File: dlqr.m

package info (click to toggle)
octave-control 1.0.11-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 1,628 kB
  • ctags: 160
  • sloc: makefile: 64; sh: 4
file content (152 lines) | stat: -rw-r--r-- 3,466 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
## Copyright (C) 1993, 1994, 1995, 2000, 2002, 2003, 2005, 2007
##               Auburn University
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
## Construct the linear quadratic regulator for the discrete time system
## @iftex
## @tex
## $$
##  x_{k+1} = A x_k + B u_k
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## x[k+1] = A x[k] + B u[k]
## @end example
##
## @end ifinfo
## to minimize the cost functional
## @iftex
## @tex
## $$
##  J = \sum x^T Q x + u^T R u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u)
## @end example
## @end ifinfo
##
## @noindent
## @var{z} omitted or
## @iftex
## @tex
## $$
##  J = \sum x^T Q x + u^T R u + 2 x^T Z u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u + 2 x' Z u)
## @end example
##
## @end ifinfo
## @var{z} included.
##
## The following values are returned:
##
## @table @var
## @item k
## The state feedback gain,
## @iftex
## @tex
## $(A - B K)$
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k})
## @end ifinfo
## is stable.
##
## @item p
## The solution of algebraic Riccati equation.
##
## @item e
## The closed loop poles of
## @iftex
## @tex
## $(A - B K)$.
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k}).
## @end ifinfo
## @end table
## @end deftypefn

## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: August 1993
## Converted to discrete time by R. B. Tenison
## (btenison@eng.auburn.edu) October 1993

function [k, p, e] = dlqr (a, b, q, r, s)

  if (nargin != 4 && nargin != 5)
    error ("dlqr: invalid number of arguments");
  endif

  ## Dimension check is done inside dare.m
  [n,m] = size(b);

  ## Check if s is there.
  if (nargin == 5)
    [n1, m1] = size (s);
    if (n1 != n || m1 != m)
      error ("dlqr: z must be identically dimensioned with b");
    endif

    ## Incorporate cross term into a and q.
    ao = a - (b/r)*s';
    qo = q - (s/r)*s';
  else
    s = zeros (n, m);
    ao = a;
    qo = q;
  endif

  ## Checking stabilizability and detectability (dimensions are checked
  ## inside these calls).
  if (isa (a, "single") || isa (b, "single") || isa (q, "single") || isa (r, "single"))
    tol = 200 * eps ("single");
  else
    tol = 200 * eps;
  endif
  if (is_stabilizable (ao, b, tol, 1) == 0)
    error ("dlqr: (a,b) not stabilizable");
  endif
  dflag = is_detectable (ao, qo, tol, 1);
  if (dflag == 0)
    warning ("dlqr: (a,q) not detectable");
  elseif (dflag == -1)
    error ("dlqr: (a,q) has non minimal modes near unit circle");
  endif

  ## Compute the Riccati solution
  p = dare (ao, b, qo, r);
  k = (r+b'*p*b)\(b'*p*a + s');
  e = eig (a - b*k);

endfunction