1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
## Copyright (C) 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
## Kai P. Mueller.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{retval} =} is_stabilizable (@var{sys}, @var{tol})
## @deftypefnx {Function File} {@var{retval} =} is_stabilizable (@var{a}, @var{b}, @var{tol}, @var{dflg})
## Logical check for system stabilizability (i.e., all unstable modes are controllable).
## Returns 1 if the system is stabilizable, 0 if the system is not stabilizable, -1
## if the system has non stabilizable modes at the imaginary axis (unit circle for
## discrete-time systems.
##
## Test for stabilizability is performed via Hautus Lemma. If
## @iftex
## @tex
## @var{dflg}$\neq$0
## @end tex
## @end iftex
## @ifinfo
## @var{dflg}!=0
## @end ifinfo
## assume that discrete-time matrices (a,b) are supplied.
## @seealso{size, rows, columns, length, ismatrix, isscalar, isvector, is_observable, is_stabilizable, is_detectable}
## @end deftypefn
## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: August 1993
## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb
## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems
function retval = is_stabilizable (a, b, tol, dflg)
if (nargin < 1)
print_usage ();
elseif (isstruct (a))
## system passed.
if (nargin == 2)
tol = b; % get tolerance
elseif (nargin > 2)
print_usage ();
endif
disc = is_digital(a);
[a, b] = sys2ss (a);
else
## a,b arguments sent directly.
if (nargin > 4 || nargin == 1)
print_usage ();
endif
if (exist ("dflg"))
disc = dflg;
else
disc = 0;
endif
endif
if (! exist ("tol"))
if (isa (a, "single") || isa (b, "single"))
tol = 200 * eps("single");
else
tol = 200 * eps;
endif
endif
## Checking dimensions
n = issquare (a);
if (n == 0)
error ("is_stabilizable: a must be square");
endif
[nr, m] = size (b);
if (nr != n)
error ("is_stabilizable: (a,b) not conformal");
endif
##Computing the eigenvalue of A
L = eig (a);
retval = 1;
specflag = 0;
for i = 1:n
if (disc == 0)
## Continuous time case
rL = real (L(i));
if (rL >= 0)
H = [eye(n)*L(i)-a, b];
f = (rank (H, tol) == n);
if (f == 0)
retval = 0;
if (rL == 0)
specflag = 1;
endif
endif
endif
else
## Discrete time case
rL = abs (L(i));
if (rL >= 1)
H = [eye(n)*L(i)-a, b];
f = (rank (H, tol) == n);
if (f == 0)
retval = 0;
if (rL == 1)
specflag = 1;
endif
endif
endif
endif
endfor
if (specflag == 1)
## This means that the system has uncontrollable modes at the imaginary axis
## (or at the unit circle for discrete time systems)
retval = -1;
endif
endfunction
|