1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
## Copyright (C) 1996, 2000, 2002, 2004, 2005, 2007
## Auburn University. All rights reserved.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{out} =} ltifr (@var{a}, @var{b}, @var{w})
## @deftypefnx {Function File} {@var{out} =} ltifr (@var{sys}, @var{w})
## Linear time invariant frequency response of single-input systems.
##
## @strong{Inputs}
## @table @var
## @item a
## @itemx b
## coefficient matrices of @math{dx/dt = A x + B u}
## @item sys
## system data structure
## @item w
## vector of frequencies
## @end table
## @strong{Output}
## @table @var
## @item out
## frequency response, that is:
## @end table
## @iftex
## @tex
## $$ G(j\omega) = (j\omega I-A)^{-1}B $$
## @end tex
## @end iftex
## @ifinfo
## @example
## -1
## G(s) = (jw I-A) B
## @end example
## @end ifinfo
## for complex frequencies @math{s = jw}.
## @end deftypefn
## Author: R. Bruce Tenison <btenison@eng.auburn.edu>
## Author: David Clem
## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: July 1995
## updated by John Ingram August 1996 for system format
function out = ltifr (a, b, w)
if (nargin < 2 || nargin > 3)
error("incorrect number of input arguments");
endif
if (nargin == 2)
sys = a;
w = b;
if(! isstruct (sys))
error ("two arguments: 1st must be a system data structure");
endif
if (! isvector (w))
error ("w must be a vector");
endif
[nn, nz, mm, pp] = sysdimensions (sys);
if (mm != 1)
error("sys has %d > 1 inputs", mm);
endif
[a, b] = sys2ss (sys);
else
if (columns (a) != rows (b)),
error ("ltifr: A(%dx%d), B(%dx%d) not compatibly dimensioned",
rows (a), columns(a), rows(b), columns(b));
endif
if (columns (b) != 1)
error ("ltifr: b(%dx%d) must be a single column vector",
rows(b), columns(b));
endif
if (! issquare (a))
error ("ltifr: A(%dx$d) must be square", rows(a), columns(a))
endif
endif
if (! isvector (w))
error ("w must be a vector");
endif
ey = eye (size (a));
lw = length (w);
out = ones (columns (a), lw);
for ii = 1:lw,
out(:,ii) = (w(ii)*ey-a)\b;
endfor
endfunction
|