1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/* GNU Ocrad - Optical Character Recognition program
Copyright (C) 2003-2024 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <vector>
#include <stdint.h>
#include "ocradlib.h"
#include "common.h"
#include "rational.h"
#include "rectangle.h"
#include "segment.h"
#include "mask.h"
#include "track.h"
#include "page_image.h"
namespace {
// binarization by Otsu's method based on maximization of inter-class variance
//
int otsu_th( const std::vector< std::vector< uint8_t > > & data,
const Rectangle & re, const int maxval )
{
if( maxval == 1 ) return 0;
std::vector< int > hist( maxval + 1, 0 ); // histogram of image data
for( int row = re.top(); row <= re.bottom(); ++row )
for( int col = re.left(); col <= re.right(); ++col )
++hist[data[row][col]];
std::vector< int > chist; // cumulative histogram
chist.reserve( maxval + 1 );
chist.push_back( hist[0] );
std::vector< long long > cmom; // cumulative moment
cmom.reserve( maxval + 1 );
cmom.push_back( 0 ); // 0 times hist[0] equals zero
for( int i = 1; i <= maxval; ++i )
{
chist.push_back( chist[i-1] + hist[i] );
cmom.push_back( cmom[i-1] + ( i * hist[i] ) );
}
const double cmom_max = cmom[maxval];
double bvar_max = 0;
int threshold = 0; // threshold for binarization
for( int i = 0; i < maxval; ++i )
if( chist[i] > 0 && chist[i] < re.size() )
{
double bvar = (double)cmom[i] / chist[i];
bvar -= ( cmom_max - cmom[i] ) / ( re.size() - chist[i] );
bvar *= bvar; bvar *= chist[i]; bvar *= ( re.size() - chist[i] );
if( bvar > bvar_max ) { bvar_max = bvar; threshold = i; }
}
return threshold;
}
int absolute_pos( Rational pos, const int left, const int right )
{
int a;
if( pos >= 0 )
{
if( pos <= 1 ) a = left + ( pos * ( right - left ) ).trunc();
else a = left + pos.round();
}
else
{
pos = -pos;
if( pos <= 1 ) a = right - ( pos * ( right - left ) ).trunc();
else a = right - pos.round();
}
return a;
}
void convol_23( std::vector< std::vector< uint8_t > > & data, const int scale )
{
const int height = data.size();
const int width = data[0].size();
if( height < 3 || width < 3 ) return;
std::vector< std::vector< uint8_t > > new_data( height );
new_data[0] = data[0]; // copy first row
for( int row = 1; row < height - 1; ++row )
new_data[row].reserve( width );
new_data[height-1] = data[height-1]; // copy last row
for( int row = 1; row < height - 1; ++row )
{
const std::vector< uint8_t > & datarow1 = data[row-1];
const std::vector< uint8_t > & datarow2 = data[row];
const std::vector< uint8_t > & datarow3 = data[row+1];
std::vector< uint8_t > & new_datarow = new_data[row];
new_datarow.push_back( datarow2[0] ); // copy first col
if( scale < 3 )
for( int col = 1; col < width - 1; ++col )
{
int sum = datarow1[col-1] + datarow1[col] + datarow1[col+1] +
datarow2[col-1] + 2 * datarow2[col] + datarow2[col+1] +
datarow3[col-1] + datarow3[col] + datarow3[col+1];
new_datarow.push_back( ( sum + 5 ) / 10 );
}
else
for( int col = 1; col < width - 1; ++col )
{
int sum = datarow1[col-1] + datarow1[col] + datarow1[col+1] +
datarow2[col-1] + datarow2[col] + datarow2[col+1] +
datarow3[col-1] + datarow3[col] + datarow3[col+1];
new_datarow.push_back( ( 2 * sum + 9 ) / 18 );
}
new_datarow.push_back( datarow2[width-1] ); // copy last col
}
data.swap( new_data );
}
void convol_n( std::vector< std::vector< uint8_t > > & data, const int scale )
{
const int radius = scale / 2; // this is really radius - 0.5
const int min_size = 2 * radius + 1;
const int area = min_size * min_size;
const int height = data.size();
const int width = data[0].size();
if( radius < 1 || height < min_size || width < min_size ) return;
std::vector< std::vector< uint8_t > > new_data( height );
for( int row = 0; row < radius; ++row )
new_data[row] = data[row]; // copy first rows
for( int row = radius; row < height - radius; ++row )
new_data[row].reserve( width );
for( int row = height - radius; row < height; ++row )
new_data[row] = data[row]; // copy last rows
for( int row = radius; row < height - radius; ++row )
{
const std::vector< uint8_t > & datarow = data[row];
std::vector< uint8_t > & new_datarow = new_data[row];
for( int col = 0; col < radius; ++col )
new_datarow.push_back( datarow[col] ); // copy first cols
for( int col = radius; col < width - radius; ++col )
{
int sum = 0;
for( int r = -radius; r < radius; ++r )
for( int c = -radius; c < radius; ++c )
sum += data[row+r][col+c];
new_datarow.push_back( ( 2 * sum + area ) / ( 2 * area ) );
}
for( int col = width - radius; col < width; ++col )
new_datarow.push_back( datarow[col] ); // copy last cols
}
data.swap( new_data );
}
void enlarge_2b( std::vector< std::vector< uint8_t > > & data )
{
const int height = data.size();
const int width = data[0].size();
std::vector< std::vector< uint8_t > > new_data( 2 * height );
for( unsigned row = 0; row < new_data.size(); ++row )
new_data[row].resize( 2 * width, 1 );
for( int row = 0; row < height; ++row )
{
const std::vector< uint8_t > & datarow = data[row];
std::vector< uint8_t > & new_datarow0 = new_data[2*row];
std::vector< uint8_t > & new_datarow1 = new_data[2*row+1];
for( int col = 0; col < width; ++col )
{
if( datarow[col] == 0 )
{
const bool l = col > 0 && datarow[col-1] == 0;
const bool t = row > 0 && data[row-1][col] == 0;
const bool r = col < width - 1 && datarow[col+1] == 0;
const bool b = row < height - 1 && data[row+1][col] == 0;
const bool lt = row > 0 && col > 0 && data[row-1][col-1] == 0;
const bool rt = row > 0 && col < width - 1 && data[row-1][col+1] == 0;
const bool lb = row < height - 1 && col > 0 && data[row+1][col-1] == 0;
const bool rb = row < height - 1 && col < width - 1 && data[row+1][col+1] == 0;
if( l || t || lt || ( !rt && !lb ) ) new_datarow0[2*col] = 0;
if( r || t || rt || ( !lt && !rb ) ) new_datarow0[2*col+1] = 0;
if( l || b || lb || ( !lt && !rb ) ) new_datarow1[2*col] = 0;
if( r || b || rb || ( !rt && !lb ) ) new_datarow1[2*col+1] = 0;
}
}
}
data.swap( new_data );
}
void enlarge_3b( std::vector< std::vector< uint8_t > > & data )
{
const int height = data.size();
const int width = data[0].size();
std::vector< std::vector< uint8_t > > new_data( 3 * height );
for( unsigned row = 0; row < new_data.size(); ++row )
new_data[row].resize( 3 * width, 1 );
for( int row = 0; row < height; ++row )
{
const int row3 = 3 * row;
const std::vector< uint8_t > & datarow = data[row];
std::vector< uint8_t > & new_datarow0 = new_data[row3];
std::vector< uint8_t > & new_datarow1 = new_data[row3+1];
std::vector< uint8_t > & new_datarow2 = new_data[row3+2];
for( int col = 0; col < width; ++col )
{
const int col3 = 3 * col;
const bool l = col > 0 && datarow[col-1] == 0;
const bool t = row > 0 && data[row-1][col] == 0;
const bool r = col < width - 1 && datarow[col+1] == 0;
const bool b = row < height - 1 && data[row+1][col] == 0;
const bool lt = row > 0 && col > 0 && data[row-1][col-1] == 0;
const bool rt = row > 0 && col < width - 1 && data[row-1][col+1] == 0;
const bool lb = row < height - 1 && col > 0 && data[row+1][col-1] == 0;
const bool rb = row < height - 1 && col < width - 1 && data[row+1][col+1] == 0;
if( datarow[col] == 0 )
{
if( l || t || lt || ( !rt && !lb ) ) new_datarow0[col3] = 0;
new_datarow0[col3+1] = 0;
if( r || t || rt || ( !lt && !rb ) ) new_datarow0[col3+2] = 0;
new_datarow1[col3] = new_datarow1[col3+1] = new_datarow1[col3+2] = 0;
if( l || b || lb || ( !lt && !rb ) ) new_datarow2[col3] = 0;
new_datarow2[col3+1] = 0;
if( r || b || rb || ( !rt && !lb ) ) new_datarow2[col3+2] = 0;
}
else
{
if( l && t && lt && ( !rt || !lb ) ) new_datarow0[col3] = 0;
if( r && t && rt && ( !lt || !rb ) ) new_datarow0[col3+2] = 0;
if( l && b && lb && ( !lt || !rb ) ) new_datarow2[col3] = 0;
if( r && b && rb && ( !rt || !lb ) ) new_datarow2[col3+2] = 0;
}
}
}
data.swap( new_data );
}
void enlarge_n( std::vector< std::vector< uint8_t > > & data, const int n )
{
if( n < 2 ) return;
const int height = data.size();
const int width = data[0].size();
std::vector< std::vector< uint8_t > > new_data;
new_data.reserve( n * height );
for( int row = 0; row < height; ++row )
{
const std::vector< uint8_t > & datarow = data[row];
new_data.push_back( std::vector< uint8_t >() );
new_data.back().reserve( n * width );
for( int col = 0; col < width; ++col )
{
const uint8_t d = datarow[col];
for( int i = 0; i < n; ++i ) new_data.back().push_back( d );
}
for( int i = 1; i < n; ++i ) new_data.push_back( new_data.back() );
}
data.swap( new_data );
}
void mirror_left_right( std::vector< std::vector< uint8_t > > & data )
{
const int height = data.size();
for( int row = 0; row < height; ++row )
std::reverse( data[row].begin(), data[row].end() );
}
void mirror_top_bottom( std::vector< std::vector< uint8_t > > & data )
{
std::reverse( data.begin(), data.end() );
}
void mirror_diagonal( std::vector< std::vector< uint8_t > > & data )
{
const int rows = data.size();
const int cols = ( data.empty() ? 0 : data[0].size() );
const int size = std::max( rows, cols );
if( rows <= 0 || cols <= 0 ) return;
if( rows < size ) // add rows
{
data.resize( size );
for( int row = rows; row < size; ++row )
data[row].resize( size );
}
else if( cols < size ) // add cols
for( int row = 0; row < rows; ++row )
data[row].resize( size );
for( int row = 1; row < size; ++row )
{
std::vector< uint8_t > & datarow = data[row];
for( int col = 0; col < row; ++col )
{
uint8_t tmp = datarow[col];
datarow[col] = data[col][row]; data[col][row] = tmp;
}
}
// swap the number of rows and cols
if( cols < size ) data.resize( cols );
else if( rows < size )
for( int row = 0; row < cols; ++row )
data[row].resize( rows );
}
} // end namespace
// create a Page_image from an OCRAD_Pixmap
//
Page_image::Page_image( const OCRAD_Pixmap & image, const bool invert )
{
const int rows = image.height, cols = image.width;
data.resize( rows );
for( int row = 0; row < rows; ++row ) data[row].reserve( cols );
switch( image.mode )
{
case OCRAD_bitmap: {
maxval_ = 1; threshold_ = 0;
if( !invert )
for( int i = 0, row = 0; row < rows; ++row )
for( int col = 0; col < cols; ++col, ++i )
data[row].push_back( image.data[i] ? 0 : 1 );
else
for( int i = 0, row = 0; row < rows; ++row )
for( int col = 0; col < cols; ++col, ++i )
data[row].push_back( image.data[i] ? 1 : 0 );
} break;
case OCRAD_greymap: {
maxval_ = 255; threshold_ = 127;
if( !invert )
for( int i = 0, row = 0; row < rows; ++row )
for( int col = 0; col < cols; ++col, ++i )
data[row].push_back( image.data[i] );
else
for( int i = 0, row = 0; row < rows; ++row )
for( int col = 0; col < cols; ++col, ++i )
data[row].push_back( maxval_ - image.data[i] );
} break;
case OCRAD_colormap: {
maxval_ = 255; threshold_ = 127;
for( int i = 0, row = 0; row < rows; ++row )
for( int col = 0; col < cols; ++col, i += 3 )
{
const uint8_t r = image.data[i]; // Red value
const uint8_t g = image.data[i+1]; // Green value
const uint8_t b = image.data[i+2]; // Blue value
uint8_t val;
if( !invert ) val = std::min( r, std::min( g, b ) );
else val = maxval_ - std::max( r, std::max( g, b ) );
data[row].push_back( val );
}
} break;
}
}
// create a reduced Page_image
//
Page_image::Page_image( const Page_image & source, const int scale )
: maxval_( source.maxval_ ), threshold_( source.threshold_ )
{
if( scale < 2 || scale > source.width() || scale > source.height() )
throw Ocrad::Internal( "bad parameter building a reduced Page_image." );
const int scale2 = scale * scale;
const int rows = source.height() / scale;
const int cols = source.width() / scale;
data.resize( rows );
for( int row = 0; row < rows; ++row )
{
const int srow = ( row * scale ) + scale;
data[row].reserve( cols );
std::vector< uint8_t > & datarow = data[row];
for( int col = 0; col < cols; ++col )
{
const int scol = ( col * scale ) + scale;
int sum = 0;
for( int i = srow - scale; i < srow; ++i )
{
const std::vector< uint8_t > & sdatarow = source.data[i];
for( int j = scol - scale; j < scol; ++j )
sum += sdatarow[j];
}
datarow.push_back( sum / scale2 );
}
}
}
void Page_image::threshold( const Rational & th )
{
if( th >= 0 && th <= 1 )
threshold_ = ( th * maxval_ ).trunc();
else
threshold_ = otsu_th( data, Rectangle( height(), width() ), maxval_ );
}
void Page_image::threshold( const int th )
{
if( th >= 0 && th <= 255 ) threshold_ = ( th * maxval_ ) / 255;
else threshold_ = otsu_th( data, Rectangle( height(), width() ), maxval_ );
}
bool Page_image::cut( const Rational ltwh[4] )
{
Rectangle re( height(), width() );
const int l = absolute_pos( ltwh[0], 0, width() - 1 );
if( l > re.left() ) { if( l < re.right() ) re.left( l ); else return false; }
const int t = absolute_pos( ltwh[1], 0, height() - 1 );
if( t > re.top() ) { if( t < re.bottom() ) re.top( t ); else return false; }
const int r = l + absolute_pos( ltwh[2], 0, width() ) - 1;
if( r < re.right() ) { if( r > re.left() ) re.right( r ); else return false; }
const int b = t + absolute_pos( ltwh[3], 0, height() ) - 1;
if( b < re.bottom() ) { if( b > re.top() ) re.bottom( b ); else return false; }
if( re.width() < 3 || re.height() < 3 ) return false;
// cutting is performed here
if( re.bottom() < height() - 1 ) data.resize( re.bottom() + 1 );
if( re.right() < width() - 1 )
for( int row = height() - 1; row >= 0 ; --row )
data[row].resize( re.right() + 1 );
if( re.top() > 0 ) data.erase( data.begin(), data.begin() + re.top() );
if( re.left() > 0 )
for( int row = height() - 1; row >= 0 ; --row )
data[row].erase( data[row].begin(), data[row].begin() + re.left() );
return true;
}
void Page_image::draw_mask( const Mask & m )
{
const int t = std::max( 0, m.top() );
const int b = std::min( height() - 1, m.bottom() );
if( t == m.top() && m.left( t ) >= 0 && m.right( t ) >= 0 )
for( int col = m.left( t ); col <= m.right( t ); ++col )
set_bit( t, col, true );
if( b == m.bottom() && m.left( b ) >= 0 && m.right( b ) >= 0 )
for( int col = m.left( b ); col <= m.right( b ); ++col )
set_bit( b, col, true );
int lprev = m.left( t );
int rprev = m.right( t );
for( int row = t + 1; row <= b; ++row )
{
int lnew = m.left( row ), rnew = m.right( row );
if( lnew < 0 ) lnew = lprev;
if( rnew < 0 ) rnew = rprev;
if( lprev >= 0 && lnew >= 0 )
{
int c1 = std::min( lprev, lnew );
int c2 = std::min( width() - 1, std::max( lprev, lnew ) );
for( int col = c1; col <= c2; ++col )
set_bit( row, col, true );
}
if( rprev >= 0 && rnew >= 0 )
{
int c1 = std::min( rprev, rnew );
int c2 = std::min( width() - 1, std::max( rprev, rnew ) );
for( int col = c1; col <= c2; ++col )
set_bit( row, col, true );
}
lprev = lnew; rprev = rnew;
}
}
void Page_image::draw_rectangle( const Rectangle & re )
{
const int l = std::max( 0, re.left() );
const int t = std::max( 0, re.top() );
const int r = std::min( width() - 1, re.right() );
const int b = std::min( height() - 1, re.bottom() );
if( l == re.left() )
for( int row = t; row <= b; ++row ) set_bit( row, l, true );
if( t == re.top() )
for( int col = l; col <= r; ++col ) set_bit( t, col, true );
if( r == re.right() )
for( int row = t; row <= b; ++row ) set_bit( row, r, true );
if( b == re.bottom() )
for( int col = l; col <= r; ++col ) set_bit( b, col, true );
}
void Page_image::draw_track( const Track & tr )
{
int l = std::max( 0, tr.left() );
int r = std::min( width() - 1, tr.right() );
if( l == tr.left() )
for( int row = tr.top( l ); row <= tr.bottom( l ); ++row )
if( row >= 0 && row < width() ) set_bit( row, l, true );
if( r == tr.right() )
for( int row = tr.top( r ); row <= tr.bottom( r ); ++row )
if( row >= 0 && row < height() ) set_bit( row, r, true );
for( int col = l; col <= r; ++col )
{
int row = tr.top( col );
if( row >= 0 && row < height() ) set_bit( row, col, true );
row = tr.bottom( col );
if( row >= 0 && row < height() ) set_bit( row, col, true );
}
}
bool Page_image::change_scale( int n ) // no change if n == 1
{
if( n == 0 || n < -width() || n < -height() ) return false;
if( n <= -2 ) { Page_image reduced( *this, -n ); *this = reduced; }
else if( n >= 2 )
{
if( INT_MAX / n < width() * height() )
throw Error( "Scale factor too big; 'int' will overflow." );
if( maxval_ == 1 )
{
if( n && ( n % 2 ) == 0 ) { enlarge_2b( data ); n /= 2; }
else if( n && ( n % 3 ) == 0 ) { enlarge_3b( data ); n /= 3; }
}
if( n >= 2 ) // scale 8-bit greyscale images keeping borders smooth
{
enlarge_n( data, n );
if( maxval_ > 1 )
{ if( n <= 3 ) convol_23( data, n ); else convol_n( data, n ); }
}
}
return true;
}
void Page_image::transform( const Transformation & t )
{
switch( t.type() )
{
case Transformation::none:
break;
case Transformation::rotate90:
mirror_diagonal( data ); mirror_top_bottom( data ); break;
case Transformation::rotate180:
mirror_left_right( data ); mirror_top_bottom( data ); break;
case Transformation::rotate270:
mirror_diagonal( data ); mirror_left_right( data ); break;
case Transformation::mirror_lr:
mirror_left_right( data ); break;
case Transformation::mirror_tb:
mirror_top_bottom( data ); break;
case Transformation::mirror_d1:
mirror_diagonal( data ); break;
case Transformation::mirror_d2:
mirror_diagonal( data );
mirror_left_right( data ); mirror_top_bottom( data ); break;
}
}
|