1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/* GNU Ocrad - Optical Character Recognition program
Copyright (C) 2003, 2004, 2005, 2006 Antonio Diaz Diaz.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdlib>
#include <string>
#include "rational.h"
namespace {
int gcd( int n, int m ) throw() // Greatest Common Divisor
{
if( n < 0 ) n = -n;
if( m < 0 ) m = -m;
while( true )
{
if( m ) n %= m; else return n;
if( n ) m %= n; else return m;
}
}
int lcm( int n, int m ) throw() // Least Common Multiple
{
if( !n || !m ) return 0;
n /= gcd( n, m ); n *= m; // lcm( n, m ) == ( n * m ) / gcd( n, m )
if( n < 0 ) n = -n;
return n;
}
} // end namespace
void Rational::normalize() throw()
{
if( num == 0 ) { den = 1; return; }
if( den == 0 )
{ den = 1; if( num > 0 ) num = INT_MAX; else num = INT_MIN; return; }
if( den < 0 ) { num = -num; den = -den; }
if( den != 1 )
{
const int tmp = gcd( num, den );
num /= tmp; den /= tmp;
}
}
Rational & Rational::operator+=( const Rational & r ) throw()
{
const int tmp = lcm( den, r.den );
num = ( ( tmp / den ) * num ) + ( ( tmp / r.den ) * r.num );
den = tmp;
return *this;
}
Rational & Rational::operator*=( const Rational & r ) throw()
{
const int tmp1 = gcd( num, r.den );
const int tmp2 = gcd( r.num, den );
num = ( num / tmp1 ) * ( r.num / tmp2 );
den = ( den / tmp2 ) * ( r.den / tmp1 );
normalize(); // overflow may break the invariant
return *this;
}
Rational & Rational::operator/=( const Rational & r ) throw()
{
if( num )
{
if( r.num == 0 ) den = 0;
else
{
const int tmp1 = gcd( num, r.num );
const int tmp2 = gcd( den, r.den );
num = ( num / tmp1 ) * ( r.den / tmp2 );
den = ( den / tmp2 ) * ( r.num / tmp1 );
}
}
normalize();
return *this;
}
bool Rational::operator<( const Rational & r ) const throw()
{
if( num >= 0 && r.num <= 0 ) return false;
if( ( num <= 0 && r.num > 0 ) || ( num < 0 && r.num >= 0 ) ) return true;
int tmp1 = num / den, tmp2 = r.num / r.den; // both values have same sign
if( tmp1 != tmp2 ) return ( tmp1 < tmp2 );
tmp1 = gcd( num, r.num ); // values differ by less than 1
tmp2 = gcd( r.den, den );
return ( ( num / tmp1 ) * ( r.den / tmp2 ) < ( den / tmp2 ) * ( r.num / tmp1 ) );
}
Rational Rational::inverse() const throw()
{
Rational tmp( den );
if( num == 0 ) { tmp.num = INT_MAX; tmp.den = 1; }
else if( num < 0 ) { tmp.num = -den; tmp.den = -num; }
else tmp.den = num;
return tmp;
}
int Rational::round() const throw()
{
int result = num / den, rest = std::abs( num ) % den;
if( rest > 0 && rest >= den - rest )
{ if( num >= 0 ) ++result; else --result; }
return result;
}
// Recognized formats: 123 123/456 123.456 .123 12% 12/3% 12.3% .12%
// Values may be preceded by an optional '+' or '-' sign.
// Returns the number of chars read, or 0 if error.
//
int Rational::parse( const char * ptr ) throw()
{
if( !ptr || !*ptr ) return 0;
int n = 0, d = 1, c = 0;
bool minus = false;
while( std::isspace( ptr[c] ) ) ++c;
if( ptr[c] == '+' ) ++c;
else if( ptr[c] == '-' ) { ++c; minus = true; }
if( !std::isdigit( ptr[c] ) && ptr[c] != '.' ) return 0;
while( std::isdigit( ptr[c] ) )
{
if( ( INT_MAX - (ptr[c] - '0') ) / 10 < n ) return 0;
n = (n * 10) + (ptr[c] - '0'); ++c;
}
if( ptr[c] == '.' )
{
++c; if( !std::isdigit( ptr[c] ) ) return 0;
while( std::isdigit( ptr[c] ) )
{
if( ( INT_MAX - (ptr[c] - '0') ) / 10 < n || INT_MAX / 10 < d ) return 0;
n = (n * 10) + (ptr[c] - '0'); d *= 10; ++c;
}
}
else if( ptr[c] == '/' )
{
++c; d = 0;
while( std::isdigit( ptr[c] ) )
{
if( ( INT_MAX - (ptr[c] - '0') ) / 10 < d ) return 0;
d = (d * 10) + (ptr[c] - '0'); ++c;
}
if( d == 0 ) return 0;
}
if( ptr[c] == '%' )
{
++c;
if( n % 100 == 0 ) n /= 100;
else if( n % 10 == 0 && INT_MAX / 10 >= d ) { n /= 10; d *= 10; }
else if( INT_MAX / 100 >= d ) d *= 100;
else return 0;
}
if( minus ) n = -n;
num = n; den = d; normalize();
return c;
}
// Returns the fraction "num/den" as a floating point with "prec" decimals.
// If 'prec' is negative, only the needed decimals are shown.
//
const std::string Rational::to_decimal( const int iwidth, int prec ) const throw()
{
std::string s;
if( den == 0 )
{
if( num == 0 ) s = "NAN"; else if( num > 0 ) s = "+INF"; else s = "-INF";
return s;
}
bool negative = false, trunc = false;
int ipart = num / den;
if( ipart < 0 ) { ipart = -ipart; negative = true; }
if( prec < 0 ) { prec = -prec; trunc = true; }
do { s += '0' + ( ipart % 10 ); ipart /= 10; } while( ipart > 0 );
if( negative ) s += '-';
if( iwidth > (int)s.size() ) s.append( iwidth - s.size(), ' ' );
std::reverse( s.begin(), s.end() );
long long rest = std::abs( num ) % den;
if( prec > 0 && ( rest > 0 || !trunc ) )
{
s += '.';
while( prec > 0 && ( rest > 0 || !trunc ) )
{ rest *= 10; s += '0' + ( rest / den ); rest %= den; --prec; }
}
return s;
}
|