1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
|
\input texinfo
@setfilename control.info
@settitle Octave Control Systems Toolbox (@acronym{OCST})
@titlepage
@title Octave Control Systems Toolbox (@acronym{OCST})
@subtitle Version 1.0.0
@subtitle July 2008
@author Dr A Scottedward Hodel
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 2008 A Scottedward Hodel
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the same conditions as for modified versions.
@end titlepage
@contents
@ifinfo
@node Top, Introduction
@top
@end ifinfo
@menu
* Introduction:: Introduction
* sysstruct:: System Data Structure
* sysinterface:: System Construction and Interface Functions
* sysdisp:: System display functions
* blockdiag:: Block Diagram Manipulations
* numerical:: Numerical Functions
* sysprop:: System Analysis-Properties
* systime:: System Analysis-Time Domain
* sysfreq:: System Analysis-Frequency Domain
* cacsd:: Controller Design
* misc:: Miscellaneous Functions (Not yet properly filed/documented)
@end menu
@node Introduction
@chapter Introduction
The Octave Control Systems Toolbox (@acronym{OCST}) was initially developed
by Dr.@: A. Scottedward Hodel
@email{a.s.hodel@@eng.auburn.edu} with the assistance
of his students
@itemize @bullet
@item R. Bruce Tenison @email{btenison@@dibbs.net},
@item David C. Clem,
@item John E. Ingram @email{John.Ingram@@sea.siemans.com}, and
@item Kristi McGowan.
@end itemize
This development was supported in part by @acronym{NASA}'s Marshall Space Flight
Center as part of an in-house @acronym{CACSD} environment. Additional important
contributions were made by Dr. Kai Mueller @email{mueller@@ifr.ing.tu-bs.de}
and Jose Daniel Munoz Frias (@code{place.m}).
An on-line menu-driven tutorial is available via @code{DEMOcontrol};
beginning @acronym{OCST} users should start with this program.
@deftypefn {Function File} {} DEMOcontrol
Octave Control Systems Toolbox demo/tutorial program. The demo
allows the user to select among several categories of @acronym{OCST} function:
@example
@group
octave:1> DEMOcontrol
Octave Controls System Toolbox Demo
[ 1] System representation
[ 2] Block diagram manipulations
[ 3] Frequency response functions
[ 4] State space analysis functions
[ 5] Root locus functions
[ 6] LQG/H2/Hinfinity functions
[ 7] End
@end group
@end example
Command examples are interactively run for users to observe the use
of @acronym{OCST} functions
See also: bddemo, frdemo, analdemo, moddmeo, rldemo
@end deftypefn
@menu
* sysstruct::
* sysinterface::
* sysdisp::
* blockdiag::
* numerical::
* sysprop::
* systime::
* sysfreq::
* cacsd::
* misc::
@end menu
@node sysstruct
@chapter System Data Structure
@menu
* sysstructvars::
* sysstructtf::
* sysstructzp::
* sysstructss::
@end menu
The @acronym{OCST} stores all dynamic systems in
a single data structure format that can represent continuous systems,
discrete-systems, and mixed (hybrid) systems in state-space form, and
can also represent purely continuous/discrete systems in either
transfer function or pole-zero form. In order to
provide more flexibility in treatment of discrete/hybrid systems, the
@acronym{OCST} also keeps a record of which system outputs are sampled.
Octave structures are accessed with a syntax much like that used
by the C programming language. For consistency in
use of the data structure used in the @acronym{OCST}, it is recommended that
the system structure access m-files be used (@pxref{sysinterface}).
Some elements of the data structure are absent depending on the internal
system representation(s) used. More than one system representation
can be used for @acronym{SISO} systems; the @acronym{OCST} m-files ensure that all representations
used are consistent with one another.
@deftypefn {Function File} {} sysrepdemo
Tutorial for the use of the system data structure functions
@end deftypefn
@node sysstructvars
@section Variables common to all @acronym{OCST} system formats
The data structure elements (and variable types) common to all system
representations are listed below; examples of the initialization
and use of the system data structures are given in subsequent sections and
in the online demo @code{DEMOcontrol}.
@table @var
@item n
@itemx nz
The respective number of continuous and discrete states
in the system (scalar)
@item inname
@itemx outname
list of name(s) of the system input, output signal(s). (list of strings)
@item sys
System status vector. (vector)
This vector indicates both what representation was used to initialize
the system data structure (called the primary system type) and which
other representations are currently up-to-date with the primary system
type (@pxref{structaccess}).
The value of the first element of the vector indicates the primary
system type.
@table @asis
@item 0
for tf form (initialized with @code{tf2sys} or @code{fir2sys})
@item 1
for zp form (initialized with @code{zp2sys})
@item 2
for ss form (initialized with @code{ss2sys})
@end table
The next three elements are boolean flags that indicate whether tf, zp,
or ss, respectively, are ``up to date" (whether it is safe to use the
variables associated with these representations). These flags are
changed when calls are made to the @code{sysupdate} command.
@item tsam
Discrete time sampling period (nonnegative scalar).
@var{tsam} is set to 0 for continuous time systems.
@item yd
Discrete-time output list (vector)
indicates which outputs are discrete time (i.e.,
produced by D/A converters) and which are continuous time.
yd(ii) = 0 if output ii is continuous, = 1 if discrete.
@end table
The remaining variables of the system data structure are only present
if the corresponding entry of the @code{sys} vector is true (=1).
@node sysstructtf
@section @code{tf} format variables
@table @var
@item num
numerator coefficients (vector)
@item den
denominator coefficients (vector)
@end table
@node sysstructzp
@section @code{zp} format variables
@table @var
@item zer
system zeros (vector)
@item pol
system poles (vector)
@item k
leading coefficient (scalar)
@end table
@node sysstructss
@section @code{ss} format variables
@table @var
@item a
@itemx b
@itemx c
@itemx d
The usual state-space matrices. If a system has both
continuous and discrete states, they are sorted so that
continuous states come first, then discrete states
@strong{Note} some functions (e.g., @code{bode}, @code{hinfsyn})
will not accept systems with both discrete and continuous states/outputs
@item stname
names of system states (list of strings)
@end table
@node sysinterface
@chapter System Construction and Interface Functions
Construction and manipulations of the @acronym{OCST} system data structure
(@pxref{sysstruct}) requires attention to many details in order
to ensure that data structure contents remain consistent. Users
are strongly encouraged to use the system interface functions
in this section. Functions for the formatted display in of system
data structures are given in @ref{sysdisp}.
@menu
* fir2sys::
* ss2sys::
* tf2sys::
* zp2sys::
* structaccess::
@end menu
@node fir2sys
@section Finite impulse response system interface functions
@deftypefn {Function File} {} fir2sys (@var{num}, @var{tsam}, @var{inname}, @var{outname})
construct a system data structure from @acronym{FIR} description
@strong{Inputs}
@table @var
@item num
vector of coefficients
@ifinfo
[c0, c1, @dots{}, cn]
@end ifinfo
@iftex
@tex
$ [c_0, c_1, \ldots, c_n ]$
@end tex
@end iftex
of the @acronym{SISO} @acronym{FIR} transfer function
@ifinfo
C(z) = c0 + c1*z^(-1) + c2*z^(-2) + @dots{} + cn*z^(-n)
@end ifinfo
@iftex
@tex
$$ C(z) = c_0 + c_1z^{-1} + c_2z^{-2} + \ldots + c_nz^{-n} $$
@end tex
@end iftex
@item tsam
sampling time (default: 1)
@item inname
name of input signal; may be a string or a list with a single entry
@item outname
name of output signal; may be a string or a list with a single entry
@end table
@strong{Output}
@table @var
@item sys
system data structure
@end table
@strong{Example}
@example
octave:1> sys = fir2sys([1 -1 2 4],0.342,\
> "A/D input","filter output");
octave:2> sysout(sys)
Input(s)
1: A/D input
Output(s):
1: filter output (discrete)
Sampling interval: 0.342
transfer function form:
1*z^3 - 1*z^2 + 2*z^1 + 4
-------------------------
1*z^3 + 0*z^2 + 0*z^1 + 0
@end example
@end deftypefn
@deftypefn {Function File} {[@var{c}, @var{tsam}, @var{input}, @var{output}] =} sys2fir (@var{sys})
Extract @acronym{FIR} data from system data structure; see @command{fir2sys} for
parameter descriptions
See also: fir2sys
@end deftypefn
@node ss2sys
@section State space system interface functions
@deftypefn {Function File} {@var{outsys} =} ss (@var{a}, @var{b}, @var{c}, @var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{outlist})
Create system structure from state-space data. May be continuous,
discrete, or mixed (sampled data)
@strong{Inputs}
@table @var
@item a
@itemx b
@itemx c
@itemx d
usual state space matrices
default: @var{d} = zero matrix
@item tsam
sampling rate. Default: @math{tsam = 0} (continuous system)
@item n
@itemx nz
number of continuous, discrete states in the system
If @var{tsam} is 0, @math{n = @code{rows}(@var{a})}, @math{nz = 0}
If @var{tsam} is greater than zero, @math{n = 0},
@math{nz = @code{rows}(@var{a})}
see below for system partitioning
@item stname
cell array of strings of state signal names
default (@var{stname}=[] on input): @code{x_n} for continuous states,
@code{xd_n} for discrete states
@item inname
cell array of strings of input signal names
default (@var{inname} = [] on input): @code{u_n}
@item outname
cell array of strings of output signal names
default (@var{outname} = [] on input): @code{y_n}
@item outlist
list of indices of outputs y that are sampled
If @var{tsam} is 0, @math{outlist = []}
If @var{tsam} is greater than 0, @math{outlist = 1:@code{rows}(@var{c})}
@end table
Unlike states, discrete/continuous outputs may appear in any order
@code{sys2ss} returns a vector @var{yd} where
@var{yd}(@var{outlist}) = 1; all other entries of @var{yd} are 0
@strong{Output}
@table @var
@item outsys
system data structure
@end table
@strong{System partitioning}
Suppose for simplicity that outlist specified
that the first several outputs were continuous and the remaining outputs
were discrete. Then the system is partitioned as
@example
@group
x = [ xc ] (n x 1)
[ xd ] (nz x 1 discrete states)
a = [ acc acd ] b = [ bc ]
[ adc add ] [ bd ]
c = [ ccc ccd ] d = [ dc ]
[ cdc cdd ] [ dd ]
(cdc = c(outlist,1:n), etc.)
@end group
@end example
with dynamic equations:
@ifinfo
@math{d/dt xc(t) = acc*xc(t) + acd*xd(k*tsam) + bc*u(t)}
@math{xd((k+1)*tsam) = adc*xc(k*tsam) + add*xd(k*tsam) + bd*u(k*tsam)}
@math{yc(t) = ccc*xc(t) + ccd*xd(k*tsam) + dc*u(t)}
@math{yd(k*tsam) = cdc*xc(k*tsam) + cdd*xd(k*tsam) + dd*u(k*tsam)}
@end ifinfo
@iftex
@tex
$$\eqalign{
{d \over dt} x_c(t)
& = a_{cc} x_c(t) + a_{cd} x_d(k*t_{sam}) + bc*u(t) \cr
x_d((k+1)*t_{sam})
& = a_{dc} x_c(k t_{sam}) + a_{dd} x_d(k t_{sam}) + b_d u(k t_{sam}) \cr
y_c(t)
& = c_{cc} x_c(t) + c_{cd} x_d(k t_{sam}) + d_c u(t) \cr
y_d(k t_{sam})
& = c_{dc} x_c(k t_{sam}) + c_{dd} x_d(k t_{sam}) + d_d u(k t_{sam})
}$$
@end tex
@end iftex
@strong{Signal partitions}
@example
@group
| continuous | discrete |
----------------------------------------------------
states | stname(1:n,:) | stname((n+1):(n+nz),:) |
----------------------------------------------------
outputs | outname(cout,:) | outname(outlist,:) |
----------------------------------------------------
@end group
@end example
where @math{cout} is the list of in 1:@code{rows}(@var{p})
that are not contained in outlist. (Discrete/continuous outputs
may be entered in any order desired by the user.)
@strong{Example}
@example
octave:1> a = [1 2 3; 4 5 6; 7 8 10];
octave:2> b = [0 0 ; 0 1 ; 1 0];
octave:3> c = eye (3);
octave:4> sys = ss (a, b, c, [], 0, 3, 0, ..
> @{"volts", "amps", "joules"@});
octave:5> sysout(sys);
Input(s)
1: u_1
2: u_2
Output(s):
1: y_1
2: y_2
3: y_3
state-space form:
3 continuous states, 0 discrete states
State(s):
1: volts
2: amps
3: joules
A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0 0
0 1
1 0
C matrix: 3 x 3
1 0 0
0 1 0
0 0 1
D matrix: 3 x 3
0 0
0 0
0 0
@end example
Notice that the @math{D} matrix is constructed by default to the
correct dimensions. Default input and output signals names were assigned
since none were given
@end deftypefn
@deftypefn {Function File} {} ss2sys (@var{a}, @var{b}, @var{c}, @var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{outlist})
Create system structure from state-space data. May be continuous,
discrete, or mixed (sampled data)
@strong{Inputs}
@table @var
@item a
@itemx b
@itemx c
@itemx d
usual state space matrices
default: @var{d} = zero matrix
@item tsam
sampling rate. Default: @math{tsam = 0} (continuous system)
@item n
@itemx nz
number of continuous, discrete states in the system
If @var{tsam} is 0, @math{n = @code{rows}(@var{a})}, @math{nz = 0}
If @var{tsam} is greater than zero, @math{n = 0},
@math{nz = @code{rows}(@var{a})}
see below for system partitioning
@item stname
cell array of strings of state signal names
default (@var{stname}=[] on input): @code{x_n} for continuous states,
@code{xd_n} for discrete states
@item inname
cell array of strings of input signal names
default (@var{inname} = [] on input): @code{u_n}
@item outname
cell array of strings of input signal names
default (@var{outname} = [] on input): @code{y_n}
@item outlist
list of indices of outputs y that are sampled
If @var{tsam} is 0, @math{outlist = []}
If @var{tsam} is greater than 0, @math{outlist = 1:@code{rows}(@var{c})}
@end table
Unlike states, discrete/continuous outputs may appear in any order
@code{sys2ss} returns a vector @var{yd} where
@var{yd}(@var{outlist}) = 1; all other entries of @var{yd} are 0
@strong{Outputs}
@var{outsys} = system data structure
@strong{System partitioning}
Suppose for simplicity that outlist specified
that the first several outputs were continuous and the remaining outputs
were discrete. Then the system is partitioned as
@example
@group
x = [ xc ] (n x 1)
[ xd ] (nz x 1 discrete states)
a = [ acc acd ] b = [ bc ]
[ adc add ] [ bd ]
c = [ ccc ccd ] d = [ dc ]
[ cdc cdd ] [ dd ]
(cdc = c(outlist,1:n), etc.)
@end group
@end example
with dynamic equations:
@ifinfo
@math{d/dt xc(t) = acc*xc(t) + acd*xd(k*tsam) + bc*u(t)}
@math{xd((k+1)*tsam) = adc*xc(k*tsam) + add*xd(k*tsam) + bd*u(k*tsam)}
@math{yc(t) = ccc*xc(t) + ccd*xd(k*tsam) + dc*u(t)}
@math{yd(k*tsam) = cdc*xc(k*tsam) + cdd*xd(k*tsam) + dd*u(k*tsam)}
@end ifinfo
@iftex
@tex
$$\eqalign{
{d \over dt} x_c(t)
& = a_{cc} x_c(t) + a_{cd} x_d(k*t_{sam}) + bc*u(t) \cr
x_d((k+1)*t_{sam})
& = a_{dc} x_c(k t_{sam}) + a_{dd} x_d(k t_{sam}) + b_d u(k t_{sam}) \cr
y_c(t)
& = c_{cc} x_c(t) + c_{cd} x_d(k t_{sam}) + d_c u(t) \cr
y_d(k t_{sam})
& = c_{dc} x_c(k t_{sam}) + c_{dd} x_d(k t_{sam}) + d_d u(k t_{sam})
}$$
@end tex
@end iftex
@strong{Signal partitions}
@example
@group
| continuous | discrete |
----------------------------------------------------
states | stname(1:n,:) | stname((n+1):(n+nz),:) |
----------------------------------------------------
outputs | outname(cout,:) | outname(outlist,:) |
----------------------------------------------------
@end group
@end example
where @math{cout} is the list of in 1:@code{rows}(@var{p})
that are not contained in outlist. (Discrete/continuous outputs
may be entered in any order desired by the user.)
@strong{Example}
@example
octave:1> a = [1 2 3; 4 5 6; 7 8 10];
octave:2> b = [0 0 ; 0 1 ; 1 0];
octave:3> c = eye (3);
octave:4> sys = ss (a, b, c, [], 0, 3, 0,
> @{"volts", "amps", "joules"@});
octave:5> sysout(sys);
Input(s)
1: u_1
2: u_2
Output(s):
1: y_1
2: y_2
3: y_3
state-space form:
3 continuous states, 0 discrete states
State(s):
1: volts
2: amps
3: joules
A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0 0
0 1
1 0
C matrix: 3 x 3
1 0 0
0 1 0
0 0 1
D matrix: 3 x 3
0 0
0 0
0 0
@end example
Notice that the @math{D} matrix is constructed by default to the
correct dimensions. Default input and output signals names were assigned
since none were given
@end deftypefn
@deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{yd}] =} sys2ss (@var{sys})
Extract state space representation from system data structure
@strong{Input}
@table @var
@item sys
System data structure
@end table
@strong{Outputs}
@table @var
@item a
@itemx b
@itemx c
@itemx d
State space matrices for @var{sys}
@item tsam
Sampling time of @var{sys} (0 if continuous)
@item n
@itemx nz
Number of continuous, discrete states (discrete states come
last in state vector @var{x})
@item stname
@itemx inname
@itemx outname
Signal names (lists of strings); names of states,
inputs, and outputs, respectively
@item yd
Binary vector; @var{yd}(@var{ii}) is 1 if output @var{y}(@var{ii})
is discrete (sampled); otherwise @var{yd}(@var{ii}) is 0
@end table
A warning massage is printed if the system is a mixed
continuous and discrete system
@strong{Example}
@example
octave:1> sys=tf2sys([1 2],[3 4 5]);
octave:2> [a,b,c,d] = sys2ss(sys)
a =
0.00000 1.00000
-1.66667 -1.33333
b =
0
1
c = 0.66667 0.33333
d = 0
@end example
@end deftypefn
@node tf2sys
@section Transfer function system interface functions
@deftypefn {Function File} {} tf (@var{num}, @var{den}, @var{tsam}, @var{inname}, @var{outname})
build system data structure from transfer function format data
@strong{Inputs}
@table @var
@item num
@itemx den
coefficients of numerator/denominator polynomials
@item tsam
sampling interval. default: 0 (continuous time)
@item inname
@itemx outname
input/output signal names; may be a string or cell array with a single string
entry
@end table
@strong{Outputs}
@var{sys} = system data structure
@strong{Example}
@example
octave:1> sys=tf([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:
2*z^1 + 1
-----------------
1*z^2 + 2*z^1 + 1
@end example
@end deftypefn
@deftypefn {Function File} {} tf2sys (@var{num}, @var{den}, @var{tsam}, @var{inname}, @var{outname})
Build system data structure from transfer function format data
@strong{Inputs}
@table @var
@item num
@itemx den
Coefficients of numerator/denominator polynomials
@item tsam
Sampling interval; default: 0 (continuous time)
@item inname
@itemx outname
Input/output signal names; may be a string or cell array with a single string
entry
@end table
@strong{Output}
@table @var
@item sys
System data structure
@end table
@strong{Example}
@example
octave:1> sys=tf2sys([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:
2*z^1 + 1
-----------------
1*z^2 + 2*z^1 + 1
@end example
@end deftypefn
@deftypefn {Function File} {[@var{num}, @var{den}, @var{tsam}, @var{inname}, @var{outname}] =} sys2tf (@var{sys})
Extract transfer function data from a system data structure
See @command{tf} for parameter descriptions
@strong{Example}
@example
octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 1]);
octave:2> [num,den] = sys2tf(sys)
num = 1.0000 -3.0000
den = 1.0000 1.1000 -4.3000
@end example
@end deftypefn
@node zp2sys
@section Zero-pole system interface functions
@deftypefn {Function File} {} zp (@var{zer}, @var{pol}, @var{k}, @var{tsam}, @var{inname}, @var{outname})
Create system data structure from zero-pole data
@strong{Inputs}
@table @var
@item zer
vector of system zeros
@item pol
vector of system poles
@item k
scalar leading coefficient
@item tsam
sampling period. default: 0 (continuous system)
@item inname
@itemx outname
input/output signal names (lists of strings)
@end table
@strong{Outputs}
sys: system data structure
@strong{Example}
@example
octave:1> sys=zp([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
zero-pole form:
1 (s - 1) (s + 1)
-----------------
s (s + 2) (s + 2)
@end example
@end deftypefn
@deftypefn {Function File} {} zp2sys (@var{zer}, @var{pol}, @var{k}, @var{tsam}, @var{inname}, @var{outname})
Create system data structure from zero-pole data
@strong{Inputs}
@table @var
@item zer
Vector of system zeros
@item pol
Vector of system poles
@item k
Scalar leading coefficient
@item tsam
Sampling period; default: 0 (continuous system)
@item inname
@itemx outname
Input/output signal names (lists of strings)
@end table
@strong{Output}
@table @var
@item sys
System data structure
@end table
@strong{Example}
@example
octave:1> sys=zp2sys([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
zero-pole form:
1 (s - 1) (s + 1)
-----------------
s (s + 2) (s + 2)
@end example
@end deftypefn
@deftypefn {Function File} {[@var{zer}, @var{pol}, @var{k}, @var{tsam}, @var{inname}, @var{outname}] =} sys2zp (@var{sys})
Extract zero/pole/leading coefficient information from a system data
structure
See @command{zp} for parameter descriptions
@strong{Example}
@example
octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 1]);
octave:2> [zer,pol,k] = sys2zp(sys)
zer = 3.0000
pol =
-2.6953
1.5953
k = 1
@end example
@end deftypefn
@node structaccess
@section Data structure access functions
@deftypefn {Function File} {} syschnames (@var{sys}, @var{opt}, @var{list}, @var{names})
Superseded by @command{syssetsignals}
@end deftypefn
@deftypefn {Function File} {} syschtsam (@var{sys}, @var{tsam})
This function changes the sampling time (tsam) of the system. Exits with
an error if sys is purely continuous time
@end deftypefn
@deftypefn {Function File} {[@var{n}, @var{nz}, @var{m}, @var{p}, @var{yd}] =} sysdimensions (@var{sys}, @var{opt})
return the number of states, inputs, and/or outputs in the system
@var{sys}
@strong{Inputs}
@table @var
@item sys
system data structure
@item opt
String indicating which dimensions are desired. Values:
@table @code
@item "all"
(default) return all parameters as specified under Outputs below
@item "cst"
return @var{n}= number of continuous states
@item "dst"
return @var{n}= number of discrete states
@item "in"
return @var{n}= number of inputs
@item "out"
return @var{n}= number of outputs
@end table
@end table
@strong{Outputs}
@table @var
@item n
number of continuous states (or individual requested dimension as specified
by @var{opt})
@item nz
number of discrete states
@item m
number of system inputs
@item p
number of system outputs
@item yd
binary vector; @var{yd}(@var{ii}) is nonzero if output @var{ii} is
discrete
@math{yd(ii) = 0} if output @var{ii} is continuous
@end table
See also: sysgetsignals, sysgettsam
@end deftypefn
@deftypefn {Function File} {[@var{stname}, @var{inname}, @var{outname}, @var{yd}] =} sysgetsignals (@var{sys})
@deftypefnx {Function File} {@var{siglist} =} sysgetsignals (@var{sys}, @var{sigid})
@deftypefnx {Function File} {@var{signame} =} sysgetsignals (@var{sys}, @var{sigid}, @var{signum}, @var{strflg})
Get signal names from a system
@strong{Inputs}
@table @var
@item sys
system data structure for the state space system
@item sigid
signal id. String. Must be one of
@table @code
@item "in"
input signals
@item "out"
output signals
@item "st"
stage signals
@item "yd"
value of logical vector @var{yd}
@end table
@item signum
index(indices) or name(s) or signals; see @code{sysidx}
@item strflg
flag to return a string instead of a cell array; Values:
@table @code
@item 0
(default) return a cell array (even if signum specifies an individual signal)
@item 1
return a string. Exits with an error if signum does not specify an
individual signal
@end table
@end table
@strong{Outputs}
@table @bullet
@item If @var{sigid} is not specified:
@table @var
@item stname
@itemx inname
@itemx outname
signal names (cell array of strings); names of states,
inputs, and outputs, respectively
@item yd
binary vector; @var{yd}(@var{ii}) is nonzero if output @var{ii} is
discrete
@end table
@item If @var{sigid} is specified but @var{signum} is not specified:
@table @code
@item sigid="in"
@var{siglist} is set to the cell array of input names
@item sigid="out"
@var{siglist} is set to the cell array of output names
@item sigid="st"
@var{siglist} is set to the cell array of state names
stage signals
@item sigid="yd"
@var{siglist} is set to logical vector indicating discrete outputs;
@var{siglist}(@var{ii}) = 0 indicates that output @var{ii} is continuous
(unsampled), otherwise it is discrete
@end table
@item If the first three input arguments are specified:
@var{signame} is a cell array of the specified signal names (@var{sigid} is
@code{"in"}, @code{"out"}, or @code{"st"}), or else the logical flag
indicating whether output(s) @var{signum} is(are) discrete (@var{sigval}=1)
or continuous (@var{sigval}=0)
@end table
@strong{Examples} (From @code{sysrepdemo})
@example
octave> sys=ss(rand(4),rand(4,2),rand(3,4));
octave># get all signal names
octave> [Ast,Ain,Aout,Ayd] = sysgetsignals(sys)
Ast =
(
[1] = x_1
[2] = x_2
[3] = x_3
[4] = x_4
)
Ain =
(
[1] = u_1
[2] = u_2
)
Aout =
(
[1] = y_1
[2] = y_2
[3] = y_3
)
Ayd =
0 0 0
octave> # get only input signal names:
octave> Ain = sysgetsignals(sys,"in")
Ain =
(
[1] = u_1
[2] = u_2
)
octave> # get name of output 2 (in cell array):
octave> Aout = sysgetsignals(sys,"out",2)
Aout =
(
[1] = y_2
)
octave> # get name of output 2 (as string):
octave> Aout = sysgetsignals(sys,"out",2,1)
Aout = y_2
@end example
@end deftypefn
@deftypefn {Function File} {} sysgettype (@var{sys})
return the initial system type of the system
@strong{Input}
@table @var
@item sys
System data structure
@end table
@strong{Output}
@table @var
@item systype
String indicating how the structure was initially
constructed. Values: @code{"ss"}, @code{"zp"}, or @code{"tf"}
@end table
@acronym{FIR} initialized systems return @code{systype="tf"}
@end deftypefn
@deftypefn {Function File} {} syssetsignals (@var{sys}, @var{opt}, @var{names}, @var{sig_idx})
change the names of selected inputs, outputs and states
@strong{Inputs}
@table @var
@item sys
System data structure
@item opt
Change default name (output)
@table @code
@item "out"
Change selected output names
@item "in"
Change selected input names
@item "st"
Change selected state names
@item "yd"
Change selected outputs from discrete to continuous or
from continuous to discrete
@end table
@item names
@table @code
@item opt = "out", "in", "st"
string or string array containing desired signal names or values
@item opt = "yd"
To desired output continuous/discrete flag
Set name to 0 for continuous, or 1 for discrete
@end table
@item sig_idx
indices or names of outputs, yd, inputs, or
states whose respective names/values should be changed
Default: replace entire cell array of names/entire yd vector
@end table
@strong{Outputs}
@table @var
@item retsys
@var{sys} with appropriate signal names changed
(or @var{yd} values, where appropriate)
@end table
@strong{Example}
@example
octave:1> sys=ss ([1 2; 3 4],[5;6],[7 8]);
octave:2> sys = syssetsignals (sys, "st",
> str2mat("Posx","Velx"));
octave:3> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
state-space form:
2 continuous states, 0 discrete states
State(s):
1: Posx
2: Velx
A matrix: 2 x 2
1 2
3 4
B matrix: 2 x 1
5
6
C matrix: 1 x 2
7 8
D matrix: 1 x 1
0
@end example
@end deftypefn
@deftypefn {Function File} {} sysupdate (@var{sys}, @var{opt})
Update the internal representation of a system
@strong{Inputs}
@table @var
@item sys:
system data structure
@item opt
string:
@table @code
@item "tf"
update transfer function form
@item "zp"
update zero-pole form
@item "ss"
update state space form
@item "all"
all of the above
@end table
@end table
@strong{Outputs}
@table @var
@item retsys
Contains union of data in sys and requested data
If requested data in @var{sys} is already up to date then @var{retsys}=@var{sys}
@end table
Conversion to @command{tf} or @command{zp} exits with an error if the system is
mixed continuous/digital
See also: tf, ss, zp, sysout, sys2ss, sys2tf, sys2zp
@end deftypefn
@deftypefn {Function File} {[@var{systype}, @var{nout}, @var{nin}, @var{ncstates}, @var{ndstates}] =} minfo (@var{inmat})
Determines the type of system matrix. @var{inmat} can be a varying,
a system, a constant, and an empty matrix
@strong{Outputs}
@table @var
@item systype
Can be one of: varying, system, constant, and empty
@item nout
The number of outputs of the system
@item nin
The number of inputs of the system
@item ncstates
The number of continuous states of the system
@item ndstates
The number of discrete states of the system
@end table
@end deftypefn
@deftypefn {Function File} {} sysgettsam (@var{sys})
Return the sampling time of the system @var{sys}
@end deftypefn
@node sysdisp
@chapter System display functions
@deftypefn {Function File} {} sysout (@var{sys}, @var{opt})
print out a system data structure in desired format
@table @var
@item sys
system data structure
@item opt
Display option
@table @code
@item []
primary system form (default)
@item "ss"
state space form
@item "tf"
transfer function form
@item "zp"
zero-pole form
@item "all"
all of the above
@end table
@end table
@end deftypefn
@deftypefn {Function File} {} tfout (@var{num}, @var{denom}, @var{x})
Print formatted transfer function @math{n(s)/d(s)} to the screen
@var{x} defaults to the string @code{"s"}
See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg, polyout
@end deftypefn
@deftypefn {Function File} {} zpout (@var{zer}, @var{pol}, @var{k}, @var{x})
print formatted zero-pole form to the screen
@var{x} defaults to the string @code{"s"}
See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg, polyout
@end deftypefn
@node blockdiag
@chapter Block Diagram Manipulations
@xref{systime}.
Unless otherwise noted, all parameters (input,output) are
system data structures.
@deftypefn {Function File} {} bddemo (@var{inputs})
Octave Controls toolbox demo: Block Diagram Manipulations demo
@end deftypefn
@deftypefn {Function File} {} buildssic (@var{clst}, @var{ulst}, @var{olst}, @var{ilst}, @var{s1}, @var{s2}, @var{s3}, @var{s4}, @var{s5}, @var{s6}, @var{s7}, @var{s8})
Form an arbitrary complex (open or closed loop) system in
state-space form from several systems. @command{buildssic} can
easily (despite its cryptic syntax) integrate transfer functions
from a complex block diagram into a single system with one call
This function is especially useful for building open loop
interconnections for
@iftex
@tex
$ { \cal H }_\infty $ and $ { \cal H }_2 $
@end tex
@end iftex
@ifinfo
H-infinity and H-2
@end ifinfo
designs or for closing loops with these controllers
Although this function is general purpose, the use of @command{sysgroup}
@command{sysmult}, @command{sysconnect} and the like is recommended for
standard operations since they can handle mixed discrete and continuous
systems and also the names of inputs, outputs, and states
The parameters consist of 4 lists that describe the connections
outputs and inputs and up to 8 systems @var{s1}--@var{s8}
Format of the lists:
@table @var
@item clst
connection list, describes the input signal of
each system. The maximum number of rows of Clst is
equal to the sum of all inputs of s1-s8
Example:
@code{[1 2 -1; 2 1 0]} means that: new input 1 is old input 1
+ output 2 - output 1, and new input 2 is old input 2
+ output 1. The order of rows is arbitrary
@item ulst
if not empty the old inputs in vector @var{ulst} will
be appended to the outputs. You need this if you
want to ``pull out'' the input of a system. Elements
are input numbers of @var{s1}--@var{s8}
@item olst
output list, specifies the outputs of the resulting
systems. Elements are output numbers of @var{s1}--@var{s8}
The numbers are allowed to be negative and may
appear in any order. An empty matrix means
all outputs
@item ilst
input list, specifies the inputs of the resulting
systems. Elements are input numbers of @var{s1}--@var{s8}
The numbers are allowed to be negative and may
appear in any order. An empty matrix means
all inputs
@end table
Example: Very simple closed loop system
@example
@group
w e +-----+ u +-----+
--->o--*-->| K |--*-->| G |--*---> y
^ | +-----+ | +-----+ |
- | | | |
| | +----------------> u
| | |
| +-------------------------|---> e
| |
+----------------------------+
@end group
@end example
The closed loop system @var{GW} can be obtained by
@example
GW = buildssic([1 2; 2 -1], 2, [1 2 3], 2, G, K);
@end example
@table @var
@item clst
1st row: connect input 1 (@var{G}) with output 2 (@var{K})
2nd row: connect input 2 (@var{K}) with negative output 1 (@var{G})
@item ulst
Append input of 2 (@var{K}) to the number of outputs
@item olst
Outputs are output of 1 (@var{G}), 2 (@var{K}) and
appended output 3 (from @var{ulst})
@item ilst
The only input is 2 (@var{K})
@end table
Here is a real example:
@example
@group
+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v +----+
*--->| G |--->O--*-->| W2 |---> v2
| +---+ | +----+
| |
| v
u y
@end group
@end example
@iftex
@tex
$$ { \rm min } \Vert GW_{vz} \Vert _\infty $$
@end tex
@end iftex
@ifinfo
@example
min || GW ||
vz infty
@end example
@end ifinfo
The closed loop system @var{GW}
@iftex
@tex
from $ [z, u]^T $ to $ [v_1, v_2, y]^T $
@end tex
@end iftex
@ifinfo
from [z, u]' to [v1, v2, y]'
@end ifinfo
can be obtained by (all @acronym{SISO} systems):
@example
GW = buildssic([1, 4; 2, 4; 3, 1], 3, [2, 3, 5],
[3, 4], G, W1, W2, One);
@end example
where ``One'' is a unity gain (auxiliary) function with order 0
(e.g. @code{One = ugain(1);})
@end deftypefn
@deftypefn {Function File} {@var{sys} =} jet707 ()
Creates a linearized state-space model of a Boeing 707-321 aircraft
at @var{v}=80 m/s
@iftex
@tex
($M = 0.26$, $G_{a0} = -3^{\circ}$, ${\alpha}_0 = 4^{\circ}$, ${\kappa}= 50^{\circ}$)
@end tex
@end iftex
@ifinfo
(@var{M} = 0.26, @var{Ga0} = -3 deg, @var{alpha0} = 4 deg, @var{kappa} = 50 deg)
@end ifinfo
System inputs: (1) thrust and (2) elevator angle
System outputs: (1) airspeed and (2) pitch angle
@strong{Reference}: R. Brockhaus: @cite{Flugregelung} (Flight
Control), Springer, 1994
See also: ord2
@end deftypefn
@deftypefn {Function File} {} ord2 (@var{nfreq}, @var{damp}, @var{gain})
Creates a continuous 2nd order system with parameters:
@strong{Inputs}
@table @var
@item nfreq
natural frequency [Hz]. (not in rad/s)
@item damp
damping coefficient
@item gain
dc-gain
This is steady state value only for damp > 0
gain is assumed to be 1.0 if omitted
@end table
@strong{Output}
@table @var
@item outsys
system data structure has representation with
@ifinfo
@math{w = 2 * pi * nfreq}:
@end ifinfo
@iftex
@tex
$ w = 2 \pi f $:
@end tex
@end iftex
@example
@group
/ \
| / -2w*damp -w \ / w \ |
G = | | |, | |, [ 0 gain ], 0 |
| \ w 0 / \ 0 / |
\ /
@end group
@end example
@end table
@strong{See also} @command{jet707} (@acronym{MIMO} example, Boeing 707-321
aircraft model)
@end deftypefn
@deftypefn {Function File} {} sysadd (@var{gsys}, @var{hsys})
returns @var{sys} = @var{gsys} + @var{hsys}
@itemize @bullet
@item Exits with
an error if @var{gsys} and @var{hsys} are not compatibly dimensioned
@item Prints a warning message is system states have identical names;
duplicate names are given a suffix to make them unique
@item @var{sys} input/output names are taken from @var{gsys}
@end itemize
@example
@group
________
----| gsys |---
u | ---------- +|
----- (_)----> y
| ________ +|
----| hsys |---
--------
@end group
@end example
@end deftypefn
@deftypefn {Function File} {@var{sys} =} sysappend (@var{syst}, @var{b}, @var{c}, @var{d}, @var{outname}, @var{inname}, @var{yd})
appends new inputs and/or outputs to a system
@strong{Inputs}
@table @var
@item syst
system data structure
@item b
matrix to be appended to sys "B" matrix (empty if none)
@item c
matrix to be appended to sys "C" matrix (empty if none)
@item d
revised sys d matrix (can be passed as [] if the revised d is all zeros)
@item outname
list of names for new outputs
@item inname
list of names for new inputs
@item yd
binary vector; @math{yd(ii)=0} indicates a continuous output;
@math{yd(ii)=1} indicates a discrete output
@end table
@strong{Outputs}
@table @var
@item sys
@example
@group
sys.b := [syst.b , b]
sys.c := [syst.c ]
[ c ]
sys.d := [syst.d | D12 ]
[ D21 | D22 ]
@end group
@end example
where @math{D12}, @math{D21}, and @math{D22} are the appropriate dimensioned
blocks of the input parameter @var{d}
@itemize @bullet
@item The leading block @math{D11} of @var{d} is ignored
@item If @var{inname} and @var{outname} are not given as arguments,
the new inputs and outputs are be assigned default names
@item @var{yd} is a binary vector of length rows(c) that indicates
continuous/sampled outputs. Default value for @var{yd} is:
@itemize @minus
@item @var{sys} is continuous or mixed
@var{yd} = @code{zeros(1,rows(c))}
@item @var{sys} is discrete
@var{yd} = @code{ones(1,rows(c))}
@end itemize
@end itemize
@end table
@end deftypefn
@deftypefn {Function File} {@var{clsys} =} sysconnect (@var{sys}, @var{out_idx}, @var{in_idx}, @var{order}, @var{tol})
Close the loop from specified outputs to respective specified inputs
@strong{Inputs}
@table @var
@item sys
System data structure
@item out_idx
@itemx in_idx
Names or indices of signals to connect (see @code{sysidx})
The output specified by @math{out_idx(ii)} is connected to the input
specified by @math{in_idx(ii)}
@item order
logical flag (default = 0)
@table @code
@item 0
Leave inputs and outputs in their original order
@item 1
Permute inputs and outputs to the order shown in the diagram below
@end table
@item tol
Tolerance for singularities in algebraic loops, default: 200@code{eps}
@end table
@strong{Outputs}
@table @var
@item clsys
Resulting closed loop system
@end table
@strong{Method}
@code{sysconnect} internally permutes selected inputs, outputs as shown
below, closes the loop, and then permutes inputs and outputs back to their
original order
@example
@group
--------------------
u_1 ----->| |----> y_1
| sys |
old u_2 | |
u_2* ---->(+)--->| |----->y_2
(in_idx) ^ -------------------- | (out_idx)
| |
-------------------------------
@end group
@end example
The input that has the summing junction added to it has an * added to
the end of the input name
@end deftypefn
@deftypefn {Function File} {[@var{csys}, @var{acd}, @var{ccd}] =} syscont (@var{sys})
Extract the purely continuous subsystem of an input system
@strong{Input}
@table @var
@item sys
system data structure
@end table
@strong{Outputs}
@table @var
@item csys
is the purely continuous input/output connections of @var{sys}
@item acd
@itemx ccd
connections from discrete states to continuous states,
discrete states to continuous outputs, respectively
If no continuous path exists, @var{csys} will be empty
@end table
@end deftypefn
@deftypefn {Function File} {[@var{dsys}, @var{adc}, @var{cdc}] =} sysdisc (@var{sys})
@strong{Input}
@table @var
@item sys
System data structure
@end table
@strong{Outputs}
@table @var
@item dsys
Purely discrete portion of sys (returned empty if there is
no purely discrete path from inputs to outputs)
@item adc
@itemx cdc
Connections from continuous states to discrete states and discrete
outputs, respectively
@end table
@end deftypefn
@deftypefn {Function File} {@var{retsys} =} sysdup (@var{asys}, @var{out_idx}, @var{in_idx})
Duplicate specified input/output connections of a system
@strong{Inputs}
@table @var
@item asys
system data structure
@item out_idx
@itemx in_idx
indices or names of desired signals (see @code{sigidx})
duplicates are made of @code{y(out_idx(ii))} and @code{u(in_idx(ii))}
@end table
@strong{Output}
@table @var
@item retsys
Resulting closed loop system:
duplicated i/o names are appended with a @code{"+"} suffix
@end table
@strong{Method}
@code{sysdup} creates copies of selected inputs and outputs as
shown below. @var{u1}, @var{y1} is the set of original inputs/outputs, and
@var{u2}, @var{y2} is the set of duplicated inputs/outputs in the order
specified in @var{in_idx}, @var{out_idx}, respectively
@example
@group
____________________
u1 ----->| |----> y1
| asys |
u2 ------>| |----->y2
(in_idx) -------------------- (out_idx)
@end group
@end example
@end deftypefn
@deftypefn {Function File} {@var{sys} =} sysgroup (@var{asys}, @var{bsys})
Combines two systems into a single system
@strong{Inputs}
@table @var
@item asys
@itemx bsys
System data structures
@end table
@strong{Output}
@table @var
@item sys
@math{sys = @r{block diag}(asys,bsys)}
@end table
@example
@group
__________________
| ________ |
u1 ----->|--> | asys |--->|----> y1
| -------- |
| ________ |
u2 ----->|--> | bsys |--->|----> y2
| -------- |
------------------
Ksys
@end group
@end example
The function also rearranges the internal state-space realization of @var{sys}
so that the continuous states come first and the discrete states come last
If there are duplicate names, the second name has a unique suffix appended
on to the end of the name
@end deftypefn
@deftypefn {Function File} {@var{sys} =} sysmult (@var{Asys}, @var{Bsys})
Compute @math{sys = Asys*Bsys} (series connection):
@example
@group
u ---------- ----------
--->| Bsys |---->| Asys |--->
---------- ----------
@end group
@end example
A warning occurs if there is direct feed-through from an input
or a continuous state of @var{Bsys}, through a discrete output
of @var{Bsys}, to a continuous state or output in @var{Asys}
(system data structure does not recognize discrete inputs)
@end deftypefn
@deftypefn {Function File} {@var{retsys} =} sysprune (@var{asys}, @var{out_idx}, @var{in_idx})
Extract specified inputs/outputs from a system
@strong{Inputs}
@table @var
@item asys
system data structure
@item out_idx
@itemx in_idx
Indices or signal names of the outputs and inputs to be kept in the returned
system; remaining connections are ``pruned'' off
May select as [] (empty matrix) to specify all outputs/inputs
@example
retsys = sysprune (Asys, [1:3,4], "u_1");
retsys = sysprune (Asys, @{"tx", "ty", "tz"@}, 4);
@end example
@end table
@strong{Output}
@table @var
@item retsys
Resulting system
@end table
@example
@group
____________________
u1 ------->| |----> y1
(in_idx) | Asys | (out_idx)
u2 ------->| |----| y2
(deleted)-------------------- (deleted)
@end group
@end example
@end deftypefn
@deftypefn {Function File} {@var{pv} =} sysreorder (@var{vlen}, @var{list})
@strong{Inputs}
@table @var
@item vlen
Vector length
@item list
A subset of @code{[1:vlen]}
@end table
@strong{Output}
@table @var
@item pv
A permutation vector to order elements of @code{[1:vlen]} in
@code{list} to the end of a vector
@end table
Used internally by @code{sysconnect} to permute vector elements to their
desired locations
@end deftypefn
@deftypefn {Function File} {@var{retsys} =} sysscale (@var{sys}, @var{outscale}, @var{inscale}, @var{outname}, @var{inname})
scale inputs/outputs of a system
@strong{Inputs}
@table @var
@item sys
Structured system
@item outscale
@itemx inscale
Constant matrices of appropriate dimension
@item outname
@itemx inname
Lists of strings with the names of respectively outputs and inputs
@end table
@strong{Output}
@table @var
@item retsys
resulting open loop system:
@smallexample
----------- ------- -----------
u --->| inscale |--->| sys |--->| outscale |---> y
----------- ------- -----------
@end smallexample
@end table
If the input names and output names (each a list of strings)
are not given and the scaling matrices
are not square, then default names will be given to the inputs and/or
outputs
A warning message is printed if outscale attempts to add continuous
system outputs to discrete system outputs; otherwise @var{yd} is
set appropriately in the returned value of @var{sys}
@end deftypefn
@deftypefn {Function File} {@var{sys} =} syssub (@var{Gsys}, @var{Hsys})
Return @math{sys = Gsys - Hsys}
@strong{Method}
@var{Gsys} and @var{Hsys} are connected in parallel
The input vector is connected to both systems; the outputs are
subtracted. Returned system names are those of @var{Gsys}
@example
@group
+--------+
+--->| Gsys |---+
| +--------+ |
| +|
u --+ (_)--> y
| -|
| +--------+ |
+--->| Hsys |---+
+--------+
@end group
@end example
@end deftypefn
@deftypefn {Function File} {} ugain (@var{n})
Creates a system with unity gain, no states
This trivial system is sometimes needed to create arbitrary
complex systems from simple systems with @command{buildssic}
Watch out if you are forming sampled systems since @command{ugain}
does not contain a sampling period
See also: hinfdemo, jet707
@end deftypefn
@deftypefn {Function File} {@var{W} =} wgt1o (@var{vl}, @var{vh}, @var{fc})
State space description of a first order weighting function
Weighting function are needed by the
@iftex
@tex
$ { \cal H }_2 / { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-2/H-infinity
@end ifinfo
design procedure
These functions are part of the augmented plant @var{P}
(see @command{hinfdemo} for an application example)
@strong{Inputs}
@table @var
@item vl
Gain at low frequencies
@item vh
Gain at high frequencies
@item fc
Corner frequency (in Hz, @strong{not} in rad/sec)
@end table
@strong{Output}
@table @var
@item W
Weighting function, given in form of a system data structure
@end table
@end deftypefn
@deftypefn {Function File} {@var{ksys} =} parallel (@var{asys}, @var{bsys})
Forms the parallel connection of two systems
@example
@group
--------------------
| -------- |
u ----->|----> | asys |--->|----> y1
| | -------- |
| | -------- |
|--->|----> | bsys |--->|----> y2
| -------- |
--------------------
ksys
@end group
@end example
@end deftypefn
@deftypefn {Function File} {[@var{retsys}, @var{nc}, @var{no}] =} sysmin (@var{sys}, @var{flg})
Returns a minimal (or reduced order) system
@strong{Inputs}
@table @var
@item sys
System data structure
@item flg
When equal to 0 (default value), returns minimal system,
in which state names are lost; when equal to 1, returns system
with physical states removed that are either uncontrollable or
unobservable (cannot reduce further without discarding physical
meaning of states)
@end table
@strong{Outputs}
@table @var
@item retsys
Returned system
@item nc
Number of controllable states in the returned system
@item no
Number of observable states in the returned system
@item cflg
@code{is_controllable(retsys)}
@item oflg
@code{is_observable(retsys)}
@end table
@end deftypefn
@node numerical
@chapter Numerical Functions
@deftypefn {Function File} {@var{x} =} are (@var{a}, @var{b}, @var{c}, @var{opt})
Solve the Algebraic Riccati Equation
@iftex
@tex
$$
A^TX + XA - XBX + C = 0
$$
@end tex
@end iftex
@ifinfo
@example
a' * x + x * a - x * b * x + c = 0
@end example
@end ifinfo
@strong{Inputs}
@noindent
for identically dimensioned square matrices
@table @var
@item a
@var{n} by @var{n} matrix;
@item b
@var{n} by @var{n} matrix or @var{n} by @var{m} matrix; in the latter case
@var{b} is replaced by @math{b:=b*b'};
@item c
@var{n} by @var{n} matrix or @var{p} by @var{m} matrix; in the latter case
@var{c} is replaced by @math{c:=c'*c};
@item opt
(optional argument; default = @code{"B"}):
String option passed to @code{balance} prior to ordered Schur decomposition
@end table
@strong{Output}
@table @var
@item x
solution of the @acronym{ARE}
@end table
@strong{Method}
Laub's Schur method (@acronym{IEEE} Transactions on
Automatic Control, 1979) is applied to the appropriate Hamiltonian
matrix
See also: balance, dare
@end deftypefn
@deftypefn {Function File} {@var{x} =} dare (@var{a}, @var{b}, @var{q}, @var{r}, @var{opt})
Return the solution, @var{x} of the discrete-time algebraic Riccati
equation
@iftex
@tex
$$
A^TXA - X + A^TXB (R + B^TXB)^{-1} B^TXA + Q = 0
$$
@end tex
@end iftex
@ifinfo
@example
a' x a - x + a' x b (r + b' x b)^(-1) b' x a + q = 0
@end example
@end ifinfo
@noindent
@strong{Inputs}
@table @var
@item a
@var{n} by @var{n} matrix;
@item b
@var{n} by @var{m} matrix;
@item q
@var{n} by @var{n} matrix, symmetric positive semidefinite, or a @var{p} by @var{n} matrix,
In the latter case @math{q:=q'*q} is used;
@item r
@var{m} by @var{m}, symmetric positive definite (invertible);
@item opt
(optional argument; default = @code{"B"}):
String option passed to @code{balance} prior to ordered @var{QZ} decomposition
@end table
@strong{Output}
@table @var
@item x
solution of @acronym{DARE}
@end table
@strong{Method}
Generalized eigenvalue approach (Van Dooren; @acronym{SIAM} J
Sci. Stat. Comput., Vol 2) applied to the appropriate symplectic pencil
See also: Ran and Rodman, @cite{Stable Hermitian Solutions of Discrete
Algebraic Riccati Equations}, Mathematics of Control, Signals and
Systems, Vol 5, no 2 (1992), pp 165--194
See also: balance, are
@end deftypefn
@deftypefn {Function File} {[@var{tvals}, @var{plist}] =} dre (@var{sys}, @var{q}, @var{r}, @var{qf}, @var{t0}, @var{tf}, @var{ptol}, @var{maxits})
Solve the differential Riccati equation
@ifinfo
@example
-d P/dt = A'P + P A - P B inv(R) B' P + Q
P(tf) = Qf
@end example
@end ifinfo
@iftex
@tex
$$ -{dP \over dt} = A^T P+PA-PBR^{-1}B^T P+Q $$
$$ P(t_f) = Q_f $$
@end tex
@end iftex
for the @acronym{LTI} system sys. Solution of
standard @acronym{LTI} state feedback optimization
@ifinfo
@example
min int(t0, tf) ( x' Q x + u' R u ) dt + x(tf)' Qf x(tf)
@end example
@end ifinfo
@iftex
@tex
$$ \min \int_{t_0}^{t_f} x^T Q x + u^T R u dt + x(t_f)^T Q_f x(t_f) $$
@end tex
@end iftex
optimal input is
@ifinfo
@example
u = - inv(R) B' P(t) x
@end example
@end ifinfo
@iftex
@tex
$$ u = - R^{-1} B^T P(t) x $$
@end tex
@end iftex
@strong{Inputs}
@table @var
@item sys
continuous time system data structure
@item q
state integral penalty
@item r
input integral penalty
@item qf
state terminal penalty
@item t0
@itemx tf
limits on the integral
@item ptol
tolerance (used to select time samples; see below); default = 0.1
@item maxits
number of refinement iterations (default=10)
@end table
@strong{Outputs}
@table @var
@item tvals
time values at which @var{p}(@var{t}) is computed
@item plist
list values of @var{p}(@var{t}); @var{plist} @{ @var{i} @}
is @var{p}(@var{tvals}(@var{i}))
@end table
@var{tvals} is selected so that:
@iftex
@tex
$$ \Vert plist_{i} - plist_{i-1} \Vert < ptol $$
@end tex
@end iftex
@ifinfo
@example
|| Plist@{i@} - Plist@{i-1@} || < Ptol
@end example
@end ifinfo
for every @var{i} between 2 and length(@var{tvals})
@end deftypefn
@deftypefn {Function File} {} dgram (@var{a}, @var{b})
Return controllability gramian of discrete time system
@iftex
@tex
$$ x_{k+1} = ax_k + bu_k $$
@end tex
@end iftex
@ifinfo
@example
x(k+1) = a x(k) + b u(k)
@end example
@end ifinfo
@strong{Inputs}
@table @var
@item a
@var{n} by @var{n} matrix
@item b
@var{n} by @var{m} matrix
@end table
@strong{Output}
@table @var
@item m
@var{n} by @var{n} matrix, satisfies
@iftex
@tex
$$ ama^T - m + bb^T = 0 $$
@end tex
@end iftex
@ifinfo
@example
a m a' - m + b*b' = 0
@end example
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {} dlyap (@var{a}, @var{b})
Solve the discrete-time Lyapunov equation
@strong{Inputs}
@table @var
@item a
@var{n} by @var{n} matrix;
@item b
Matrix: @var{n} by @var{n}, @var{n} by @var{m}, or @var{p} by @var{n}
@end table
@strong{Output}
@table @var
@item x
matrix satisfying appropriate discrete time Lyapunov equation
@end table
Options:
@itemize @bullet
@item @var{b} is square: solve
@iftex
@tex
$$ axa^T - x + b = 0 $$
@end tex
@end iftex
@ifinfo
@code{a x a' - x + b = 0}
@end ifinfo
@item @var{b} is not square: @var{x} satisfies either
@iftex
@tex
$$ axa^T - x + bb^T = 0 $$
@end tex
@end iftex
@ifinfo
@example
a x a' - x + b b' = 0
@end example
@end ifinfo
@noindent
or
@iftex
@tex
$$ a^Txa - x + b^Tb = 0, $$
@end tex
@end iftex
@ifinfo
@example
a' x a - x + b' b = 0,
@end example
@end ifinfo
@noindent
whichever is appropriate
@end itemize
@strong{Method}
Uses Schur decomposition method as in Kitagawa,
@cite{An Algorithm for Solving the Matrix Equation @math{X = F X F' + S}},
International Journal of Control, Volume 25, Number 5, pages 745--753
(1977)
Column-by-column solution method as suggested in
Hammarling, @cite{Numerical Solution of the Stable, Non-Negative
Definite Lyapunov Equation}, @acronym{IMA} Journal of Numerical Analysis, Volume
2, pages 303--323 (1982)
@end deftypefn
@deftypefn {Function File} {@var{W} =} gram (@var{sys}, @var{mode})
@deftypefnx {Function File} {@var{Wc} =} gram (@var{a}, @var{b})
@code{gram (@var{sys}, 'c')} returns the controllability gramian of
the (continuous- or discrete-time) system @var{sys}
@code{gram (@var{sys}, 'o')} returns the observability gramian of the
(continuous- or discrete-time) system @var{sys}
@code{gram (@var{a}, @var{b})} returns the controllability gramian
@var{Wc} of the continuous-time system @math{dx/dt = a x + b u};
i.e., @var{Wc} satisfies @math{a Wc + m Wc' + b b' = 0}
@end deftypefn
@deftypefn {Function File} {} lyap (@var{a}, @var{b}, @var{c})
@deftypefnx {Function File} {} lyap (@var{a}, @var{b})
Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart
algorithm (Communications of the @acronym{ACM}, 1972)
If @var{a}, @var{b}, and @var{c} are specified, then @code{lyap} returns
the solution of the Sylvester equation
@iftex
@tex
$$ A X + X B + C = 0 $$
@end tex
@end iftex
@ifinfo
@example
a x + x b + c = 0
@end example
@end ifinfo
If only @code{(a, b)} are specified, then @command{lyap} returns the
solution of the Lyapunov equation
@iftex
@tex
$$ A^T X + X A + B = 0 $$
@end tex
@end iftex
@ifinfo
@example
a' x + x a + b = 0
@end example
@end ifinfo
If @var{b} is not square, then @code{lyap} returns the solution of either
@iftex
@tex
$$ A^T X + X A + B^T B = 0 $$
@end tex
@end iftex
@ifinfo
@example
a' x + x a + b' b = 0
@end example
@end ifinfo
@noindent
or
@iftex
@tex
$$ A X + X A^T + B B^T = 0 $$
@end tex
@end iftex
@ifinfo
@example
a x + x a' + b b' = 0
@end example
@end ifinfo
@noindent
whichever is appropriate
Solves by using the Bartels-Stewart algorithm (1972)
@end deftypefn
@deftypefn {Function File} {} qzval (@var{a}, @var{b})
Compute generalized eigenvalues of the matrix pencil
@ifinfo
@example
(A - lambda B)
@end example
@end ifinfo
@iftex
@tex
$(A - \lambda B)$
@end tex
@end iftex
@var{a} and @var{b} must be real matrices
@code{qzval} is obsolete; use @code{qz} instead
@end deftypefn
@deftypefn {Function File} {@var{y} =} zgfmul (@var{a}, @var{b}, @var{c}, @var{d}, @var{x})
Compute product of @var{zgep} incidence matrix @math{F} with vector @var{x}
Used by @command{zgepbal} (in @command{zgscal}) as part of generalized conjugate gradient
iteration
@end deftypefn
@deftypefn {Function File} {} zgfslv (@var{n}, @var{m}, @var{p}, @var{b})
Solve system of equations for dense zgep problem
@end deftypefn
@deftypefn {Function File} {@var{zz} =} zginit (@var{a}, @var{b}, @var{c}, @var{d})
Construct right hand side vector @var{zz}
for the zero-computation generalized eigenvalue problem
balancing procedure. Called by @command{zgepbal}
@end deftypefn
@deftypefn {Function File} {} zgreduce (@var{sys}, @var{meps})
Implementation of procedure REDUCE in (Emami-Naeini and Van Dooren,
Automatica, # 1982)
@end deftypefn
@deftypefn {Function File} {[@var{nonz}, @var{zer}] =} zgrownorm (@var{mat}, @var{meps})
Return @var{nonz} = number of rows of @var{mat} whose two norm
exceeds @var{meps}, and @var{zer} = number of rows of mat whose two
norm is less than @var{meps}
@end deftypefn
@deftypefn {Function File} {@var{x} =} zgscal (@var{f}, @var{z}, @var{n}, @var{m}, @var{p})
Generalized conjugate gradient iteration to
solve zero-computation generalized eigenvalue problem balancing equation
@math{fx=z}; called by @command{zgepbal}
@end deftypefn
@deftypefn {Function File} {[a, b] =} zgsgiv (@var{c}, @var{s}, @var{a}, @var{b})
Apply givens rotation c,s to row vectors @var{a}, @var{b}
No longer used in zero-balancing (__zgpbal__); kept for backward
compatibility
@end deftypefn
@deftypefn {Function File} {@var{x} =} zgshsr (@var{y})
Apply householder vector based on
@iftex
@tex
$ e^m $
@end tex
@end iftex
@ifinfo
@math{e^(m)}
@end ifinfo
to column vector @var{y}
Called by @command{zgfslv}
@end deftypefn
@strong{References}
@table @strong
@item ZGEP
Hodel, @cite{Computation of Zeros with Balancing}, 1992, Linear Algebra
and its Applications
@item @strong{Generalized CG}
Golub and Van Loan, @cite{Matrix Computations, 2nd ed} 1989.
@end table
@node sysprop
@chapter System Analysis-Properties
@deftypefn {Function File} {} analdemo ()
Octave Controls toolbox demo: State Space analysis demo
@end deftypefn
@deftypefn {Function File} {[@var{n}, @var{m}, @var{p}] =} abcddim (@var{a}, @var{b}, @var{c}, @var{d})
Check for compatibility of the dimensions of the matrices defining
the linear system
@iftex
@tex
$[A, B, C, D]$ corresponding to
$$
\eqalign{
{dx\over dt} &= A x + B u\cr
y &= C x + D u}
$$
@end tex
@end iftex
@ifinfo
[A, B, C, D] corresponding to
@example
dx/dt = a x + b u
y = c x + d u
@end example
@end ifinfo
or a similar discrete-time system
If the matrices are compatibly dimensioned, then @code{abcddim} returns
@table @var
@item n
The number of system states
@item m
The number of system inputs
@item p
The number of system outputs
@end table
Otherwise @code{abcddim} returns @var{n} = @var{m} = @var{p} = @minus{}1
Note: n = 0 (pure gain block) is returned without warning
See also: is_abcd
@end deftypefn
@deftypefn {Function File} {} ctrb (@var{sys}, @var{b})
@deftypefnx {Function File} {} ctrb (@var{a}, @var{b})
Build controllability matrix:
@iftex
@tex
$$ Q_s = [ B AB A^2B \ldots A^{n-1}B ] $$
@end tex
@end iftex
@ifinfo
@example
2 n-1
Qs = [ B AB A B ... A B ]
@end example
@end ifinfo
of a system data structure or the pair (@var{a}, @var{b})
@command{ctrb} forms the controllability matrix
The numerical properties of @command{is_controllable}
are much better for controllability tests
@end deftypefn
@deftypefn {Function File} {} h2norm (@var{sys})
Computes the
@iftex
@tex
$ { \cal H }_2 $
@end tex
@end iftex
@ifinfo
H-2
@end ifinfo
norm of a system data structure (continuous time only)
Reference:
Doyle, Glover, Khargonekar, Francis, @cite{State-Space Solutions to Standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989
@end deftypefn
@deftypefn {Function File} {[@var{g}, @var{gmin}, @var{gmax}] =} hinfnorm (@var{sys}, @var{tol}, @var{gmin}, @var{gmax}, @var{ptol})
Computes the
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
norm of a system data structure
@strong{Inputs}
@table @var
@item sys
system data structure
@item tol
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
norm search tolerance (default: 0.001)
@item gmin
minimum value for norm search (default: 1e-9)
@item gmax
maximum value for norm search (default: 1e+9)
@item ptol
pole tolerance:
@itemize @bullet
@item if sys is continuous, poles with
@iftex
@tex
$ \vert {\rm real}(pole) \vert < ptol \Vert H \Vert $
@end tex
@end iftex
@ifinfo
@math{ |real(pole))| < ptol*||H|| }
@end ifinfo
(@var{H} is appropriate Hamiltonian)
are considered to be on the imaginary axis
@item if sys is discrete, poles with
@iftex
@tex
$ \vert { \rm pole } - 1 \vert < ptol \Vert [ s_1 s_2 ] \Vert $
@end tex
@end iftex
@ifinfo
@math{|abs(pole)-1| < ptol*||[s1,s2]||}
@end ifinfo
(appropriate symplectic pencil)
are considered to be on the unit circle
@item Default value: 1e-9
@end itemize
@end table
@strong{Outputs}
@table @var
@item g
Computed gain, within @var{tol} of actual gain. @var{g} is returned as Inf
if the system is unstable
@item gmin
@itemx gmax
Actual system gain lies in the interval [@var{gmin}, @var{gmax}]
@end table
References:
Doyle, Glover, Khargonekar, Francis, @cite{State-space solutions to standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{control problems}, @acronym{IEEE} @acronym{TAC} August 1989;
Iglesias and Glover, @cite{State-Space approach to discrete-time}
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-infinity}
@end ifinfo
@cite{control}, Int. J. Control, vol 54, no. 5, 1991;
Zhou, Doyle, Glover, @cite{Robust and Optimal Control}, Prentice-Hall, 1996
@end deftypefn
@deftypefn {Function File} {} obsv (@var{sys}, @var{c})
@deftypefnx {Function File} {} obsv (@var{a}, @var{c})
Build observability matrix:
@iftex
@tex
$$ Q_b = \left[ \matrix{ C \cr
CA \cr
CA^2 \cr
\vdots \cr
CA^{n-1} } \right ] $$
@end tex
@end iftex
@ifinfo
@example
@group
| C |
| CA |
Qb = | CA^2 |
| ... |
| CA^(n-1) |
@end group
@end example
@end ifinfo
of a system data structure or the pair (@var{a}, @var{c})
The numerical properties of @command{is_observable}
are much better for observability tests
@end deftypefn
@deftypefn {Function File} {[@var{zer}, @var{pol}] =} pzmap (@var{sys})
Plots the zeros and poles of a system in the complex plane
@strong{Input}
@table @var
@item sys
System data structure
@end table
@strong{Outputs}
@table @var
@item pol
@item zer
if omitted, the poles and zeros are plotted on the screen
otherwise, @var{pol} and @var{zer} are returned as the
system poles and zeros (see @command{sys2zp} for a preferable function call)
@end table
@end deftypefn
@deftypefn {Function File} {@var{retval} =} is_abcd (@var{a}, @var{b}, @var{c}, @var{d})
Returns @var{retval} = 1 if the dimensions of @var{a}, @var{b},
@var{c}, @var{d} are compatible, otherwise @var{retval} = 0 with an
appropriate diagnostic message printed to the screen. The matrices
@var{b}, @var{c}, or @var{d} may be omitted
See also: abcddim
@end deftypefn
@deftypefn {Function File} {[@var{retval}, @var{u}] =} is_controllable (@var{sys}, @var{tol})
@deftypefnx {Function File} {[@var{retval}, @var{u}] =} is_controllable (@var{a}, @var{b}, @var{tol})
Logical check for system controllability
@strong{Inputs}
@table @var
@item sys
system data structure
@item a
@itemx b
@var{n} by @var{n}, @var{n} by @var{m} matrices, respectively
@item tol
optional roundoff parameter. Default value: @code{10*eps}
@end table
@strong{Outputs}
@table @var
@item retval
Logical flag; returns true (1) if the system @var{sys} or the
pair (@var{a}, @var{b}) is controllable, whichever was passed as input
arguments
@item u
@var{u} is an orthogonal basis of the controllable subspace
@end table
@strong{Method}
Controllability is determined by applying Arnoldi iteration with
complete re-orthogonalization to obtain an orthogonal basis of the
Krylov subspace
@example
span ([b,a*b,...,a^@{n-1@}*b])
@end example
The Arnoldi iteration is executed with @code{krylov} if the system
has a single input; otherwise a block Arnoldi iteration is performed
with @code{krylovb}
See also: size, rows, columns, length, ismatrix, isscalar, isvector, is_observable, is_stabilizable, is_detectable, krylov, krylovb
@end deftypefn
@deftypefn {Function File} {@var{retval} =} is_detectable (@var{a}, @var{c}, @var{tol}, @var{dflg})
@deftypefnx {Function File} {@var{retval} =} is_detectable (@var{sys}, @var{tol})
Test for detectability (observability of unstable modes) of (@var{a}, @var{c})
Returns 1 if the system @var{a} or the pair (@var{a}, @var{c}) is
detectable, 0 if not, and -1 if the system has unobservable modes at the
imaginary axis (unit circle for discrete-time systems)
@strong{See} @command{is_stabilizable} for detailed description of
arguments and computational method
See also: is_stabilizable, size, rows, columns, length, ismatrix, isscalar, isvector
@end deftypefn
@deftypefn {Function File} {[@var{retval}, @var{dgkf_struct} ] =} is_dgkf (@var{asys}, @var{nu}, @var{ny}, @var{tol} )
Determine whether a continuous time state space system meets
assumptions of @acronym{DGKF} algorithm
Partitions system into:
@example
[dx/dt] [A | Bw Bu ][w]
[ z ] = [Cz | Dzw Dzu ][u]
[ y ] [Cy | Dyw Dyu ]
@end example
or similar discrete-time system
If necessary, orthogonal transformations @var{qw}, @var{qz} and nonsingular
transformations @var{ru}, @var{ry} are applied to respective vectors
@var{w}, @var{z}, @var{u}, @var{y} in order to satisfy @acronym{DGKF} assumptions
Loop shifting is used if @var{dyu} block is nonzero
@strong{Inputs}
@table @var
@item asys
system data structure
@item nu
number of controlled inputs
@item ny
number of measured outputs
@item tol
threshold for 0; default: 200*@code{eps}
@end table
@strong{Outputs}
@table @var
@item retval
true(1) if system passes check, false(0) otherwise
@item dgkf_struct
data structure of @command{is_dgkf} results. Entries:
@table @var
@item nw
@itemx nz
dimensions of @var{w}, @var{z}
@item a
system @math{A} matrix
@item bw
(@var{n} x @var{nw}) @var{qw}-transformed disturbance input matrix
@item bu
(@var{n} x @var{nu}) @var{ru}-transformed controlled input matrix;
@math{B = [Bw Bu]}
@item cz
(@var{nz} x @var{n}) Qz-transformed error output matrix
@item cy
(@var{ny} x @var{n}) @var{ry}-transformed measured output matrix
@math{C = [Cz; Cy]}
@item dzu
@item dyw
off-diagonal blocks of transformed system @math{D} matrix that enter
@var{z}, @var{y} from @var{u}, @var{w} respectively
@item ru
controlled input transformation matrix
@item ry
observed output transformation matrix
@item dyu_nz
nonzero if the @var{dyu} block is nonzero
@item dyu
untransformed @var{dyu} block
@item dflg
nonzero if the system is discrete-time
@end table
@end table
@code{is_dgkf} exits with an error if the system is mixed
discrete/continuous
@strong{References}
@table @strong
@item [1]
Doyle, Glover, Khargonekar, Francis, @cite{State Space Solutions to Standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989
@item [2]
Maciejowksi, J.M., @cite{Multivariable Feedback Design}, Addison-Wesley, 1989
@end table
@end deftypefn
@deftypefn {Function File} {@var{digital} =} is_digital (@var{sys}, @var{eflg})
Return nonzero if system is digital
@strong{Inputs}
@table @var
@item sys
System data structure
@item eflg
When equal to 0 (default value), exits with an error if the system
is mixed (continuous and discrete components); when equal to 1, print
a warning if the system is mixed (continuous and discrete); when equal
to 2, operate silently
@end table
@strong{Output}
@table @var
@item digital
When equal to 0, the system is purely continuous; when equal to 1, the
system is purely discrete; when equal to -1, the system is mixed continuous
and discrete
@end table
Exits with an error if @var{sys} is a mixed (continuous and discrete) system
@end deftypefn
@deftypefn {Function File} {[@var{retval}, @var{u}] =} is_observable (@var{a}, @var{c}, @var{tol})
@deftypefnx {Function File} {[@var{retval}, @var{u}] =} is_observable (@var{sys}, @var{tol})
Logical check for system observability
Default: tol = @code{tol = 10*norm(a,'fro')*eps}
Returns 1 if the system @var{sys} or the pair (@var{a}, @var{c}) is
observable, 0 if not
See @command{is_controllable} for detailed description of arguments
and default values
See also: size, rows, columns, length, ismatrix, isscalar, isvector
@end deftypefn
@deftypefn {Function File} {} is_sample (@var{ts})
Return true if @var{ts} is a valid sampling time
(real, scalar, > 0)
@end deftypefn
@deftypefn {Function File} {} is_siso (@var{sys})
Returns nonzero if the system data structure
@var{sys} is single-input, single-output
@end deftypefn
@deftypefn {Function File} {@var{retval} =} is_stabilizable (@var{sys}, @var{tol})
@deftypefnx {Function File} {@var{retval} =} is_stabilizable (@var{a}, @var{b}, @var{tol}, @var{dflg})
Logical check for system stabilizability (i.e., all unstable modes are controllable)
Returns 1 if the system is stabilizable, 0 if the system is not stabilizable, -1
if the system has non stabilizable modes at the imaginary axis (unit circle for
discrete-time systems
Test for stabilizability is performed via Hautus Lemma. If
@iftex
@tex
@var{dflg}$\neq$0
@end tex
@end iftex
@ifinfo
@var{dflg}!=0
@end ifinfo
assume that discrete-time matrices (a,b) are supplied
See also: size, rows, columns, length, ismatrix, isscalar, isvector, is_observable, is_stabilizable, is_detectable
@end deftypefn
@deftypefn {Function File} {} is_signal_list (@var{mylist})
Return true if @var{mylist} is a list of individual strings
@end deftypefn
@deftypefn {Function File} {} is_stable (@var{a}, @var{tol}, @var{dflg})
@deftypefnx {Function File} {} is_stable (@var{sys}, @var{tol})
Returns 1 if the matrix @var{a} or the system @var{sys}
is stable, or 0 if not
@strong{Inputs}
@table @var
@item tol
is a roundoff parameter, set to 200*@code{eps} if omitted
@item dflg
Digital system flag (not required for system data structure):
@table @code
@item @var{dflg} != 0
stable if eig(a) is in the unit circle
@item @var{dflg} == 0
stable if eig(a) is in the open LHP (default)
@end table
@end table
See also: size, rows, columns, length, ismatrix, isscalar, isvector, is_observable, is_stabilizable, is_detectable, krylov, krylovb
@end deftypefn
@node systime
@chapter System Analysis-Time Domain
@deftypefn {Function File} {} c2d (@var{sys}, @var{opt}, @var{t})
@deftypefnx {Function File} {} c2d (@var{sys}, @var{t})
Converts the system data structure describing:
@iftex
@tex
$$ \dot x = A_cx + B_cu $$
@end tex
@end iftex
@ifinfo
@example
x = Ac x + Bc u
@end example
@end ifinfo
into a discrete time equivalent model:
@iftex
@tex
$$ x_{n+1} = A_dx_n + B_du_n $$
@end tex
@end iftex
@ifinfo
@example
x[n+1] = Ad x[n] + Bd u[n]
@end example
@end ifinfo
via the matrix exponential or bilinear transform
@strong{Inputs}
@table @var
@item sys
system data structure (may have both continuous time and discrete
time subsystems)
@item opt
string argument; conversion option (optional argument;
may be omitted as shown above)
@table @code
@item "ex"
use the matrix exponential (default)
@item "bi"
use the bilinear transformation
@iftex
@tex
$$ s = { 2(z-1) \over T(z+1) } $$
@end tex
@end iftex
@ifinfo
@example
2(z-1)
s = -----
T(z+1)
@end example
@end ifinfo
FIXME: This option exits with an error if @var{sys} is not purely
continuous. (The @code{ex} option can handle mixed systems.)
@item "matched"
Use the matched pole/zero equivalent transformation (currently only
works for purely continuous @acronym{SISO} systems)
@end table
@item t
sampling time; required if @var{sys} is purely continuous
@strong{Note} that if the second argument is not a string, @code{c2d()}
assumes that the second argument is @var{t} and performs
appropriate argument checks
@end table
@strong{Output}
@table @var
@item dsys
Discrete time equivalent via zero-order hold, sample each @var{t} sec
@end table
This function adds the suffix @code{_d}
to the names of the new discrete states
@end deftypefn
@deftypefn {Function File} {} d2c (@var{sys}, @var{tol})
@deftypefnx {Function File} {} d2c (@var{sys}, @var{opt})
Convert a discrete (sub)system into a purely continuous one
The sampling time used is @code{sysgettsam(@var{sys})}
@strong{Inputs}
@table @var
@item sys
system data structure with discrete components
@item tol
Scalar value
Tolerance for convergence of default @code{"log"} option (see below)
@item opt
conversion option. Choose from:
@table @code
@item "log"
(default) Conversion is performed via a matrix logarithm
Due to some problems with this computation, it is
followed by a steepest descent algorithm to identify continuous time
@var{a}, @var{b}, to get a better fit to the original data
If called as @code{d2c (@var{sys}, @var{tol})}, with @var{tol}
positive scalar, the @code{"log"} option is used. The default value
for @var{tol} is @code{1e-8}
@item "bi"
Conversion is performed via bilinear transform
@math{z = (1 + s T / 2)/(1 - s T / 2)} where @math{T} is the
system sampling time (see @code{sysgettsam})
FIXME: bilinear option exits with an error if @var{sys} is not purely
discrete
@end table
@end table
@strong{Output}
@table @var
@item csys
continuous time system (same dimensions and signal names as in @var{sys})
@end table
@end deftypefn
@deftypefn {Function File} {[@var{dsys}, @var{fidx}] =} dmr2d (@var{sys}, @var{idx}, @var{sprefix}, @var{ts2}, @var{cuflg})
convert a multirate digital system to a single rate digital system
states specified by @var{idx}, @var{sprefix} are sampled at @var{ts2}, all
others are assumed sampled at @var{ts1} = @code{sysgettsam (@var{sys})}
@strong{Inputs}
@table @var
@item sys
discrete time system;
@code{dmr2d} exits with an error if @var{sys} is not discrete
@item idx
indices or names of states with sampling time
@code{sysgettsam(@var{sys})} (may be empty); see @code{cellidx}
@item sprefix
list of string prefixes of states with sampling time
@code{sysgettsam(@var{sys})} (may be empty)
@item ts2
sampling time of states not specified by @var{idx}, @var{sprefix}
must be an integer multiple of @code{sysgettsam(@var{sys})}
@item cuflg
"constant u flag" if @var{cuflg} is nonzero then the system inputs are
assumed to be constant over the revised sampling interval @var{ts2}
Otherwise, since the inputs can change during the interval
@var{t} in @math{[k ts2, (k+1) ts2]}, an additional set of inputs is
included in the revised B matrix so that these intersample inputs
may be included in the single-rate system
default @var{cuflg} = 1
@end table
@strong{Outputs}
@table @var
@item dsys
equivalent discrete time system with sampling time @var{ts2}
The sampling time of sys is updated to @var{ts2}
if @var{cuflg}=0 then a set of additional inputs is added to
the system with suffixes _d1, @dots{}, _dn to indicate their
delay from the starting time k @var{ts2}, i.e
u = [u_1; u_1_d1; @dots{}, u_1_dn] where u_1_dk is the input
k*ts1 units of time after u_1 is sampled. (@var{ts1} is
the original sampling time of the discrete time system and
@var{ts2} = (n+1)*ts1)
@item fidx
indices of "formerly fast" states specified by @var{idx} and @var{sprefix};
these states are updated to the new (slower) sampling interval @var{ts2}
@end table
@strong{WARNING} Not thoroughly tested yet; especially when
@var{cuflg} == 0
@end deftypefn
@deftypefn {Function File} {} damp (@var{p}, @var{tsam})
Displays eigenvalues, natural frequencies and damping ratios
of the eigenvalues of a matrix @var{p} or the @math{A} matrix of a
system @var{p}, respectively
If @var{p} is a system, @var{tsam} must not be specified
If @var{p} is a matrix and @var{tsam} is specified, eigenvalues
of @var{p} are assumed to be in @var{z}-domain
See also: eig
@end deftypefn
@deftypefn {Function File} {} dcgain (@var{sys}, @var{tol})
Returns dc-gain matrix. If dc-gain is infinite
an empty matrix is returned
The argument @var{tol} is an optional tolerance for the condition
number of the @math{A} Matrix in @var{sys} (default @var{tol} = 1.0e-10)
@end deftypefn
@deftypefn {Function File} {[@var{y}, @var{t}] =} impulse (@var{sys}, @var{inp}, @var{tstop}, @var{n})
Impulse response for a linear system
The system can be discrete or multivariable (or both)
If no output arguments are specified, @code{impulse}
produces a plot or the impulse response data for system @var{sys}
@strong{Inputs}
@table @var
@item sys
System data structure
@item inp
Index of input being excited
@item tstop
The argument @var{tstop} (scalar value) denotes the time when the
simulation should end
@item n
the number of data values
Both parameters @var{tstop} and @var{n} can be omitted and will be
computed from the eigenvalues of the A Matrix
@end table
@strong{Outputs}
@table @var
@item y
Values of the impulse response
@item t
Times of the impulse response
@end table
See also: step
@end deftypefn
@deftypefn {Function File} {[@var{y}, @var{t}] =} step (@var{sys}, @var{inp}, @var{tstop}, @var{n})
Step response for a linear system
The system can be discrete or multivariable (or both)
If no output arguments are specified, @code{step}
produces a plot or the step response data for system @var{sys}
@strong{Inputs}
@table @var
@item sys
System data structure
@item inp
Index of input being excited
@item tstop
The argument @var{tstop} (scalar value) denotes the time when the
simulation should end
@item n
the number of data values
Both parameters @var{tstop} and @var{n} can be omitted and will be
computed from the eigenvalues of the A Matrix
@end table
@strong{Outputs}
@table @var
@item y
Values of the step response
@item t
Times of the step response
@end table
When invoked with the output parameter @var{y} the plot is not displayed
See also: impulse
@end deftypefn
@node sysfreq
@chapter System Analysis-Frequency Domain
@strong{Demonstration/tutorial script}
@deftypefn {Function File} {} frdemo ()
Octave Control Toolbox demo: Frequency Response demo
@end deftypefn
@deftypefn {Function File} {[@var{mag}, @var{phase}, @var{w}] =} bode (@var{sys}, @var{w}, @var{out_idx}, @var{in_idx})
If no output arguments are given: produce Bode plots of a system; otherwise,
compute the frequency response of a system data structure
@strong{Inputs}
@table @var
@item sys
a system data structure (must be either purely continuous or discrete;
see is_digital)
@item w
frequency values for evaluation
if @var{sys} is continuous, then bode evaluates @math{G(jw)} where
@math{G(s)} is the system transfer function
if @var{sys} is discrete, then bode evaluates G(@code{exp}(jwT)), where
@itemize @bullet
@item @math{T} is the system sampling time
@item @math{G(z)} is the system transfer function
@end itemize
@strong{Default} the default frequency range is selected as follows: (These
steps are @strong{not} performed if @var{w} is specified)
@enumerate
@item via routine __bodquist__, isolate all poles and zeros away from
@var{w}=0 (@var{jw}=0 or @math{@code{exp}(jwT)}=1) and select the frequency
range based on the breakpoint locations of the frequencies
@item if @var{sys} is discrete time, the frequency range is limited
to @math{jwT} in
@ifinfo
[0,2 pi /T]
@end ifinfo
@iftex
@tex
$[0,2\pi/T]$
@end tex
@end iftex
@item A "smoothing" routine is used to ensure that the plot phase does
not change excessively from point to point and that singular
points (e.g., crossovers from +/- 180) are accurately shown
@end enumerate
@item out_idx
@itemx in_idx
The names or indices of outputs and inputs to be used in the frequency
response. See @code{sysprune}
@strong{Example}
@example
bode(sys,[],"y_3", @{"u_1","u_4"@});
@end example
@end table
@strong{Outputs}
@table @var
@item mag
@itemx phase
the magnitude and phase of the frequency response @math{G(jw)} or
@math{G(@code{exp}(jwT))} at the selected frequency values
@item w
the vector of frequency values used
@end table
@enumerate
@item If no output arguments are given, e.g.,
@example
bode(sys);
@end example
bode plots the results to the screen. Descriptive labels are
automatically placed
Failure to include a concluding semicolon will yield some garbage
being printed to the screen (@code{ans = []})
@item If the requested plot is for an @acronym{MIMO} system, mag is set to
@math{||G(jw)||} or @math{||G(@code{exp}(jwT))||}
and phase information is not computed
@end enumerate
@end deftypefn
@deftypefn {Function File} {[@var{wmin}, @var{wmax}] =} bode_bounds (@var{zer}, @var{pol}, @var{dflg}, @var{tsam})
Get default range of frequencies based on cutoff frequencies of system
poles and zeros
Frequency range is the interval
@iftex
@tex
$ [ 10^{w_{min}}, 10^{w_{max}} ] $
@end tex
@end iftex
@ifinfo
[10^@var{wmin}, 10^@var{wmax}]
@end ifinfo
Used internally in @command{__freqresp__} (@command{bode}, @command{nyquist})
@end deftypefn
@deftypefn {Function File} {} freqchkw (@var{w})
Used by @command{__freqresp__} to check that input frequency vector @var{w}
is valid
Returns boolean value
@end deftypefn
@deftypefn {Function File} {@var{out} =} ltifr (@var{a}, @var{b}, @var{w})
@deftypefnx {Function File} {@var{out} =} ltifr (@var{sys}, @var{w})
Linear time invariant frequency response of single-input systems
@strong{Inputs}
@table @var
@item a
@itemx b
coefficient matrices of @math{dx/dt = A x + B u}
@item sys
system data structure
@item w
vector of frequencies
@end table
@strong{Output}
@table @var
@item out
frequency response, that is:
@end table
@iftex
@tex
$$ G(j\omega) = (j\omega I-A)^{-1}B $$
@end tex
@end iftex
@ifinfo
@example
-1
G(s) = (jw I-A) B
@end example
@end ifinfo
for complex frequencies @math{s = jw}
@end deftypefn
@deftypefn {Function File} {[@var{realp}, @var{imagp}, @var{w}] =} nyquist (@var{sys}, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol})
@deftypefnx {Function File} {} nyquist (@var{sys}, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol})
Produce Nyquist plots of a system; if no output arguments are given, Nyquist
plot is printed to the screen
Compute the frequency response of a system
@strong{Inputs} (pass as empty to get default values)
@table @var
@item sys
system data structure (must be either purely continuous or discrete;
see @code{is_digital})
@item w
frequency values for evaluation
If sys is continuous, then bode evaluates @math{G(@var{jw})};
if sys is discrete, then bode evaluates @math{G(exp(@var{jwT}))},
where @var{T} is the system sampling time
@item default
the default frequency range is selected as follows: (These
steps are @strong{not} performed if @var{w} is specified)
@enumerate
@item via routine @command{__bodquist__}, isolate all poles and zeros away from
@var{w}=0 (@var{jw}=0 or @math{exp(@var{jwT})=1}) and select the frequency
range based on the breakpoint locations of the frequencies
@item if @var{sys} is discrete time, the frequency range is limited
to @var{jwT} in
@ifinfo
[0,2p*pi]
@end ifinfo
@iftex
@tex
$ [ 0,2 p \pi ] $
@end tex
@end iftex
@item A ``smoothing'' routine is used to ensure that the plot phase does
not change excessively from point to point and that singular
points (e.g., crossovers from +/- 180) are accurately shown
@end enumerate
@item atol
for interactive nyquist plots: atol is a change-in-slope tolerance
for the of asymptotes (default = 0; 1e-2 is a good choice). This allows
the user to ``zoom in'' on portions of the Nyquist plot too small to be
seen with large asymptotes
@end table
@strong{Outputs}
@table @var
@item realp
@itemx imagp
the real and imaginary parts of the frequency response
@math{G(jw)} or @math{G(exp(jwT))} at the selected frequency values
@item w
the vector of frequency values used
@end table
If no output arguments are given, nyquist plots the results to the screen
If @var{atol} != 0 and asymptotes are detected then the user is asked
interactively if they wish to zoom in (remove asymptotes)
Descriptive labels are automatically placed
Note: if the requested plot is for an @acronym{MIMO} system, a warning message is
presented; the returned information is of the magnitude
@iftex
@tex
$ \Vert G(jw) \Vert $ or $ \Vert G( {\rm exp}(jwT) \Vert $
@end tex
@end iftex
@ifinfo
||G(jw)|| or ||G(exp(jwT))||
@end ifinfo
only; phase information is not computed
@end deftypefn
@deftypefn {Function File} {[@var{mag}, @var{phase}, @var{w}] =} nichols (@var{sys}, @var{w}, @var{outputs}, @var{inputs})
Produce Nichols plot of a system
@strong{Inputs}
@table @var
@item sys
System data structure (must be either purely continuous or discrete;
see @command{is_digital})
@item w
Frequency values for evaluation
@itemize
@item if sys is continuous, then nichols evaluates @math{G(jw)}
@item if sys is discrete, then nichols evaluates @math{G(exp(jwT))},
where @var{T}=@var{sys}. @var{tsam} is the system sampling time
@item the default frequency range is selected as follows (These
steps are @strong{not} performed if @var{w} is specified):
@enumerate
@item via routine @command{__bodquist__}, isolate all poles and zeros away from
@var{w}=0 (@math{jw=0} or @math{exp(jwT)=1}) and select the frequency range
based on the breakpoint locations of the frequencies
@item if sys is discrete time, the frequency range is limited to jwT in
@iftex
@tex
$ [0, 2p\pi] $
@end tex
@end iftex
@ifinfo
[0,2p*pi]
@end ifinfo
@item A ``smoothing'' routine is used to ensure that the plot phase does
not change excessively from point to point and that singular points
(e.g., crossovers from +/- 180) are accurately shown
@end enumerate
@end itemize
@item outputs
@itemx inputs
the names or indices of the output(s) and input(s) to be used in the
frequency response; see @command{sysprune}
@end table
@strong{Outputs}
@table @var
@item mag
@itemx phase
The magnitude and phase of the frequency response @math{G(jw)} or
@math{G(exp(jwT))} at the selected frequency values
@item w
The vector of frequency values used
@end table
If no output arguments are given, @command{nichols} plots the results to the screen
Descriptive labels are automatically placed. See @command{xlabel},
@command{ylabel}, and @command{title}
Note: if the requested plot is for an @acronym{MIMO} system, @var{mag} is set to
@iftex
@tex
$ \Vert G(jw) \Vert $ or $ \Vert G( {\rm exp}(jwT) \Vert $
@end tex
@end iftex
@ifinfo
||G(jw)|| or ||G(exp(jwT))||
@end ifinfo
and phase information is not computed
@end deftypefn
@deftypefn {Function File} {[@var{zer}, @var{gain}] =} tzero (@var{a}, @var{b}, @var{c}, @var{d}, @var{opt})
@deftypefnx {Function File} {[@var{zer}, @var{gain}] =} tzero (@var{sys}, @var{opt})
Compute transmission zeros of a continuous system:
@iftex
@tex
$$ \dot x = Ax + Bu $$
$$ y = Cx + Du $$
@end tex
@end iftex
@ifinfo
@example
x = Ax + Bu
y = Cx + Du
@end example
@end ifinfo
or of a discrete one:
@iftex
@tex
$$ x_{k+1} = Ax_k + Bu_k $$
$$ y_k = Cx_k + Du_k $$
@end tex
@end iftex
@ifinfo
@example
x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)
@end example
@end ifinfo
@strong{Outputs}
@table @var
@item zer
transmission zeros of the system
@item gain
leading coefficient (pole-zero form) of @acronym{SISO} transfer function
returns gain=0 if system is multivariable
@end table
@strong{References}
@enumerate
@item Emami-Naeini and Van Dooren, Automatica, 1982
@item Hodel, @cite{Computation of Zeros with Balancing}, 1992 Lin. Alg. Appl
@end enumerate
@end deftypefn
@deftypefn {Function File} {@var{zr} =} tzero2 (@var{a}, @var{b}, @var{c}, @var{d}, @var{bal})
Compute the transmission zeros of @var{a}, @var{b}, @var{c}, @var{d}
@var{bal} = balancing option (see balance); default is @code{"B"}
Needs to incorporate @command{mvzero} algorithm to isolate finite zeros;
use @command{tzero} instead
@end deftypefn
@node cacsd
@chapter Controller Design
@deftypefn {Function File} {} dgkfdemo ()
Octave Controls toolbox demo:
@iftex
@tex
$ { \cal H }_2 $/$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-2/H-infinity
@end ifinfo
options demos
@end deftypefn
@deftypefn {Function File} {} hinfdemo ()
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
design demos for continuous @acronym{SISO} and @acronym{MIMO} systems and a
discrete system. The @acronym{SISO} system is difficult to control because
it is non-minimum-phase and unstable. The second design example
controls the @command{jet707} plant, the linearized state space model of a
Boeing 707-321 aircraft at @var{v}=80 m/s
@iftex
@tex
($M = 0.26$, $G_{a0} = -3^{\circ}$, ${\alpha}_0 = 4^{\circ}$, ${\kappa}= 50^{\circ}$)
@end tex
@end iftex
@ifinfo
(@var{M} = 0.26, @var{Ga0} = -3 deg, @var{alpha0} = 4 deg, @var{kappa} = 50 deg)
@end ifinfo
Inputs: (1) thrust and (2) elevator angle
Outputs: (1) airspeed and (2) pitch angle. The discrete system is a
stable and second order
@table @asis
@item @acronym{SISO} plant:
@iftex
@tex
$$ G(s) = { s-2 \over (s+2) (s-1) } $$
@end tex
@end iftex
@ifinfo
@example
@group
s - 2
G(s) = --------------
(s + 2)(s - 1)
@end group
@end example
@end ifinfo
@smallexample
@group
+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v y +----+
u *--->| G |--->O--*-->| W2 |---> v2
| +---+ | +----+
| |
| +---+ |
-----| K |<-------
+---+
@end group
@end smallexample
@iftex
@tex
$$ { \rm min } \Vert T_{vz} \Vert _\infty $$
@end tex
@end iftex
@ifinfo
@example
min || T ||
vz infty
@end example
@end ifinfo
@var{W1} und @var{W2} are the robustness and performance weighting
functions
@item @acronym{MIMO} plant:
The optimal controller minimizes the
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
norm of the
augmented plant @var{P} (mixed-sensitivity problem):
@smallexample
@group
w
1 -----------+
| +----+
+---------------------->| W1 |----> z1
w | | +----+
2 ------------------------+
| | |
| v +----+ v +----+
+--*-->o-->| G |-->o--*-->| W2 |---> z2
| +----+ | +----+
| |
^ v
u y (to K)
(from controller K)
@end group
@end smallexample
@iftex
@tex
$$ \left [ \matrix{ z_1 \cr
z_2 \cr
y } \right ] =
P \left [ \matrix{ w_1 \cr
w_2 \cr
u } \right ] $$
@end tex
@end iftex
@ifinfo
@smallexample
@group
+ + + +
| z | | w |
| 1 | | 1 |
| z | = [ P ] * | w |
| 2 | | 2 |
| y | | u |
+ + + +
@end group
@end smallexample
@end ifinfo
@item Discrete system:
This is not a true discrete design. The design is carried out
in continuous time while the effect of sampling is described by
a bilinear transformation of the sampled system
This method works quite well if the sampling period is ``small''
compared to the plant time constants
@item The continuous plant:
@iftex
@tex
$$ G(s) = { 1 \over (s+2)(s+1) } $$
@end tex
@end iftex
@ifinfo
@example
@group
1
G (s) = --------------
k (s + 2)(s + 1)
@end group
@end example
@end ifinfo
is discretised with a @acronym{ZOH} (Sampling period = @var{Ts} = 1 second):
@iftex
@tex
$$ G(z) = { 0.199788z + 0.073498 \over (z - 0.36788) (z - 0.13534) } $$
@end tex
@end iftex
@ifinfo
@example
@group
0.199788z + 0.073498
G(z) = --------------------------
(z - 0.36788)(z - 0.13534)
@end group
@end example
@end ifinfo
@smallexample
@group
+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v +----+
*--->| G |--->O--*-->| W2 |---> v2
| +---+ | +----+
| |
| +---+ |
-----| K |<-------
+---+
@end group
@end smallexample
@iftex
@tex
$$ { \rm min } \Vert T_{vz} \Vert _\infty $$
@end tex
@end iftex
@ifinfo
@example
min || T ||
vz infty
@end example
@end ifinfo
@var{W1} and @var{W2} are the robustness and performance weighting
functions
@end table
@end deftypefn
@deftypefn {Function File} {[@var{l}, @var{m}, @var{p}, @var{e}] =} dlqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z})
Construct the linear quadratic estimator (Kalman filter) for the
discrete time system
@iftex
@tex
$$
x_{k+1} = A x_k + B u_k + G w_k
$$
$$
y_k = C x_k + D u_k + v_k
$$
@end tex
@end iftex
@ifinfo
@example
x[k+1] = A x[k] + B u[k] + G w[k]
y[k] = C x[k] + D u[k] + v[k]
@end example
@end ifinfo
where @var{w}, @var{v} are zero-mean gaussian noise processes with
respective intensities @code{@var{sigw} = cov (@var{w}, @var{w})} and
@code{@var{sigv} = cov (@var{v}, @var{v})}
If specified, @var{z} is @code{cov (@var{w}, @var{v})}. Otherwise
@code{cov (@var{w}, @var{v}) = 0}
The observer structure is
@iftex
@tex
$$
z_{k|k} = z_{k|k-1} + l (y_k - C z_{k|k-1} - D u_k)
$$
$$
z_{k+1|k} = A z_{k|k} + B u_k
$$
@end tex
@end iftex
@ifinfo
@example
z[k|k] = z[k|k-1] + L (y[k] - C z[k|k-1] - D u[k])
z[k+1|k] = A z[k|k] + B u[k]
@end example
@end ifinfo
@noindent
The following values are returned:
@table @var
@item l
The observer gain,
@iftex
@tex
$(A - ALC)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{a}@var{l}@var{c})
@end ifinfo
is stable
@item m
The Riccati equation solution
@item p
The estimate error covariance after the measurement update
@item e
The closed loop poles of
@iftex
@tex
$(A - ALC)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{a}@var{l}@var{c})
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
Construct the linear quadratic regulator for the discrete time system
@iftex
@tex
$$
x_{k+1} = A x_k + B u_k
$$
@end tex
@end iftex
@ifinfo
@example
x[k+1] = A x[k] + B u[k]
@end example
@end ifinfo
to minimize the cost functional
@iftex
@tex
$$
J = \sum x^T Q x + u^T R u
$$
@end tex
@end iftex
@ifinfo
@example
J = Sum (x' Q x + u' R u)
@end example
@end ifinfo
@noindent
@var{z} omitted or
@iftex
@tex
$$
J = \sum x^T Q x + u^T R u + 2 x^T Z u
$$
@end tex
@end iftex
@ifinfo
@example
J = Sum (x' Q x + u' R u + 2 x' Z u)
@end example
@end ifinfo
@var{z} included
The following values are returned:
@table @var
@item k
The state feedback gain,
@iftex
@tex
$(A - B K)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{b}@var{k})
@end ifinfo
is stable
@item p
The solution of algebraic Riccati equation
@item e
The closed loop poles of
@iftex
@tex
$(A - B K)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{b}@var{k})
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {[@var{Lp}, @var{Lf}, @var{P}, @var{Z}] =} dkalman (@var{A}, @var{G}, @var{C}, @var{Qw}, @var{Rv}, @var{S})
Construct the linear quadratic estimator (Kalman predictor) for the
discrete time system
@iftex
@tex
$$
x_{k+1} = A x_k + B u_k + G w_k
$$
$$
y_k = C x_k + D u_k + v_k
$$
@end tex
@end iftex
@ifinfo
@example
x[k+1] = A x[k] + B u[k] + G w[k]
y[k] = C x[k] + D u[k] + v[k]
@end example
@end ifinfo
where @var{w}, @var{v} are zero-mean gaussian noise processes with
respective intensities @code{@var{Qw} = cov (@var{w}, @var{w})} and
@code{@var{Rv} = cov (@var{v}, @var{v})}
If specified, @var{S} is @code{cov (@var{w}, @var{v})}. Otherwise
@code{cov (@var{w}, @var{v}) = 0}
The observer structure is
@iftex
@tex
$x_{k+1|k} = A x_{k|k-1} + B u_k + L_p (y_k - C x_{k|k-1} - D u_k)$
$x_{k|k} = x_{k|k} + L_f (y_k - C x_{k|k-1} - D u_k)$
@end tex
@end iftex
@ifinfo
@example
x[k+1|k] = A x[k|k-1] + B u[k] + LP (y[k] - C x[k|k-1] - D u[k])
x[k|k] = x[k|k-1] + LF (y[k] - C x[k|k-1] - D u[k])
@end example
@end ifinfo
@noindent
The following values are returned:
@table @var
@item Lp
The predictor gain,
@iftex
@tex
$(A - L_p C)$
@end tex
@end iftex
@ifinfo
(@var{A} - @var{Lp} @var{C})
@end ifinfo
is stable
@item Lf
The filter gain
@item P
The Riccati solution
@iftex
@tex
$P = E \{(x - x_{n|n-1})(x - x_{n|n-1})'\}$
@end tex
@end iftex
@ifinfo
P = E [(x - x[n|n-1])(x - x[n|n-1])']
@end ifinfo
@item Z
The updated error covariance matrix
@iftex
@tex
$Z = E \{(x - x_{n|n})(x - x_{n|n})'\}$
@end tex
@end iftex
@ifinfo
Z = E [(x - x[n|n])(x - x[n|n])']
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {[@var{K}, @var{gain}, @var{kc}, @var{kf}, @var{pc}, @var{pf}] =} h2syn (@var{asys}, @var{nu}, @var{ny}, @var{tol})
Design
@iftex
@tex
$ { \cal H }_2 $
@end tex
@end iftex
@ifinfo
H-2
@end ifinfo
optimal controller per procedure in
Doyle, Glover, Khargonekar, Francis, @cite{State-Space Solutions to Standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989
Discrete-time control per Zhou, Doyle, and Glover, @cite{Robust and optimal control}, Prentice-Hall, 1996
@strong{Inputs}
@table @var
@item asys
system data structure (see ss, sys2ss)
@itemize @bullet
@item controller is implemented for continuous time systems
@item controller is @strong{not} implemented for discrete time systems
@end itemize
@item nu
number of controlled inputs
@item ny
number of measured outputs
@item tol
threshold for 0. Default: 200*@code{eps}
@end table
@strong{Outputs}
@table @var
@item k
system controller
@item gain
optimal closed loop gain
@item kc
full information control (packed)
@item kf
state estimator (packed)
@item pc
@acronym{ARE} solution matrix for regulator subproblem
@item pf
@acronym{ARE} solution matrix for filter subproblem
@end table
@end deftypefn
@deftypefn {Function File} {@var{K} =} hinf_ctr (@var{dgs}, @var{f}, @var{h}, @var{z}, @var{g})
Called by @code{hinfsyn} to compute the
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
optimal controller
@strong{Inputs}
@table @var
@item dgs
data structure returned by @code{is_dgkf}
@item f
@itemx h
feedback and filter gain (not partitioned)
@item g
final gamma value
@end table
@strong{Outputs}
@table @var
@item K
controller (system data structure)
@end table
Do not attempt to use this at home; no argument checking performed
@end deftypefn
@deftypefn {Function File} {[@var{k}, @var{g}, @var{gw}, @var{xinf}, @var{yinf}] =} hinfsyn (@var{asys}, @var{nu}, @var{ny}, @var{gmin}, @var{gmax}, @var{gtol}, @var{ptol}, @var{tol})
@strong{Inputs} input system is passed as either
@table @var
@item asys
system data structure (see @command{ss}, @command{sys2ss})
@itemize @bullet
@item controller is implemented for continuous time systems
@item controller is @strong{not} implemented for discrete time systems (see
bilinear transforms in @command{c2d}, @command{d2c})
@end itemize
@item nu
number of controlled inputs
@item ny
number of measured outputs
@item gmin
initial lower bound on
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
optimal gain
@item gmax
initial upper bound on
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
Optimal gain
@item gtol
Gain threshold. Routine quits when @var{gmax}/@var{gmin} < 1+tol
@item ptol
poles with @code{abs(real(pole))}
@iftex
@tex
$ < ptol \Vert H \Vert $
@end tex
@end iftex
@ifinfo
< ptol*||H||
@end ifinfo
(@var{H} is appropriate
Hamiltonian) are considered to be on the imaginary axis
Default: 1e-9
@item tol
threshold for 0. Default: 200*@code{eps}
@var{gmax}, @var{min}, @var{tol}, and @var{tol} must all be positive scalars
@end table
@strong{Outputs}
@table @var
@item k
System controller
@item g
Designed gain value
@item gw
Closed loop system
@item xinf
@acronym{ARE} solution matrix for regulator subproblem
@item yinf
@acronym{ARE} solution matrix for filter subproblem
@end table
References:
@enumerate
@item Doyle, Glover, Khargonekar, Francis, @cite{State-Space Solutions
to Standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989
@item Maciejowksi, J.M., @cite{Multivariable feedback design},
Addison-Wesley, 1989, @acronym{ISBN} 0-201-18243-2
@item Keith Glover and John C. Doyle, @cite{State-space formulae for all
stabilizing controllers that satisfy an}
@iftex
@tex
$ { \cal H }_\infty $@cite{norm}
@end tex
@end iftex
@ifinfo
@cite{H-infinity-norm}
@end ifinfo
@cite{bound and relations to risk sensitivity},
Systems & Control Letters 11, Oct. 1988, pp 167--172
@end enumerate
@end deftypefn
@deftypefn {Function File} {[@var{retval}, @var{pc}, @var{pf}] =} hinfsyn_chk (@var{a}, @var{b1}, @var{b2}, @var{c1}, @var{c2}, @var{d12}, @var{d21}, @var{g}, @var{ptol})
Called by @code{hinfsyn} to see if gain @var{g} satisfies conditions in
Theorem 3 of
Doyle, Glover, Khargonekar, Francis, @cite{State Space Solutions to Standard}
@iftex
@tex
$ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
@cite{H-2 and H-infinity}
@end ifinfo
@cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989
@strong{Warning:} do not attempt to use this at home; no argument
checking performed
@strong{Inputs}
As returned by @code{is_dgkf}, except for:
@table @var
@item g
candidate gain level
@item ptol
as in @code{hinfsyn}
@end table
@strong{Outputs}
@table @var
@item retval
1 if g exceeds optimal Hinf closed loop gain, else 0
@item pc
solution of ``regulator''
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
@acronym{ARE}
@item pf
solution of ``filter''
@iftex
@tex
$ { \cal H }_\infty $
@end tex
@end iftex
@ifinfo
H-infinity
@end ifinfo
@acronym{ARE}
@end table
Do not attempt to use this at home; no argument checking performed
@end deftypefn
@deftypefn {Function File} {[@var{xinf}, @var{x_ha_err}] =} hinfsyn_ric (@var{a}, @var{bb}, @var{c1}, @var{d1dot}, @var{r}, @var{ptol})
Forms
@example
xx = ([bb; -c1'*d1dot]/r) * [d1dot'*c1 bb'];
Ha = [a 0*a; -c1'*c1 - a'] - xx;
@end example
and solves associated Riccati equation
The error code @var{x_ha_err} indicates one of the following
conditions:
@table @asis
@item 0
successful
@item 1
@var{xinf} has imaginary eigenvalues
@item 2
@var{hx} not Hamiltonian
@item 3
@var{xinf} has infinite eigenvalues (numerical overflow)
@item 4
@var{xinf} not symmetric
@item 5
@var{xinf} not positive definite
@item 6
@var{r} is singular
@end table
@end deftypefn
@deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z})
Construct the linear quadratic estimator (Kalman filter) for the
continuous time system
@iftex
@tex
$$
{dx\over dt} = A x + G u
$$
$$
y = C x + v
$$
@end tex
@end iftex
@ifinfo
@example
dx
-- = A x + G u
dt
y = C x + v
@end example
@end ifinfo
where @var{w} and @var{v} are zero-mean gaussian noise processes with
respective intensities
@example
sigw = cov (w, w)
sigv = cov (v, v)
@end example
The optional argument @var{z} is the cross-covariance
@code{cov (@var{w}, @var{v})}. If it is omitted,
@code{cov (@var{w}, @var{v}) = 0} is assumed
Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)}
The following values are returned:
@table @var
@item k
The observer gain,
@iftex
@tex
$(A - K C)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{k}@var{c})
@end ifinfo
is stable
@item p
The solution of algebraic Riccati equation
@item e
The vector of closed loop poles of
@iftex
@tex
$(A - K C)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{k}@var{c})
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {[@var{k}, @var{q1}, @var{p1}, @var{ee}, @var{er}] =} lqg (@var{sys}, @var{sigw}, @var{sigv}, @var{q}, @var{r}, @var{in_idx})
Design a linear-quadratic-gaussian optimal controller for the system
@example
dx/dt = A x + B u + G w [w]=N(0,[Sigw 0 ])
y = C x + v [v] ( 0 Sigv ])
@end example
or
@example
x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0,[Sigw 0 ])
y(k) = C x(k) + v(k) [v] ( 0 Sigv ])
@end example
@strong{Inputs}
@table @var
@item sys
system data structure
@item sigw
@itemx sigv
intensities of independent Gaussian noise processes (as above)
@item q
@itemx r
state, control weighting respectively. Control @acronym{ARE} is
@item in_idx
names or indices of controlled inputs (see @command{sysidx}, @command{cellidx})
default: last dim(R) inputs are assumed to be controlled inputs, all
others are assumed to be noise inputs
@end table
@strong{Outputs}
@table @var
@item k
system data structure format @acronym{LQG} optimal controller (Obtain A, B, C
matrices with @command{sys2ss}, @command{sys2tf}, or @command{sys2zp} as
appropriate)
@item p1
Solution of control (state feedback) algebraic Riccati equation
@item q1
Solution of estimation algebraic Riccati equation
@item ee
Estimator poles
@item es
Controller poles
@end table
See also: h2syn, lqe, lqr
@end deftypefn
@deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
construct the linear quadratic regulator for the continuous time system
@iftex
@tex
$$
{dx\over dt} = A x + B u
$$
@end tex
@end iftex
@ifinfo
@example
dx
-- = A x + B u
dt
@end example
@end ifinfo
to minimize the cost functional
@iftex
@tex
$$
J = \int_0^\infty x^T Q x + u^T R u
$$
@end tex
@end iftex
@ifinfo
@example
infinity
/
J = | x' Q x + u' R u
/
t=0
@end example
@end ifinfo
@noindent
@var{z} omitted or
@iftex
@tex
$$
J = \int_0^\infty x^T Q x + u^T R u + 2 x^T Z u
$$
@end tex
@end iftex
@ifinfo
@example
infinity
/
J = | x' Q x + u' R u + 2 x' Z u
/
t=0
@end example
@end ifinfo
@var{z} included
The following values are returned:
@table @var
@item k
The state feedback gain,
@iftex
@tex
$(A - B K)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{b}@var{k})
@end ifinfo
is stable and minimizes the cost functional
@item p
The stabilizing solution of appropriate algebraic Riccati equation
@item e
The vector of the closed loop poles of
@iftex
@tex
$(A - B K)$
@end tex
@end iftex
@ifinfo
(@var{a} - @var{b}@var{k})
@end ifinfo
@end table
@strong{Reference}
Anderson and Moore, @cite{Optimal control: linear quadratic methods},
Prentice-Hall, 1990, pp. 56--58
@end deftypefn
@deftypefn {Function File} {[@var{y}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{x0})
Produce output for a linear simulation of a system; produces
a plot for the output of the system, @var{sys}
@var{u} is an array that contains the system's inputs. Each row in @var{u}
corresponds to a different time step. Each column in @var{u} corresponds to a
different input. @var{t} is an array that contains the time index of the
system; @var{t} should be regularly spaced. If initial conditions are required
on the system, the @var{x0} vector should be added to the argument list
When the lsim function is invoked a plot is not displayed;
however, the data is returned in @var{y} (system output)
and @var{x} (system states)
@end deftypefn
@deftypefn {Function File} {@var{K} =} place (@var{sys}, @var{p})
@deftypefnx {Function File} {@var{K} =} place (@var{a}, @var{b}, @var{p})
Computes the matrix @var{K} such that if the state
is feedback with gain @var{K}, then the eigenvalues of the closed loop
system (i.e. @math{A-BK}) are those specified in the vector @var{p}
Version: Beta (May-1997): If you have any comments, please let me know
(see the file place.m for my address)
@end deftypefn
@node misc
@chapter Miscellaneous Functions (Not yet properly filed/documented)
@deftypefn {Function File} {} axis2dlim (@var{axdata})
Determine axis limits for 2-D data (column vectors); leaves a 10%
margin around the plots
Inserts margins of +/- 0.1 if data is one-dimensional
(or a single point)
@strong{Input}
@table @var
@item axdata
@var{n} by 2 matrix of data [@var{x}, @var{y}]
@end table
@strong{Output}
@table @var
@item axvec
Vector of axis limits appropriate for call to @command{axis} function
@end table
@end deftypefn
@deftypefn {Function File} {} moddemo (@var{inputs})
Octave Control toolbox demo: Model Manipulations demo
@end deftypefn
@deftypefn {Function File} {} prompt (@var{str})
Prompt user to continue
@strong{Input}
@table @var
@item str
Input string. Its default value is:
@example
\n ---- Press a key to continue ---
@end example
@end table
@end deftypefn
@deftypefn {Function File} {} rldemo (@var{inputs})
Octave Control toolbox demo: Root Locus demo
@end deftypefn
@deftypefn {Function File} {[@var{rldata}, @var{k}] =} rlocus (@var{sys}[, @var{increment}, @var{min_k}, @var{max_k}])
Display root locus plot of the specified @acronym{SISO} system
@example
@group
----- --- --------
--->| + |---|k|---->| SISO |----------->
----- --- -------- |
- ^ |
|_____________________________|
@end group
@end example
@strong{Inputs}
@table @var
@item sys
system data structure
@item min_k
Minimum value of @var{k}
@item max_k
Maximum value of @var{k}
@item increment
The increment used in computing gain values
@end table
@strong{Outputs}
Plots the root locus to the screen
@table @var
@item rldata
Data points plotted: in column 1 real values, in column 2 the imaginary values
@item k
Gains for real axis break points
@end table
@end deftypefn
@deftypefn {Function File} {[@var{yy}, @var{idx}] =} sortcom (@var{xx}[, @var{opt}])
Sort a complex vector
@strong{Inputs}
@table @var
@item xx
Complex vector
@item opt
sorting option:
@table @code
@item "re"
Real part (default);
@item "mag"
By magnitude;
@item "im"
By imaginary part
@end table
if @var{opt} is not chosen as @code{"im"}, then complex conjugate pairs are grouped together,
@math{a - jb} followed by @math{a + jb}
@end table
@strong{Outputs}
@table @var
@item yy
Sorted values
@item idx
Permutation vector: @code{yy = xx(idx)}
@end table
@end deftypefn
@deftypefn {Function File} {[@var{num}, @var{den}] =} ss2tf (@var{a}, @var{b}, @var{c}, @var{d})
Conversion from transfer function to state-space
The state space system:
@iftex
@tex
$$ \dot x = Ax + Bu $$
$$ y = Cx + Du $$
@end tex
@end iftex
@ifinfo
@example
x = Ax + Bu
y = Cx + Du
@end example
@end ifinfo
is converted to a transfer function:
@iftex
@tex
$$ G(s) = { { \rm num }(s) \over { \rm den }(s) } $$
@end tex
@end iftex
@ifinfo
@example
num(s)
G(s)=-------
den(s)
@end example
@end ifinfo
used internally in system data structure format manipulations
@end deftypefn
@deftypefn {Function File} {[@var{pol}, @var{zer}, @var{k}] =} ss2zp (@var{a}, @var{b}, @var{c}, @var{d})
Converts a state space representation to a set of poles and zeros;
@var{k} is a gain associated with the zeros
Used internally in system data structure format manipulations
@end deftypefn
@deftypefn {Function File} {} starp (@var{P}, @var{K}, @var{ny}, @var{nu})
Redheffer star product or upper/lower LFT, respectively
@example
@group
+-------+
--------->| |--------->
| P |
+--->| |---+ ny
| +-------+ |
+-------------------+
| |
+----------------+ |
| |
| +-------+ |
+--->| |------+ nu
| K |
--------->| |--------->
+-------+
@end group
@end example
If @var{ny} and @var{nu} ``consume'' all inputs and outputs of
@var{K} then the result is a lower fractional transformation
If @var{ny} and @var{nu} ``consume'' all inputs and outputs of
@var{P} then the result is an upper fractional transformation
@var{ny} and/or @var{nu} may be negative (i.e. negative feedback)
@end deftypefn
@deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} tf2ss (@var{num}, @var{den})
Conversion from transfer function to state-space
The state space system:
@iftex
@tex
$$ \dot x = Ax + Bu $$
$$ y = Cx + Du $$
@end tex
@end iftex
@ifinfo
@example
x = Ax + Bu
y = Cx + Du
@end example
@end ifinfo
is obtained from a transfer function:
@iftex
@tex
$$ G(s) = { { \rm num }(s) \over { \rm den }(s) } $$
@end tex
@end iftex
@ifinfo
@example
num(s)
G(s)=-------
den(s)
@end example
@end ifinfo
The vector @var{den} must contain only one row, whereas the vector
@var{num} may contain as many rows as there are outputs @var{y} of
the system. The state space system matrices obtained from this function
will be in controllable canonical form as described in @cite{Modern Control
Theory}, (Brogan, 1991)
@end deftypefn
@deftypefn {Function File} {[@var{zer}, @var{pol}, @var{k}] =} tf2zp (@var{num}, @var{den})
Converts transfer functions to poles-and-zero representations
Returns the zeros and poles of the @acronym{SISO} system defined
by @var{num}/@var{den}
@var{k} is a gain associated with the system zeros
@end deftypefn
@deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} zp2ss (@var{zer}, @var{pol}, @var{k})
Conversion from zero / pole to state space
@strong{Inputs}
@table @var
@item zer
@itemx pol
Vectors of (possibly) complex poles and zeros of a transfer
function. Complex values must come in conjugate pairs
(i.e., @math{x+jy} in @var{zer} means that @math{x-jy} is also in @var{zer})
The number of zeros must not exceed the number of poles
@item k
Real scalar (leading coefficient)
@end table
@strong{Outputs}
@table @var
@item @var{a}
@itemx @var{b}
@itemx @var{c}
@itemx @var{d}
The state space system, in the form:
@iftex
@tex
$$ \dot x = Ax + Bu $$
$$ y = Cx + Du $$
@end tex
@end iftex
@ifinfo
@example
x = Ax + Bu
y = Cx + Du
@end example
@end ifinfo
@end table
@end deftypefn
@deftypefn {Function File} {[@var{num}, @var{den}] =} zp2tf (@var{zer}, @var{pol}, @var{k})
Converts zeros / poles to a transfer function
@strong{Inputs}
@table @var
@item zer
@itemx pol
Vectors of (possibly complex) poles and zeros of a transfer
function. Complex values must appear in conjugate pairs
@item k
Real scalar (leading coefficient)
@end table
@end deftypefn
@bye
@c Local Variables: ***
@c Mode: texinfo ***
@c End: ***
|