Standard_Real U, const Standard_Real NewValue, const Standard_Real Derivative, const Standard_Real Tolerance, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, Standard_Integer& ErrorStatus) ;
//! given Tolerance3D returns UTolerance
//! such that if f(t) is the curve we have
//! | t1 - t0| < Utolerance ===>
//! |f(t1) - f(t0)| < Tolerance3D
Standard_EXPORT void Resolution (const Standard_Real Tolerance3D, Standard_Real& UTolerance) const;
Standard_EXPORT Handle(Law_BSpline) Copy() const;
DEFINE_STANDARD_RTTI(Law_BSpline)
protected:
private:
//! Tells whether the Cache is valid for the
//! given parameter
//! Warnings : the parameter must be normalized within
//! the period if the curve is periodic. Otherwise
//! the answer will be false
Standard_EXPORT Standard_Boolean IsCacheValid (const Standard_Real Parameter) const;
//! Recompute the flatknots, the knotsdistribution, the
//! continuity.
Standard_EXPORT void UpdateKnots() ;
Standard_Boolean rational;
Standard_Boolean periodic;
GeomAbs_BSplKnotDistribution knotSet;
GeomAbs_Shape smooth;
Standard_Integer deg;
Handle(TColStd_HArray1OfReal) poles;
Handle(TColStd_HArray1OfReal) weights;
Handle(TColStd_HArray1OfReal) flatknots;
Handle(TColStd_HArray1OfReal) knots;
Handle(TColStd_HArray1OfInteger) mults;
};
#endif // _Law_BSpline_HeaderFile
|