1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
## Copyright (C) 1993, 1994, 1995, 2000, 2002, 2003, 2005, 2007
## Auburn University
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
## Construct the linear quadratic regulator for the discrete time system
## @iftex
## @tex
## $$
## x_{k+1} = A x_k + B u_k
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## x[k+1] = A x[k] + B u[k]
## @end example
##
## @end ifinfo
## to minimize the cost functional
## @iftex
## @tex
## $$
## J = \sum x^T Q x + u^T R u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u)
## @end example
## @end ifinfo
##
## @noindent
## @var{z} omitted or
## @iftex
## @tex
## $$
## J = \sum x^T Q x + u^T R u + 2 x^T Z u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u + 2 x' Z u)
## @end example
##
## @end ifinfo
## @var{z} included.
##
## The following values are returned:
##
## @table @var
## @item k
## The state feedback gain,
## @iftex
## @tex
## $(A - B K)$
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k})
## @end ifinfo
## is stable.
##
## @item p
## The solution of algebraic Riccati equation.
##
## @item e
## The closed loop poles of
## @iftex
## @tex
## $(A - B K)$.
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k}).
## @end ifinfo
## @end table
## @end deftypefn
## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: August 1993
## Converted to discrete time by R. B. Tenison
## (btenison@eng.auburn.edu) October 1993
function [k, p, e] = dlqr (a, b, q, r, s)
if (nargin != 4 && nargin != 5)
error ("dlqr: invalid number of arguments");
endif
## Dimension check is done inside dare.m
[n,m] = size(b);
## Check if s is there.
if (nargin == 5)
[n1, m1] = size (s);
if (n1 != n || m1 != m)
error ("dlqr: z must be identically dimensioned with b");
endif
## Incorporate cross term into a and q.
ao = a - (b/r)*s';
qo = q - (s/r)*s';
else
s = zeros (n, m);
ao = a;
qo = q;
endif
## Checking stabilizability and detectability (dimensions are checked
## inside these calls).
if (isa (a, "single") || isa (b, "single") || isa (q, "single") || isa (r, "single"))
tol = 200 * eps ("single");
else
tol = 200 * eps;
endif
if (is_stabilizable (ao, b, tol, 1) == 0)
error ("dlqr: (a,b) not stabilizable");
endif
dflag = is_detectable (ao, qo, tol, 1);
if (dflag == 0)
warning ("dlqr: (a,q) not detectable");
elseif (dflag == -1)
error ("dlqr: (a,q) has non minimal modes near unit circle");
endif
## Compute the Riccati solution
p = dare (ao, b, qo, r);
k = (r+b'*p*b)\(b'*p*a + s');
e = eig (a - b*k);
endfunction
|