1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
function [brain_n,brain_el,brain_f] = brain2mesh(seg,varargin)
%
% Brain2mesh: a one-liner for human brain 3D mesh generation
%
% Author: Qianqian Fang <q.fang at neu.edu>
% Other contributors: see AUTHORS.txt for details
% Version: 0.8
% URL: http://mcx.space/brain2mesh
% License: GPL version 3
% Reference:
% Anh Phong Tran, Shijie Yan and Qianqian Fang, "Improving model-based
% fNIRS analysis using mesh-based anatomical and light-transport models,"
% Neurophotonics, 7(1), 015008, URL: http://dx.doi.org/10.1117/1.NPh.7.1.015008
%
% == Format ==
% [node,elem,face] = brain2mesh(seg)
% or
% [node,elem,face] = brain2mesh(seg,cfg);
%
% == Input ==
% seg: pre-segmented brain volume (supporting both probalistic tissue
% segmentation and labeled volume). Two formats are accepted
% 1. a structure with subfields (wm,gm,csf,skull,scalp)
% e.g.: seg.wm, seg.gm, seg.csf represents the white-matter,
% gray-matter and csf segmentaions, respectively,
% or
% 2. a 4D array for with tissued sorted in outer-to-inner order
% the 4th dimension of the array can 3-6, with the following assumptions
% size(seg,4) == 6 assumes 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM, 6-air pockets
% size(seg,4) == 5 assumes 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM
% size(seg,4) == 4 assumes 1-Scalp, 2-CSF, 3-GM, 4-WM
% size(seg,4) == 3 assumes 1-CSF, 2-GM, 3-WM
%
% cfg: a struct defining the options for the resulting tetrahedral mesh
% default values are applied if field is not defined
% cfg.radbound.{wm,gm,csf,skull,scalp}
% Radius of the Delaunay sphere used in the sampling the surfaces.
% Default values are 1.7, 1.7, 2, 2.5 and 3, respectively (reference values for 1x1x1mm^3)
% Scale proportionally for denser volumes. Lower values correspond to denser, higher
% fidelity surface extraction, but also results in denser meshes.
% cfg.maxnode: [100000] - when the value cfg.sampling__ creates surfaces that are too
% dense. This limits the maximum of number of nodes extracted for a given surface.
% cfg.maxvol: [100] indicates the volumetric maximum size of elements
% Lowering this value helps with obtaining a denser tetrahedral
% mesh. For dense meshes, values close to 3-5 are recommended.
% cfg.smooth: [0] - number of iterations to smooth each tissue surface
% cfg.ratio: [1.414] radius-edge ratio. Lower values increase
% the quality of tetrahedral elements, but results in denser meshes
% cfg.dorelabel: [0] or 1 - This step removes most of the assumptions
% created by the layered meshing workflow. Currently only works if all five tissue types are present.
% When deactivated, a 1 voxel length gap is assumed between each of the tissue layers.
% cfg.doairseg: 0 or [1]. Within the skull layer, additional segmentations can be found.
% By default, these regions are merged to the skull because they can be ambiguously be
% vessels or air. When the option 1 is chosen, these regions are labeled as air instead.
% cfg.dotruncate: 0 or [1]. by default, the mesh is truncated a few pixel in the
% +z direction below the lowest pixel containing CSF to focus on the brain areas.
% A value of 0 gives a complete head mesh.
% cfg.imfill: ['imfill'], 'mri_fillholes' etc, the function name
% for 3D image hole-filling function, default is imfill,
% requires MATLAB image processing toolbox or octave-image
% toolbox
%
% == Outputs ==
% node: node coordinates of the tetrahedral mesh
% elem: element list of the tetrahedral mesh / the last column denotes the boundary ID
% face: mesh surface element list of the tetrahedral mesh
%
% Tissue ID for the outputs are as follow:
% 0-Air/background, 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM, 6-air pockets
%
% == Reference ==
% If you use Brain2Mesh in your publication, the authors of this toolbox
% apprecitate if you can cite our Neurophotonics paper listed above.
%
%
% -- this function is part of brain2mesh toolbox (http://mcx.space/brain2mesh)
% License: GPL v3 or later, see LICENSE.txt for details
%
%% Handling the inputs
if nargin == 0
help brain2mesh
return;
end
if(~exist('v2m','file'))
error('Missing dependency. You must download and addpath to Iso2Mesh Toolbox, URL: https://github.com/fangq/iso2mesh')
end
if(~exist('imfill','file'))
error('Missing dependency. You must install MATLAB image processing toolbox')
end
if(~exist('intriangulation','file'))
error('Missing dependency. You must download and addpath to intriangulation.m, URL: https://www.mathworks.com/matlabcentral/fileexchange/43381-intriangulation-vertices-faces-testp-heavytest')
end
density=struct('wm',2,'gm',2,'csf',5,'skull',4,'scalp',8);
adaptiveness=struct('wm',1,'gm',1,'csf',1,'skull',1,'scalp',1);
cfg=varargin2struct(varargin{:});
radbound=jsonopt('radbound',density,cfg);
distbound=jsonopt('distbound',adaptiveness,cfg);
qratio=jsonopt('ratio',1.414,cfg);
%sizefield=jsonopt('sizefield',100,cfg);
maxvol=jsonopt('maxvol',100,cfg);
maxnode=jsonopt('maxnode',100000,cfg);
dotruncate=jsonopt('dotruncate',1,cfg);
dorelabel=jsonopt('dorelabel',0,cfg);
doairseg=jsonopt('doairseg',1,cfg);
threshold=jsonopt('threshold',0.5,cfg);
smooth=jsonopt('smooth',0,cfg);
surfonly=jsonopt('surfonly',0,cfg);
segname=fieldnames(density);
imfillstr=jsonopt('imfill','imfill',cfg);
imfillparam='holes';
imfill3d=str2func(imfillstr);
if isstruct(seg)
tpm = seg;
elseif(ndim(seg)==4)
for i=1:size(seg,4)
tpm.(segname{i})=seg(:,:,:,i);
end
else
fprintf('This seg input is currently not supported \n')
end
% normalizing segmentation inputs to 0-1
normalizer=@(x) double(x)*( ~isinteger(x) + (isinteger(x))*(1/double(cast(inf,class(x)))) );
tpm=structfun(normalizer, tpm,'UniformOutput',false);
opt=struct;
for i = 1:size(fieldnames(tpm))
opt(i).maxnode = maxnode;
if(isfield(radbound,segname{i}))
opt(i).radbound= radbound.(segname{i});
end
opt(i).distbound= distbound.(segname{i});
end
cube3=true(3,3,3);
%% Pre-processing steps to create separations between the tissues in the
% volume space
dim = size(tpm.wm);
tpm.wm = imfill3d(tpm.wm>0,imfillparam);
p_wm = tpm.wm;
p_pial = p_wm+tpm.gm;
p_pial = max(p_pial,imdilate(p_wm,cube3));
p_pial = imfill3d(p_pial>0,imfillparam);
expandedGM = p_pial - tpm.wm - tpm.gm;
expandedGM = imdilate(expandedGM,cube3);
if(isfield(tpm,'csf'))
p_csf = p_pial+tpm.csf;
p_csf(p_csf>1) = 1;
p_csf = max(p_csf,imdilate(p_pial,cube3));
expandedCSF = p_csf - tpm.wm - tpm.gm - tpm.csf - expandedGM;
expandedCSF = imdilate(expandedCSF,cube3);
end
if isfield(tpm,'skull') && isfield(tpm,'scalp') && isfield(tpm,'csf')
p_bone = p_csf + tpm.skull;
p_bone(p_bone>1) = 1;
p_bone = max(p_bone,imdilate(p_csf,cube3));
p_skin = p_bone + tpm.scalp;
p_skin(p_skin>1) = 1;
p_skin = max(p_skin,imdilate(p_bone,cube3));
expandedSkull = p_bone - tpm.wm - tpm.gm - tpm.csf - tpm.skull - expandedCSF - expandedGM;
expandedSkull = imdilate(expandedSkull,cube3);
elseif isfield(tpm,'scalp') && ~isfield(tpm,'skull')
p_skin = p_csf + tpm.scalp;
p_skin(p_skin>1) = 1;
p_skin = max(p_skin,imdilate(p_csf,cube3));
elseif isfield(tpm,'skull') && ~isfield(tpm,'scalp')
p_bone = p_csf + tpm.skull;
p_bone(p_bone>1) = 1;
p_bone = max(p_bone,imdilate(p_csf,cube3));
end
%% Grayscale/Binary extractions of the surface meshes for the different
% tissues
thresh=0.5;
if(~isstruct(threshold))
thresh=threshold;
end
[wm_n,wm_f] = v2s(p_wm,jsonopt('wm',thresh,threshold),opt(1),'cgalsurf');
[pial_n,pial_f] = v2s(p_pial,jsonopt('gm',thresh,threshold),opt(2),'cgalsurf');
[wm_n,wm_f]=meshcheckrepair(wm_n,wm_f(:,1:3),'isolated');
[pial_n,pial_f]=meshcheckrepair(pial_n,pial_f(:,1:3),'isolated');
if(isfield(tpm,'csf'))
[csf_n,csf_f] = v2s(p_csf,jsonopt('csf',thresh,threshold),opt(3),'cgalsurf');
[csf_n,csf_f]=meshcheckrepair(csf_n,csf_f(:,1:3),'isolated');
end
if isfield(tpm,'skull')
optskull=struct('radbound',radbound.skull,'maxnode',maxnode);
[bone_n,bone_f] = v2s(p_bone,jsonopt('skull',thresh,threshold),optskull,'cgalsurf');
[bone_node,el_bone] = s2m(bone_n,bone_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
for i = 1:length(unique(el_bone(:,5)))
vol_bone(i) = sum(elemvolume(bone_node,el_bone(el_bone(:,5)==i,1:4)));
end
[maxval,I] = max(vol_bone);
if (length(unique(el_bone(:,5)))>1)
no_air2 = bone_node; el_air2 = el_bone(el_bone(:,5)~=I,:);
[no_air2,el_air2]=removeisolatednode(no_air2,el_air2);
f_air2 = volface(el_air2(:,1:4));
end
bone_n2 = bone_node;
[bone_f2] = volface(el_bone(:,1:4));
bone_f2 = removedupelem(bone_f2);
[bone_n2,bone_f2]=removeisolatednode(bone_n2,bone_f2);
if doairseg == 0
bone_n = bone_n2; bone_f = bone_f2;
end
end
if isfield(tpm,'scalp')
optscalp=struct('radbound',radbound.scalp,'maxnode',maxnode);
[skin_n,skin_f] = v2s(p_skin,jsonopt('scalp',thresh,threshold),optscalp,'cgalsurf');
end
if(isstruct(smooth) || smooth>0)
scount=0;
if(~isstruct(smooth))
scount=smooth;
end
if(jsonopt('wm',scount,smooth)>0)
wm_n=sms(wm_n,wm_f(:,1:3),jsonopt('wm',scount,smooth),0.5,'lowpass');
[wm_n,wm_f]=meshcheckrepair(wm_n,wm_f(:,1:3),'meshfix');
end
if(jsonopt('gm',scount,smooth)>0)
pial_n=sms(pial_n,pial_f(:,1:3),jsonopt('gm',scount,smooth),0.5,'lowpass');
[pial_n,pial_f]=meshcheckrepair(pial_n,pial_f(:,1:3),'meshfix');
end
if(isfield(tpm,'csf') && jsonopt('csf',scount,smooth)>0)
csf_n=sms(csf_n,csf_f(:,1:3),jsonopt('csf',scount,smooth),0.5,'lowpass');
[csf_n,csf_f]=meshcheckrepair(csf_n,csf_f(:,1:3),'meshfix');
end
if(isfield(tpm,'skull') && jsonopt('skull',scount,smooth)>0)
bone_n=sms(bone_n,bone_f(:,1:3),jsonopt('skull',scount,smooth),0.5,'lowpass');
[bone_n,bone_f]=meshcheckrepair(bone_n,bone_f(:,1:3),'meshfix');
end
if(isfield(tpm,'scalp') && jsonopt('scalp',scount,smooth)>0)
skin_n=sms(skin_n,skin_f(:,1:3),jsonopt('scalp',scount,smooth),0.5,'lowpass');
[skin_n,skin_f]=meshcheckrepair(skin_n,skin_f(:,1:3),'meshfix');
end
end
if(surfonly==1)
wm_f(:,4)=1;
pial_f(:,4)=2;
[brain_n,brain_el]=mergemesh(wm_n,wm_f,pial_n,pial_f);
if(isfield(tpm,'csf'))
csf_f(:,4)=3;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,csf_n,csf_f);
if(isfield(tpm,'skull'))
bone_f(:,4)=4;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,bone_n,bone_f);
if(isfield(tpm,'scalp'))
skin_f(:,4)=5;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,skin_n,skin_f);
end
end
end
[labels,ia,ib]=unique(brain_el(:,4));
labels=5:-1:(5-length(labels)+1);
brain_el(:,4)=labels(ib);
brain_f=[];
return;
end
%% Main loop for the meshing pipeline to combine the individual surface
% meshes or each of the tissues and to generate the detailed 3D tetrahedral
% mesh of the brain/head
for loop = 1:2
%% If the first pass fails, a second pass is called using the decoupled function
% to eliminate intersections between surface meshes
if (loop==2) && (exist('label_elem','var'))
continue;
end
if (loop==2) && (~exist('label_elem','var'))
if(exist('bone_n','var') && exist('skin_n','var'))
[bone_n,bone_f] = surfboolean(bone_n(:,1:3),bone_f(:,1:3),'decouple',skin_n(:,1:3),skin_f(:,1:3));
end
if(exist('bone_n','var') && exist('csf_n','var'))
[csf_n,csf_f] = surfboolean(csf_n(:,1:3),csf_f(:,1:3),'decouple',bone_n(:,1:3),bone_f(:,1:3));
end
if(exist('pial_n','var') && exist('csf_n','var'))
[pial_n,pial_f] = surfboolean(pial_n(:,1:3),pial_f(:,1:3),'decouple',csf_n(:,1:3),csf_f(:,1:3));
end
if(exist('pial_n','var') && exist('wm_n','var'))
[wm_n,wm_f] = surfboolean(wm_n(:,1:3),wm_f(:,1:3),'decouple',pial_n(:,1:3),pial_f(:,1:3));
end
end
if isfield(tpm,'wm') && isfield(tpm,'gm')
[surf_n,surf_f] = surfboolean(wm_n(:,1:3),wm_f(:,1:3),'resolve',pial_n,pial_f);
end
if isfield(tpm,'csf')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',csf_n,csf_f);
end
if isfield(tpm,'skull')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',bone_n,bone_f);
end
if isfield(tpm,'scalp')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',skin_n,skin_f);
end
final_surf_n=surf_n;
final_surf_f=surf_f;
if(surfonly==2)
brain_n=final_surf_n;
brain_el=final_surf_f;
brain_f=[];
return;
end
%% If the whole head option is deactivated, the cut is made at the base of the brain using a box cutting
if (dotruncate==1)
dim=max(surf_n);
if isfield(tpm,'csf')
dim2 = min(csf_n);
else
dim2 = min(surf_n);
end
[nbox,fbox,ebox]=meshabox([-1 -1 dim2(3)+4.1],[dim(1)+1 dim(2)+1 dim(3)+1],500);
fbox=volface(ebox);
[nbox,fbox]=removeisolatednode(nbox,fbox);
[final_surf_n,final_surf_f] = surfboolean(nbox,fbox(:,[1 3 2]),'first',surf_n,surf_f);
end
if(surfonly==3)
brain_n=final_surf_n;
brain_el=final_surf_f;
brain_f=[];
return;
end
%% Generates a coarse tetrahedral mesh of the combined tissues
try
[final_n,final_e] = s2m(final_surf_n,final_surf_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
catch
fprintf('volumetric mesh generation failed, returning the intermediate surface model only');
brain_n=final_surf_n;
brain_f=final_surf_f;
brain_el=[];
return;
end
%% Removes the elements that are part of the box, but not the brain/head
if (dotruncate == 1)
[maxval, M] = max(final_n);
k = find(final_e(:,1:4)==M(3),1);
final_e = final_e(final_e(:,5)~=final_e(rem(k,length(final_e(:,1))),5),:);
[final_n,final_e]=removeisolatednode(final_n,final_e);
end
%% Here the labels created through the coarse mesh generated through Tetgen are saved
% with the centroid of one of the elements for intriangulation seg(:,:,:,1)testing later
[label, label_elem] = unique(final_e(:,5));
label_centroid=meshcentroid(final_n,final_e(label_elem,1:4));
if isfield(tpm,'scalp')
[no_skin,el_skin] = s2m(skin_n,skin_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
for i = 1:length(unique(el_skin(:,5)))
vol_skin(i) = sum(elemvolume(no_skin,el_skin(el_skin(:,5)==i,1:4)));
end
[maxval,I] = max(vol_skin);
if (length(unique(el_skin(:,5)))>1)
no_air = no_skin; el_air = el_skin(el_skin(:,5)~=I,:);
[no_air,el_air]=removeisolatednode(no_air,el_air);
f_air = volface(el_air(:,1:4));
f_air = removedupelem(f_air);
end
el_skin = el_skin(el_skin(:,5)==I,:);
[no_skin,el_skin]=removeisolatednode(no_skin,el_skin);
[f_skin] = volface(el_skin(:,1:4));
f_skin=removedupelem(f_skin);
end
%% When the label_elem does not exist, it often indicates a failure at the generation of a coarse
% tetrahedral mesh. The alternative meshing pathway using decoupling is then called to make a
% second attempt at creating the combined tetrahedral mesh.
if (~exist('label_elem'))&& (loop==1)
fprintf('Initial meshing procedure failed. The option parameter might need to be adjusted. \n')
fprintf('Activating alternative meshing pathway... \n')
pause(2)
continue;
end
%% The labels are given to each of the tissues
% WM(1) - GM(2) - CSF(3) - Bone(4) - Scalp(5) - Air(6)
newlabel = zeros(length(label_elem),1);
if (exist('bone_n') && exist('no_air2'))
newlabel= intriangulation(no_air2,f_air2(:,1:3),label_centroid);
end
if (exist('no_skin') && exist('no_air'))
newlabel= newlabel | intriangulation(no_air,f_air(:,1:3),label_centroid);
end
newlabel=double(newlabel);
idx=find(newlabel==0);
newtag=zeros(length(idx),1);
newtag=intriangulation(wm_n,wm_f(:,1:3),label_centroid(idx,:))*6;
newtag=max(newtag,intriangulation(pial_n,pial_f(:,1:3),label_centroid(idx,:))*5);
if(exist('csf_n','var'))
newtag=max(newtag,intriangulation(csf_n,csf_f(:,1:3),label_centroid(idx,:))*4);
end
if(exist('bone_n2','var'))
newtag=max(newtag,intriangulation(bone_n2,bone_f2(:,1:3),label_centroid(idx,:))*3);
end
if(exist('no_skin','var'))
newtag=max(newtag,intriangulation(no_skin,f_skin(:,1:3),label_centroid(idx,:))*2);
end
newlabel(idx)=newtag;
newlabel=7-newlabel;
final_e(:,5)=newlabel(final_e(:,5));
%% This step consolidates adjacent labels of the same tissue
new_label = unique(final_e(:,5));
face = [];
for i = 1:length(new_label)
face = [face; volface(final_e(final_e(:,5)==new_label(i),1:4))];
end
face = sort(face,2);
face = unique(face,'rows');
[node,face] = removeisolatednode(final_n,face);
%% The final mesh is generated here with the desired properties
cmdopt = sprintf('-A -pq%fa%f',qratio,maxvol);
%node(:,4) = sizefield(:).*ones(length(node(:,1)),1);
[brain_n,brain_el] = s2m(node,face,1.0,maxvol,'tetgen1.5',[],[],cmdopt);
[label2, label_brain_el] = unique(brain_el(:,5));
label_centroid2=meshcentroid(brain_n,brain_el(label_brain_el,1:4));
%% The labeling process is repeated for the final mesh
% WM(1) - GM(2) - CSF(3) - Bone(4) - Scalp(5) - Air(6)
newlabel = zeros(length(label_brain_el),1);
if (exist('bone_n') && exist('no_air2'))
newlabel= intriangulation(no_air2,f_air2(:,1:3),label_centroid2);
end
if (exist('no_skin') && exist('no_air'))
newlabel= newlabel | intriangulation(no_air,f_air(:,1:3),label_centroid2);
end
newlabel=double(newlabel);
idx=find(newlabel==0);
newtag=zeros(length(idx),1);
newtag=intriangulation(wm_n,wm_f(:,1:3),label_centroid2(idx,:))*6;
newtag=max(newtag,intriangulation(pial_n,pial_f(:,1:3),label_centroid2(idx,:))*5);
if(exist('csf_n','var'))
newtag=max(newtag,intriangulation(csf_n,csf_f(:,1:3),label_centroid2(idx,:))*4);
end
if(exist('bone_n2','var'))
newtag=max(newtag,intriangulation(bone_n2,bone_f2(:,1:3),label_centroid2(idx,:))*3);
end
if(exist('no_skin','var'))
newtag=max(newtag,intriangulation(no_skin,f_skin(:,1:3),label_centroid2(idx,:))*2);
end
newlabel(idx)=newtag;
newlabel=7-newlabel;
brain_el(:,5)=newlabel(brain_el(:,5));
end
%% Relabeling step to remove layered assumptions
if dorelabel == 1 && (isfield(tpm,'skull') && isfield(tpm,'scalp'))
centroid = meshcentroid(brain_n(:,1:3),brain_el(:,1:4));centroid = ceil(centroid);
tag = zeros(length(brain_el(:,1)),1);
facenb = faceneighbors(brain_el(:,1:4));
for i = 1:length(brain_el(:,1))
if (expandedGM(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 2)
if tpm.scalp(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 5;
elseif tpm.skull(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 4;
else
brain_el(i,5) = 3;
end
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
elseif (expandedCSF(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 3)
if tpm.scalp(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 5;
else
brain_el(i,5) = 4;
end
brain_el(i,5) = 4;
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
elseif (expandedSkull(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 4)
brain_el(i,5) = 5;
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
end
end
labels = zeros(length(brain_el(:,1)),4);
labels2 = zeros(length(brain_el(:,1)),6);
for i = 1:length(brain_el(:,1))
for j = 1:4
if facenb(i,j) > 0
labels(i,j) = brain_el(facenb(i,j),5);
labels2(i,labels(i,j)) = labels2(i,labels(i,j)) + 1;
else
labels(i,j) = 0;
end
end
end
[labels(:,5),labels(:,6)] = max(labels2,[],2);
for i = 1:length(brain_el(:,1))
if tag(i) == 1
if (labels(i,5) > 2) && (brain_el(i,5) ~= labels(i,6))
brain_el(i,5) = labels(i,6);
end
end
end
end
brain_el(:,5) = 6 - brain_el(:,5);
if(nargout>2)
brain_f=layersurf(brain_el);
end
|