1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gce_MakeParab_HeaderFile
#define _gce_MakeParab_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>
#include <gp_Parab.hxx>
#include <gce_Root.hxx>
#include <Standard_Real.hxx>
class StdFail_NotDone;
class gp_Ax2;
class gp_Ax1;
class gp_Pnt;
class gp_Parab;
//! This class implements the following algorithms used to
//! create Parab from gp.
//! Defines the parabola in the parameterization range :
//! ]-infinite, +infinite[
//! The vertex of the parabola is the "Location" point of the
//! local coordinate system (axis placement) of the parabola.
//!
//! The "XDirection" and the "YDirection" of this system define
//! the plane of the parabola.
//!
//! The "XAxis" of the parabola ("Location", "XDirection") is
//! the axis of symmetry of the parabola. The Xaxis is oriented
//! from the vertex of the parabola to the Focus of the parabola.
//!
//! The "YAxis" of the parabola ("Location", "YDirection") is
//! parallel to the directrix of the parabola.
//!
//! The equation of the parabola in the local coordinates system is
//! Y**2 = (2*P) * X
//! P is the distance between the focus and the directrix of the
//! parabola (called Parameter).
//! The focal length F = P/2 is the distance between the vertex
//! and the focus of the parabola.
//!
//! * Creates a parabola with its local coordinate system "A2"
//! and it's focal length "Focal".
//! * Create a parabola with its directrix and its focus point.
class gce_MakeParab : public gce_Root
{
public:
DEFINE_STANDARD_ALLOC
//! --- Purpose ;
//! Creates a parabola with its local coordinate system "A2"
//! and it's focal length "Focal".
//! The XDirection of A2 defines the axis of symmetry of the
//! parabola. The YDirection of A2 is parallel to the directrix
//! of the parabola. The Location point of A2 is the vertex of
//! the parabola
//! The status is "NullFocusLength" if Focal < 0.0
Standard_EXPORT gce_MakeParab(const gp_Ax2& A2, const Standard_Real Focal);
//! D is the directrix of the parabola and F the focus point.
//! The symmetry axis (XAxis) of the parabola is normal to the
//! directrix and pass through the focus point F, but its
//! location point is the vertex of the parabola.
//! The YAxis of the parabola is parallel to D and its location
//! point is the vertex of the parabola. The normal to the plane
//! of the parabola is the cross product between the XAxis and the
//! YAxis.
Standard_EXPORT gce_MakeParab(const gp_Ax1& D, const gp_Pnt& F);
//! Returns the constructed parabola.
//! Exceptions StdFail_NotDone if no parabola is constructed.
Standard_EXPORT const gp_Parab& Value() const;
Standard_EXPORT const gp_Parab& Operator() const;
Standard_EXPORT operator gp_Parab() const;
protected:
private:
gp_Parab TheParab;
};
#endif // _gce_MakeParab_HeaderFile
|