1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
static int16_t (*myvoltab)[2][256];
static int16_t (*myinterpoltabq)[32][256][2];
static int16_t (*myinterpoltabq2)[16][256][4];
void mixqSetupAddresses(int16_t (*voltab)[2][256], int16_t (*interpoltabq)[32][256][2], int16_t (*interpoltabq2)[16][256][4])
{
myvoltab=voltab;
myinterpoltabq=interpoltabq;
myinterpoltabq2=interpoltabq2;
}
static void playquiet(int16_t *buf, uint32_t len, struct channel *chan)
{
}
static inline int32_t interp_none8(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
return chan->realsamp.bit8[pos]<<8;
}
static inline int32_t interp_none16(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
return chan->realsamp.bit16[pos];
}
static inline int32_t interp_i8(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
uint8_t cache = fpos>>11;
return myinterpoltabq[0][cache][(uint8_t)chan->realsamp.bit8[pos]][0]
+
myinterpoltabq[0][cache][(uint8_t)chan->realsamp.bit8[pos+1]][1];
}
static inline int32_t interp_i16(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
uint8_t cache = fpos>>11;
return myinterpoltabq[0][cache][(uint8_t)(chan->realsamp.bit16[pos]>>8)][0]
+
myinterpoltabq[0][cache][(uint8_t)(chan->realsamp.bit16[pos+1]>>8)][1]
+
myinterpoltabq[1][cache][(uint8_t)(chan->realsamp.bit16[pos]&0xff)][0]
+
myinterpoltabq[1][cache][(uint8_t)(chan->realsamp.bit16[pos+1]&0xff)][1];
}
static inline int32_t interp_i28(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
uint8_t cache = fpos>>12;
return myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit8[pos])][0]
+
myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit8[pos+1])][1]
+
myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit8[pos+2])][2];
}
static inline int32_t interp_i216(const struct channel *chan, const uint32_t pos, uint32_t fpos)
{
uint8_t cache = fpos>>12;
return myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit16[pos]>>8)][0]
+
myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit16[pos+1]>>8)][1]
+
myinterpoltabq2[0][cache][(uint8_t)(chan->realsamp.bit16[pos+2]>>8)][2]
+
myinterpoltabq2[1][cache][(uint8_t)(chan->realsamp.bit16[pos]&0xff)][0]
+
myinterpoltabq2[1][cache][(uint8_t)(chan->realsamp.bit16[pos+1]&0xff)][1]
+
myinterpoltabq2[1][cache][(uint8_t)(chan->realsamp.bit16[pos+2]&0xff)][2];
}
#define MIX_TEMPLATE(NAME, INTERP) \
static void \
NAME(int16_t *buf, \
uint32_t len, \
struct channel *chan) \
{ \
uint32_t pos=chan->pos; \
uint32_t fpos=chan->fpos; \
uint32_t fadd=chan->step&0xffff; \
uint32_t posadd=(int16_t)(chan->step>>16); \
\
while (len) \
{ \
*(buf++) = interp_##INTERP(chan, pos, fpos); \
fpos+=fadd; \
if (fpos&0xffff0000) \
{ \
pos++; \
fpos&=0xffff; \
} \
pos+=posadd; \
len--; \
} \
}
//#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused"
MIX_TEMPLATE(playmono, none8)
MIX_TEMPLATE(playmono16, none16)
MIX_TEMPLATE(playmonoi, i8)
MIX_TEMPLATE(playmonoi16, i16)
MIX_TEMPLATE(playmonoi2, i28)
MIX_TEMPLATE(playmonoi216, i216)
//#pragma GCC diagnostic pop
void mixqPlayChannel(int16_t *buf, uint32_t len, struct channel *chan, int quiet)
{
uint32_t fillen=0;
uint32_t mixlen;
int inloop;
void (*playrout)(int16_t *buf, uint32_t len, struct channel *chan);
if (quiet)
{
playrout=playquiet;
} else {
if (chan->status&MIXQ_INTERPOLATE)
{
if (chan->status&MIXQ_INTERPOLATEMAX)
{
if (chan->status&MIXQ_PLAY16BIT)
{
playrout=playmonoi216;
} else {
playrout=playmonoi2;
}
} else {
if (chan->status&MIXQ_PLAY16BIT)
{
playrout=playmonoi16;
} else {
playrout=playmonoi;
}
}
} else {
if (chan->status&MIXQ_PLAY16BIT)
{
playrout=playmono16;
} else {
playrout=playmono;
}
}
}
mixqPlayChannel_bigloop:
inloop=0;
mixlen=len;
if (chan->step)
{
uint32_t abs_step; /* abs of chan->step */
uint32_t data_left;
uint16_t data_left_fraction;
if (chan->step<0)
{
abs_step=-chan->step;
data_left = chan->pos;
data_left_fraction = chan->fpos;
if (chan->status&MIXQ_LOOPED)
{
if (chan->pos >= chan->loopstart)
{
data_left -= chan->loopstart;
inloop = 1;
}
}
} else {
abs_step=chan->step;
data_left = chan->length - chan->pos - (!chan->fpos);
data_left_fraction = -chan->fpos;
if (chan->status&MIXQ_LOOPED)
{
if (chan->pos < chan->loopend)
{
data_left -= chan->length - chan->loopend;
inloop = 1;
}
}
}
/* data_left should now be the end of the loop envelope */
{
/* fprintf(stderr, "Samples available to use: %d/0x%08x\n", data_left, data_left_fraction); */
uint64_t tmppos=((((uint64_t)data_left)<<16)|data_left_fraction)+((uint32_t)abs_step)-1;
/* fprintf(stderr, "Samples available to use hidef: %lld/0x%012llx\n", tmppos, tmppos);*/
if ((tmppos>>32)<abs_step)
{/* this is the safe check to avoid overflow in div */
uint32_t tmplen;
tmplen=tmppos/abs_step;
/* fprintf(stderr, "Samples at current playrate would be output into %d samples\n", tmplen); */
if (mixlen>=tmplen)
{
/* fprintf(stderr, "world wants more data than we can provide, limit output\n");*/
mixlen=tmplen;
if (!inloop)
{
/* fprintf(stderr, "We are not in loop, configure fillen\n");*/
chan->status&=~MIXQ_PLAYING;
fillen=(len-tmplen); /* the gap that is left */
len=mixlen;
}
}
}
}
}
playrout(buf, mixlen, chan);
buf+=mixlen;
len-=mixlen;
{
int64_t tmp64=((int64_t)chan->step)*mixlen + (uint16_t)chan->fpos;
chan->fpos=tmp64&0xffff;
chan->pos+=(tmp64>>16);
}
if (inloop)
{
int32_t mypos = chan->pos; /* eax */
if (chan->step<0)
{
if (mypos>=(int32_t)chan->loopstart)
return;
if (!(chan->status&MIXQ_PINGPONGLOOP))
{
mypos+=chan->replen;
} else {
chan->step=-chan->step;
if ((chan->fpos=-chan->fpos))
mypos++;
mypos=chan->loopstart+chan->loopstart-mypos;
}
} else {
if (mypos<chan->loopend)
return;
if (!(chan->status&MIXQ_PINGPONGLOOP))
{
mypos-=chan->replen;
} else {
chan->step=-chan->step;
if ((chan->fpos=-chan->fpos))
mypos++;
mypos=chan->loopend+chan->loopend-mypos;
}
}
chan->pos=mypos;
if (len)
goto mixqPlayChannel_bigloop;
}
if (fillen)
{
int16_t sample;
int count;
chan->pos=chan->length;
if (!(chan->status&MIXQ_PLAY16BIT))
{
sample=chan->realsamp.bit8[chan->pos]<<8;
} else {
sample=chan->realsamp.bit16[chan->pos];
}
for (count=0;count<fillen;count++)
*(buf++)=sample;
}
}
void mixqAmplifyChannel(int32_t *buf, int16_t *src, uint32_t len, int32_t vol, uint32_t step)
{
while (len)
{
(*buf) += myvoltab[vol][0][(uint8_t)((*src)>>8)] + myvoltab[vol][1][(uint8_t)((*src)&0xff)];
src++;
len--;
buf+=step/sizeof(uint32_t);
}
}
void mixqAmplifyChannelUp(int32_t *buf, int16_t *src, uint32_t len, int32_t vol, uint32_t step)
{
while (len)
{
(*buf) += myvoltab[vol][0][(uint8_t)((*src)>>8)] + myvoltab[vol][1][(uint8_t)((*src)&0xff)];
src++;
vol++;
len--;
buf+=step/sizeof(uint32_t);
}
}
void mixqAmplifyChannelDown(int32_t *buf, int16_t *src, uint32_t len, int32_t vol, uint32_t step)
{
while (len)
{
(*buf) += myvoltab[vol][0][(uint8_t)((*src)>>8)] + myvoltab[vol][1][(uint8_t)((*src)&0xff)];
src++;
vol--;
len--;
buf+=step/sizeof(uint32_t);
}
}
|