File: rational.cc

package info (click to toggle)
ocrad 0.29-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 812 kB
  • sloc: cpp: 9,710; sh: 388; makefile: 155
file content (276 lines) | stat: -rw-r--r-- 7,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* Rational - Rational number class with overflow detection
   Copyright (C) 2005-2024 Antonio Diaz Diaz.

   This library is free software. Redistribution and use in source and
   binary forms, with or without modification, are permitted provided
   that the following conditions are met:

   1. Redistributions of source code must retain the above copyright
   notice, this list of conditions, and the following disclaimer.

   2. Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions, and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/

#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdlib>
#include <string>

#include "rational.h"

#ifndef LLONG_MAX
#define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL
#endif
#ifndef LLONG_MIN
#define LLONG_MIN (-LLONG_MAX - 1LL)
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL
#endif


namespace {

long long gcd( long long n, long long m )	// Greatest Common Divisor
  {
  if( n < 0 ) n = -n;
  if( m < 0 ) m = -m;

  while( true )
    {
    if( m ) n %= m; else return n;
    if( n ) m %= n; else return m;
    }
  }


std::string overflow_string( const int n )
  { if( n > 0 ) return "+INF"; if( n < 0 ) return "-INF"; return "NAN"; }

int overflow_value( const long long n, const bool negate = false )
  {
  if( negate )
    { if( n > 0 ) return -INT_MAX; if( n < 0 ) return INT_MAX; return 0; }
  else
    { if( n > 0 ) return INT_MAX; if( n < 0 ) return -INT_MAX; return 0; }
  }

} // end namespace


void Rational::normalize( long long n, long long d )
  {
  if( d == 0 ) { num = overflow_value( n ); den = 0; return; }  // set error
  if( n == 0 ) { num = 0; den = 1; return; }
  if( d != 1 )
    {
    const long long tmp = gcd( n, d );
    n /= tmp; d /= tmp;
    }

  if( n <= INT_MAX && n >= -INT_MAX && d <= INT_MAX && d >= -INT_MAX )
    { if( d >= 0 ) { num = n; den = d; } else { num = -n; den = -d; } }
  else
    { num = overflow_value( n, d < 0 ); den = 0; }
  }


void Rational::normalize()
  {
  if( den == 0 ) { num = overflow_value( num ); return; }
  if( num == 0 ) { den = 1; return; }
  if( den != 1 )
    {
    const int tmp = gcd( num, den );
    num /= tmp; den /= tmp;
    }
  if( num < -INT_MAX )
    { num = overflow_value( den, true ); den = 0; return; }
  if( den < 0 )
    {
    if( den < -INT_MAX )
      { num = overflow_value( num, true ); den = 0; return; }
    num = -num; den = -den;
    }
  }


Rational Rational::inverse() const
  {
  if( den <= 0 ) return *this;			// no-op on error
  Rational tmp;
  if( num > 0 ) { tmp.num = den; tmp.den = num; }
  else if( num < 0 ) { tmp.num = -den; tmp.den = -num; }
  else { tmp.num = overflow_value( den ); tmp.den = 0; }	// set error
  return tmp;
  }


Rational & Rational::operator+=( const Rational & r )
  {
  if( den <= 0 ) return *this;			// no-op on error
  if( r.den <= 0 ) { num = r.num; den = 0; return *this; }	// set error

  long long new_den = den; new_den *= r.den;
  long long new_num1 = num; new_num1 *= r.den;
  long long new_num2 = r.num; new_num2 *= den;
  normalize( new_num1 + new_num2, new_den );
  return *this;
  }


Rational & Rational::operator*=( const Rational & r )
  {
  if( den <= 0 ) return *this;			// no-op on error
  if( r.den <= 0 ) { num = r.num; den = 0; return *this; }	// set error

  long long new_num = num; new_num *= r.num;
  long long new_den = den; new_den *= r.den;
  normalize( new_num, new_den );
  return *this;
  }


int Rational::round() const
  {
  if( den <= 0 ) return num;
  int result = num / den;
  const int rest = std::abs( num ) % den;
  if( rest > 0 && rest >= den - rest )
    { if( num >= 0 ) ++result; else --result; }
  return result;
  }


/* Recognized formats: 123 123/456 123.456 .123 12% 12/3% 12.3% .12%
   Values may be preceded by an optional '+' or '-' sign.
   Return the number of chars read from 's', or 0 if input is invalid.
   In case of invalid input, the Rational is not changed.
*/
int Rational::parse( const char * const s )
  {
  if( !s || !s[0] ) return 0;
  long long n = 0, d = 1;		// restrain intermediate overflow
  int c = 0;
  bool minus = false;

  while( std::isspace( s[c] ) ) ++c;
  if( s[c] == '+' ) ++c;
  else if( s[c] == '-' ) { ++c; minus = true; }
  if( !std::isdigit( s[c] ) && s[c] != '.' ) return 0;

  while( std::isdigit( s[c] ) )
    {
    if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n ) return 0;
    n = (n * 10) + (s[c] - '0'); ++c;
    }

  if( s[c] == '.' )
    {
    ++c; if( !std::isdigit( s[c] ) ) return 0;
    while( std::isdigit( s[c] ) )
      {
      if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n || LLONG_MAX / 10 < d )
        return 0;
      n = (n * 10) + (s[c] - '0'); d *= 10; ++c;
      }
    }
  else if( s[c] == '/' )
    {
    ++c; d = 0;
    while( std::isdigit( s[c] ) )
      {
      if( ( LLONG_MAX - (s[c] - '0') ) / 10 < d ) return 0;
      d = (d * 10) + (s[c] - '0'); ++c;
      }
    if( d == 0 ) return 0;
    }

  if( s[c] == '%' )
    {
    ++c;
    if( n % 100 == 0 ) n /= 100;
    else if( n % 10 == 0 && LLONG_MAX / 10 >= d ) { n /= 10; d *= 10; }
    else if( LLONG_MAX / 100 >= d ) d *= 100;
    else return 0;
    }

  if( minus ) n = -n;
  Rational tmp; tmp.normalize( n, d );
  if( !tmp.error() ) { *this = tmp; return c; }
  return 0;
  }


/* Return a string representing the value 'num/den' in decimal point format
   with 'prec' decimals.
   'iwidth' is the minimum width of the integer part, prefixed with spaces
   if needed.
   If 'prec' is negative, produce only the decimals needed.
   If 'rounding', round up the last digit if the next one would be >= 5.
*/
std::string Rational::to_decimal( const unsigned iwidth, int prec,
                                  const bool rounding ) const
  {
  if( den <= 0 ) return overflow_string( num );

  std::string s;
  int ipart = std::abs( num / den );
  const bool truncate = ( prec < 0 );
  if( prec < 0 ) prec = -prec;

  do { s += ( ipart % 10 ) + '0'; ipart /= 10; } while( ipart > 0 );
  if( num < 0 ) s += '-';
  if( iwidth > s.size() ) s.append( iwidth - s.size(), ' ' );
  std::reverse( s.begin(), s.end() );
  long long rest = std::abs( num ) % den;
  if( prec > 0 && ( rest > 0 || !truncate ) )
    {
    s += '.';
    while( prec > 0 && ( rest > 0 || !truncate ) )
      { rest *= 10; s += ( rest / den ) + '0'; rest %= den; --prec; }
    }
  if( rounding && rest * 2 >= den )		// round last decimal up
    for( int j = s.size() - 1; j >= 0; --j )
      {
      if( s[j] == '.' ) continue;
      if( s[j] >= '0' && s[j] < '9' ) { ++s[j]; break; }
      if( s[j] == '9' ) s[j] = '0';
      if( j > 0 && s[j-1] == '.' ) continue;
      if( j > 0 && s[j-1] == ' ' ) { s[j-1] = '1'; break; }
      if( j > 1 && s[j-2] == ' ' && s[j-1] == '-' )
        { s[j-2] = '-'; s[j-1] = '1'; break; }
      // no prev digit, prepend '1' to the first digit
      if( j == 0 || s[j-1] < '0' || s[j-1] > '9' )
        { s.insert( s.begin() + j, '1' ); break; }
      }
  return s;
  }


/* Return a string representing the value 'num/den' in fractional form.
   'width' is the minimum width to be produced, prefixed with spaces if
   needed.
*/
std::string Rational::to_fraction( const unsigned width ) const
  {
  if( den <= 0 ) return overflow_string( num );

  std::string s;
  int n = std::abs( num ), d = den;

  do { s += ( d % 10 ) + '0'; d /= 10; } while( d > 0 );
  s += '/';
  do { s += ( n % 10 ) + '0'; n /= 10; } while( n > 0 );
  if( num < 0 ) s += '-';
  if( width > s.size() ) s.append( width - s.size(), ' ' );
  std::reverse( s.begin(), s.end() );
  return s;
  }