File: dhinfdemo.m

package info (click to toggle)
octave-control 1.0.11-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 1,628 kB
  • ctags: 160
  • sloc: makefile: 64; sh: 4
file content (172 lines) | stat: -rw-r--r-- 4,915 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
## Copyright (C) 1996, 1998, 2000, 2004, 2005, 2007 Kai P. Mueller
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} dhinfdemo ()
## Demonstrate the functions available to design a discrete
## @iftex
## @tex
## $ { \cal H }_\infty $
## @end tex
## @end iftex
## @ifinfo
## H-infinity
## @end ifinfo
## controller.  This is not a true discrete design. The
## design is carried out in continuous time while the effect of sampling
## is described by a bilinear transformation of the sampled system.
## This method works quite well if the sampling period is "small"
## compared to the plant time constants.
##
## Continuous plant:
## @iftex
## @tex
## $$ G(s) = { 1 \over (s+2) (s+1) } $$
## @end tex
## @end iftex
## @ifinfo
## @example
## @group
##                   1
##      G(s) = --------------
##             (s + 2)(s + 1)
## @end group
## @end example
## @end ifinfo
##
## Discretised plant with @acronym{ZOH} (Sampling period = @var{Ts} = 1 second):
## @iftex
## @tex
## $$ G(z) = { 0.39958z + 0.14700 \over (z - 0.36788) (z - 0.13533) } $$
## @end tex
## @end iftex
## @ifinfo
## @example
## @group
##                 0.39958z + 0.14700
##      G(z) = --------------------------
##             (z - 0.36788)(z - 0.13533)
## @end group
## @end example
## @end ifinfo
##
## @example
## @group
##                               +----+
##          -------------------->| W1 |---> v1
##      z   |                    +----+
##      ----|-------------+                   || T   ||     => min.
##          |             |                       vz   infty
##          |    +---+    v      +----+
##          *--->| G |--->O--*-->| W2 |---> v2
##          |    +---+       |   +----+
##          |                |
##          |    +---+       |
##          -----| K |<-------
##               +---+
## @end group
## @end example
##
## @noindent
## W1 and W2 are the robustness and performancs weighting functions.
## @end deftypefn

## K. Mueller, <mueller@ifr.ing.tu-bs.de>
## Technical University of Braunschweig, IfR

echo off
disp(" ");
disp("    --------------------------------------------------");
disp("    Discrete H_infinity optimal control for the plant:");
disp(" ");
disp("                     0.39958z + 0.14700");
disp("          G(s) = --------------------------");
disp("                 (z - 0.36788)(z - 0.13533)");
disp("    --------------------------------------------------");
disp(" ");

disp("sampling time:")
cmd = "Ts = 1.0;";
disp(cmd);
eval(cmd);
disp("weighting on actuator value u");
cmd = "W1 = wgt1o(0.1, 200.0, 50.0);";
disp(cmd);
eval(cmd);
disp("weighting on controlled variable y");
cmd = "W2 = wgt1o(350.0, 0.05, 0.0002);";
disp(cmd);
eval(cmd);
## omega axis (column vector)
ww = vec(logspace(-4.99, 3.99, 100));

disp("Create ZOH equivalent model of a continuous plant");
cmd = "G = tf(2,[1 3 2]);  Gd = c2d(G, Ts);";
run_cmd

## w-plane (continuous representation of the sampled system)
disp("W-plane transform of discrete time system:");
cmd = "Gw = d2c(Gd, \"bi\");";
run_cmd

disp(" ");
disp(" o building P...");
## need One as the pseudo transfer function One = 1
cmd = "One = ugain(1);";
disp(cmd);
eval(cmd);
cmd = " psys = buildssic([1 4;2 4;3 1],[3],[2 3 5],[3 4],Gw,W1,W2,One);";
run_cmd;
disp(" o controller design...");
cmd = "[K, gfin, GWC] = hinfsyn(psys, 1, 1, 0.1, 10.0, 0.02);";
run_cmd

disp(" ");
fig_n = 1;
yn = input(" * Plot magnitudes of W1KS and W2S? [n]: ","S");
if (length(yn) >= 1)
  if ((yn(1) == "y") || (yn(1) == 'Y'))
    disp(" o magnitudes of W1KS and W2S...");
    gwx = sysprune(GWC, 1, 1);
    mag1 = bode(gwx, ww);
    if (columns(mag1) > 1);  mag1 = mag1';  endif
    gwx = sysprune(GWC, 2, 1);
    mag2 = bode(gwx, ww);
    if (columns(mag2) > 1);  mag2 = mag2';  endif
    figure(fig_n)
    fig_n = fig_n + 1;
    loglog(ww, [mag1 mag2]);
    grid ("on");
  endif
endif

Kd = c2d(K, "bi", Ts);
GG = buildssic([1 2; 2 1], [], [1 2], [-2], Gd, Kd);
disp(" o closed loop poles...");
damp(GG);

disp(" ");
yn = input(" * Plot closed loop step responses? [n]: ","S");
if (length(yn) >= 1)
  if ((yn(1) == "y") || (yn(1) == 'Y'))
    disp(" o step responses of T and KS...");
    figure(fig_n)
    step(GG, 1, 10);
  endif
endif

## --------- End of dhinfdemo/kpm