1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#include "common.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define TOL 1e-8
#define MAX_ERRORS 8
const char* KERNEL_SOURCE = "kernel void vecadd(global float *a, \n"
" global float *b, \n"
" global float *c) \n"
"{ \n"
" int i = get_global_id(0); \n"
" c[i] = a[i] + b[i]; \n"
"} \n";
unsigned checkResults(size_t N, float* a, float* b, float* results);
// Run everything as normal
unsigned run1(Context cl, cl_kernel kernel, cl_mem d_a, cl_mem d_b, cl_mem d_c,
size_t N)
{
cl_int err;
float *h_a, *h_b, *h_c;
size_t dataSize = N * sizeof(cl_float);
// Initialise data
srand(0);
h_a =
clEnqueueMapBuffer(cl.queue, d_a, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_a buffer");
h_b =
clEnqueueMapBuffer(cl.queue, d_b, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_b buffer");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
for (unsigned i = 0; i < N; i++)
{
h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = 0;
}
err = clEnqueueUnmapMemObject(cl.queue, d_a, h_a, 0, NULL, NULL);
checkError(err, "unmapping d_a");
err = clEnqueueUnmapMemObject(cl.queue, d_b, h_b, 0, NULL, NULL);
checkError(err, "unmapping d_b");
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
checkError(err, "setting kernel args");
err =
clEnqueueNDRangeKernel(cl.queue, kernel, 1, NULL, &N, NULL, 0, NULL, NULL);
checkError(err, "enqueuing kernel");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
err = clFinish(cl.queue);
checkError(err, "running kernel");
unsigned errors = checkResults(N, h_a, h_b, h_c);
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
return errors;
}
// Don't unmap input buffers before running kernel
// Should result in "Invalid read from buffer mapped for writing" error
unsigned run2(Context cl, cl_kernel kernel, cl_mem d_a, cl_mem d_b, cl_mem d_c,
size_t N)
{
cl_int err;
float *h_a, *h_b, *h_c;
size_t dataSize = N * sizeof(cl_float);
// Initialise data
srand(0);
h_a =
clEnqueueMapBuffer(cl.queue, d_a, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_a buffer");
h_b =
clEnqueueMapBuffer(cl.queue, d_b, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_b buffer");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
for (unsigned i = 0; i < N; i++)
{
h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = 0;
}
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
checkError(err, "setting kernel args");
err =
clEnqueueNDRangeKernel(cl.queue, kernel, 1, NULL, &N, NULL, 0, NULL, NULL);
checkError(err, "enqueuing kernel");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
err = clFinish(cl.queue);
checkError(err, "running kernel");
unsigned errors = checkResults(N, h_a, h_b, h_c);
err = clEnqueueUnmapMemObject(cl.queue, d_a, h_a, 0, NULL, NULL);
checkError(err, "unmapping d_a");
err = clEnqueueUnmapMemObject(cl.queue, d_b, h_b, 0, NULL, NULL);
checkError(err, "unmapping d_b");
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
return errors;
}
// Don't unmap output buffer before running kernel
// Should result in "Invalid write to mapped buffer" error
unsigned run3(Context cl, cl_kernel kernel, cl_mem d_a, cl_mem d_b, cl_mem d_c,
size_t N)
{
cl_int err;
float *h_a, *h_b, *h_c;
size_t dataSize = N * sizeof(cl_float);
// Initialise data
srand(0);
h_a =
clEnqueueMapBuffer(cl.queue, d_a, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_a buffer");
h_b =
clEnqueueMapBuffer(cl.queue, d_b, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_b buffer");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
for (unsigned i = 0; i < N; i++)
{
h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = 0;
}
err = clEnqueueUnmapMemObject(cl.queue, d_a, h_a, 0, NULL, NULL);
checkError(err, "unmapping d_a");
err = clEnqueueUnmapMemObject(cl.queue, d_b, h_b, 0, NULL, NULL);
checkError(err, "unmapping d_b");
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
checkError(err, "setting kernel args");
err =
clEnqueueNDRangeKernel(cl.queue, kernel, 1, NULL, &N, NULL, 0, NULL, NULL);
checkError(err, "enqueuing kernel");
err = clFinish(cl.queue);
checkError(err, "running kernel");
unsigned errors = checkResults(N, h_a, h_b, h_c);
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
return errors;
}
// Re-map input buffers for reading
// Should not result in any error
unsigned run4(Context cl, cl_kernel kernel, cl_mem d_a, cl_mem d_b, cl_mem d_c,
size_t N)
{
cl_int err;
float *h_a, *h_b, *h_c;
size_t dataSize = N * sizeof(cl_float);
// Initialise data
srand(0);
h_a =
clEnqueueMapBuffer(cl.queue, d_a, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_a buffer");
h_b =
clEnqueueMapBuffer(cl.queue, d_b, CL_TRUE, CL_MAP_WRITE_INVALIDATE_REGION,
0, dataSize, 0, NULL, NULL, &err);
checkError(err, "mapping d_b buffer");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
for (unsigned i = 0; i < N; i++)
{
h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = 0;
}
h_a = clEnqueueMapBuffer(cl.queue, d_a, CL_TRUE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_a buffer");
h_b = clEnqueueMapBuffer(cl.queue, d_b, CL_TRUE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_b buffer");
err = clEnqueueUnmapMemObject(cl.queue, d_a, h_a, 0, NULL, NULL);
checkError(err, "unmapping d_a");
err = clEnqueueUnmapMemObject(cl.queue, d_b, h_b, 0, NULL, NULL);
checkError(err, "unmapping d_b");
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
checkError(err, "setting kernel args");
err =
clEnqueueNDRangeKernel(cl.queue, kernel, 1, NULL, &N, NULL, 0, NULL, NULL);
checkError(err, "enqueuing kernel");
h_c = clEnqueueMapBuffer(cl.queue, d_c, CL_FALSE, CL_MAP_READ, 0, dataSize, 0,
NULL, NULL, &err);
checkError(err, "mapping d_c buffer");
err = clFinish(cl.queue);
checkError(err, "running kernel");
unsigned errors = checkResults(N, h_a, h_b, h_c);
err = clEnqueueUnmapMemObject(cl.queue, d_c, h_c, 0, NULL, NULL);
checkError(err, "unmapping d_c");
return errors;
}
int main(int argc, char* argv[])
{
cl_int err;
cl_kernel kernel;
cl_mem d_a, d_b, d_c;
size_t N = 1;
if (argc > 1)
{
N = atoi(argv[1]);
}
Context cl = createContext(KERNEL_SOURCE, "");
kernel = clCreateKernel(cl.program, "vecadd", &err);
checkError(err, "creating kernel");
size_t dataSize = N * sizeof(cl_float);
d_a = clCreateBuffer(cl.context, CL_MEM_READ_ONLY, dataSize, NULL, &err);
checkError(err, "creating d_a buffer");
d_b = clCreateBuffer(cl.context, CL_MEM_READ_ONLY, dataSize, NULL, &err);
checkError(err, "creating d_b buffer");
d_c = clCreateBuffer(cl.context, CL_MEM_WRITE_ONLY, dataSize, NULL, &err);
checkError(err, "creating d_c buffer");
unsigned errors = 0;
errors += run1(cl, kernel, d_a, d_b, d_c, N);
errors += run2(cl, kernel, d_a, d_b, d_c, N);
errors += run3(cl, kernel, d_a, d_b, d_c, N);
errors += run4(cl, kernel, d_a, d_b, d_c, N);
clReleaseMemObject(d_a);
clReleaseMemObject(d_b);
clReleaseMemObject(d_c);
clReleaseKernel(kernel);
releaseContext(cl);
return (errors != 0);
}
unsigned checkResults(size_t N, float* a, float* b, float* results)
{
// Check results
unsigned errors = 0;
for (unsigned i = 0; i < N; i++)
{
float ref = a[i] + b[i];
if (fabs(ref - results[i]) > TOL)
{
if (errors < MAX_ERRORS)
{
fprintf(stderr, "%4d: %.4f != %.4f\n", i, results[i], ref);
}
errors++;
}
}
if (errors)
printf("%d errors detected\n", errors);
return errors;
}
|